Алюминий это сплав или металл

Обновлено: 17.05.2024

АЛЮМИНИЙ
Al
(от лат. aluminium), химический элемент IIIA подгруппы периодической системы элементов (B, Al, Ga, In, Tl), наиболее распространенный металл в земной коре, встречается в большом количестве минералов, например в глине и граните. Основным сырьем для производства алюминия служат бокситы - руда, представляющая собой в основном гидратированный оксид алюминия Al2O3Ч2H2O. Мировым лидером по производству алюминия являются США, затем Россия, Канада и Австралия. Алюминий наиболее известен как сырье для производства сплавов, используемых для изготовления пищевых емкостей (бидонов, баллонов, банок и т.п.), легкой кухонной посуды и другой домашней утвари. Неочищенный алюминий был впервые выделен Х.Эрстедом в 1825, хотя еще в 1807 Х.Дэви обнаружил неизвестный металл при обработке глины серной кислотой. Дэви не смог выделить металл из соединений, но назвал его алюминум (от лат. alumen - квасцы), а его оксид - глиноземом (alimina); вскоре это название металла по аналогии с названиями других металлов изменили на "алюминий", что стало общепринятым.
Свойства. Замечательным свойством алюминия является его легкость; плотность алюминия примерно в три раза меньше, чем у стали, меди или цинка. Чистый алюминий - мягкий металл, но образует сплавы с другими элементами, что обеспечивает большой диапазон полезных свойств. В ряду величин теплопроводности и электрической проводимости алюминий стоит после серебра и меди. Алюминий отличается высокой реакционной способностью, поэтому он не встречается в природе в свободном состоянии. Металлический алюминий быстро растворяется в соляной кислоте с образованием хлорида AlCl3, медленнее - в серной с образованием сульфата Al2(SO4)3, но с азотной кислотой реагирует только в присутствии солей ртути. В реакции со щелочами он образует алюминаты, например, с NaOH образует NaAlO2. Алюминий проявляет амфотерные свойства, так как он реагирует и с кислотами, и со щелочами. На воздухе алюминий быстро покрывается прочной защитной пленкой оксида Al2O3, предохраняющей его от дальнейшего окисления. Поэтому алюминий стабилен на воздухе и в присутствии влаги даже при умеренном нагревании. Если защитная пленка оксида нарушена, то при нагревании на воздухе или в кислороде он сгорает ярким белым пламенем. При нагревании алюминий активно реагирует с галогенами, серой, углеродом и азотом. Расплавленный алюминий реагирует с водой со взрывом. СВОЙСТВА АЛЮМИНИЯ
Атомный номер 13 Атомная масса 26,9815 Изотопы


Температура плавления, ° С 660 Температура кипения, ° С 2467 Плотность, г/см3 2,7 Твердость (по Моосу) 2,0-2,9 Содержание в земной коре, % (масс.) 8,13 Степени окисления +3
Применение. С давних времен квасцы применяли в медицине как вяжущее средство, в крашении для протравы, и для дубления кожи. Квасцами часто называют смешанные сульфаты одно- и трехвалентного металлов, например алюминия и калия (минерал сольфатерит). Римский ученый Плиний Старший (1 в. н.э.) в своей Естественной истории упоминает о квасцах как о солях, свойства которых изучали алхимики. Впервые для дубления кожи и в медицинских целях квасцы применили египтяне; они, а также лидийцы, финикийцы и иудеи, знали, что некоторые краски, например индиго и кошениль, лучше сохраняются, если их смешивать или пропитывать квасцами. Кристаллический оксид алюминия, встречающийся в природе под названием корунд, используется как абразив, благодаря высокой твердости. Рубин и сапфир - разновидности корунда, окрашенные примесями, являются драгоценными камнями.
Применение металлического алюминия. Алюминий - один из наиболее легких конструкционных металлов (см. табл.). Сплавы, получаемые из алюминия после термообработки, наряду с низкой плотностью отличаются высокой прочностью и другими важными механическими свойствами, что делает алюминий незаменимым для изготовления деталей транспортных средств (поршни и картеры, блоки и головки цилиндров авиационных и автомобильных двигателей, подшипники, силовой набор и обшивка фюзеляжей и пр.). Алюминий легко подвергается волочению и вытяжке, что используется в производстве пищевых емкостей. Удельная электропроводность алюминия составляет ок. 61% электрической проводимости меди, но плотность алюминия в три раза меньше. Сочетание хорошей проводимости с высокой коррозионной стойкостью на воздухе расширяет возможности использования алюминиевых кабелей, часто упрочняемых сталью, для высоковольтных электропередач. Алюминий отличается также и высокой теплопроводностью, что используется в двигателях, системах охлаждения и других устройствах. Металл легко полируется механически и электролитически, поэтому его применяют также для отражателей телескопов и аналогичных целей. Алюминий широко используется как упаковочный материал и имеет максимальный среди других упаковочных материалов коэффициент извлечения при вторичной переработке. Рекуперация алюминиевого вторсырья позволяет экономить энергию, так как ее расход в этом случае меньше, чем при производстве алюминия из руды. В 1981 доля рекуперированного алюминия в производстве пищевых емкостей составляла 53,2%, а к 1991 достигла 62,4% и продолжает расти. Алюминий отличается высокой коррозионной стойкостью благодаря образованию на его поверхности оксидной пленки и поэтому используется как кровельный материал, обшивка, а также в рефлекторах дневного и ИК-света. Коррозионную стойкость его можно еще повысить методом электролитического анодного окисления, известного как анодирование, в результате чего увеличиваются толщина и сцепление оксидной пленки. Анодированная поверхность легко окрашивается, такой способ часто применяют для архитектурных панелей
(см. также КОРРОЗИЯ МЕТАЛЛОВ).
Коррозионная стойкость алюминия в сочетании с красивым внешним видом обеспечивает его широкое применение в холодильной технике. Алюминий - сильный восстановитель, и его используют для выделения менее активных металлов, а также в качестве антиоксиданта в производстве стали и взрывчатых веществ. Алюминиевый порошок применяют в отделочных работах. Алюминиевая краска устойчива к действию промышленных выбросов и выхлопных газов, поэтому широко применяется как защитное покрытие на фасадных частях металлоконструкций, нефтяных танков, в железнодорожном оборудовании и других конструкциях. Алюминиевая фольга - блестящий изолирующий материал, используемый для упаковки пищевых продуктов и для заворачивания их при кулинарной обработке, как декоративное покрытие книг, буквенных знаков, а также в производстве электроконденсаторов. Алюминиевый порошок применяется в порошковой металлургии для изготовления точных деталей, а также служит добавкой в твердых топливах ракетных двигателей. Термитная смесь широко используется как сварочный материал для ремонта толстостенных конструкций, например для сварки стальных рельс
(см. также ПОРОШКОВАЯ МЕТАЛЛУРГИЯ).
Сплавы. Чистый алюминий, мягкий и пластичный, малопригоден для прямого технического применения. Для получения широкого спектра легких алюминиевых сплавов применяется процесс Холла - Эру (см. также АЛЮМИНИЕВАЯ ПРОМЫШЛЕННОСТЬ). Нужды воздухоплавания во времена Первой мировой войны способствовали интенсивному развитию технологии алюминиевых сплавов. Сегодня развивается область специальных сплавов с помощью различных технологий. Из некоторых алюминиевых сплавов получают листовой прокат и профиль, из других тянут пруток, трубы, изготовляют брус с заданным углом, сложные секции и заготовки для обработки давлением. Многие сплавы можно прессовать, вытягивать, волочить и штамповать при комнатной температуре, другие обрабатывают только при повышенной температуре (см. также СПЛАВЫ).
Термообработка. Наиболее важным в технологии сплавов алюминия было открытие А.Вильма в 1911 того, что у некоторых сплавов улучшаются механические свойства в результате специальной термообработки, известной как старение. Впервые это было установлено для сплавов с медью и магнием, а затем и для всех сплавов. Старение проводят в две стадии; на первой сплав нагревают до температуры несколько ниже температуры плавления алюминия, при этом такие компоненты, как медь, образуют твердый раствор. При быстрой закалке компоненты сплава остаются в твердом растворе. На второй стадии при сравнительно низком нагреве растворенные компоненты сплава выделяются в виде чрезвычайно мелких частиц в алюминиевой матрице, улучшая механические свойства сплава. Но не все эффекты увеличения прочности являются следствием термообработки; некоторые из них объясняются тем, что компоненты сплава образуют твердые растворы или интерметаллические соединения.
См. также МЕТАЛЛОВ ТЕРМИЧЕСКАЯ ОБРАБОТКА.
Литье и обработка давлением. Отливка в землю (точнее, в глинисто-песчаные формы) используется для изготовления массивных деталей типа блока цилиндров двигателей, а для массового производства мелких деталей применяется литье в стандартные формы, в том числе и литье под давлением. Широко используются формы для отливок, сделанные из керамики, стали или чугуна (литье в постоянную форму, или кокильное литье). Обычный литьевой сплав может содержать до 8% Cu или до 13% Si. Наиболее распространенные алюминиевые литьевые сплавы содержат добавки Mg, Ni, Fe, Mn или Zn. Низкая температура плавления алюминия и его хорошие литьевые свойства способствуют широкому применению алюминиевого литья.
См. также МЕТАЛЛОВ ЛИТЬЕ. Кроме того, используют алюминиевые заготовки, которые приобретают превосходные качества после термообработки и обработки давлением. Ранее широко применялся дюраль - сплав алюминия с 4% меди, предварительно подвергнутый тепловой и механической обработке. Теперь дюрали - это широкий набор высокопрочных алюминиевых сплавов, содержащих кроме меди также марганец, магний, кремний и др. Эти сплавы имеют прочность на разрыв до 414 МПа (42,2 кг/мм2), близкую к прочности низкоуглеродистой стали. Более современный сплав, содержащий цинк, при комнатной температуре имеет прочность на разрыв до 690 МПа (70,3 кг/мм2). Эти сплавы используются в производстве деталей самолетов и могут заменять некоторые старые медьсодержащие сплавы.
Сплавы горячей и холодной обработки. Алюминий и его сплавы можно подвергать холодной и горячей обработке. При горячей обработке происходит разрушение структуры слитка и превращение ее в однородную мелкозернистую структуру с улучшенными свойствами. Горячая формовка и штамповка позволяют изготавливать тонкие заготовки, которые невозможно получать при холодной обработке. Таким способом получают пруток, проволоку, катанку, лист и другой специальный профиль. Холодная обработка производится на конечной стадии для получения в основном листа, прутка, проволоки и труб. При холодной обработке увеличивается прочность и твердость изделия. В общем, горячая обработка используется для первичной обработки слитка, а холодная имеет преимущество на последней стадии обработки.
См. также ЭЛЕМЕНТЫ ХИМИЧЕСКИЕ.
ЛИТЕРАТУРА
Беляев А.И. Металлургия легких металлов. М., 1970 Промышленные алюминиевые сплавы. М., 1984

Алюминий и его сплавы: характеристика, свойства, применение

Алюминий и его сплавы: характеристика, свойства, применение

Алюминий — серебристо-белый легкий парамагнитный металл. Впервые получен физиком из Дании Гансом Эрстедом в 1825 году. В периодической системе Д. И. Менделеева имеет номер 13 и символ Al, атомная масса равна 26,98.

Производство алюминия

Для производства алюминия используют бокситы — это горная порода, которая содержит гидраты оксида алюминия. Мировые запасы бокситов почти не ограничены и несоизмеримы с динамикой спроса.

Боксит дробят, измельчают и сушат. Получившуюся массу сначала нагревают паром, а затем обрабатывают щелочью — в щелочной раствор переходит большая часть оксида алюминия. После этого раствор длительно перемешивают. На этапе электролиза глинозем подвергают воздействию электрического тока силой до 400 кА. Это позволяет разрушить связь между атомами кислорода и алюминия, в результате чего остается только жидкий металл. После этого алюминий отливают в слитки или добавляют к нему различные элементы для создания алюминиевых сплавов.

Алюминиевые сплавы

Наиболее распространенные элементы в составе алюминиевых сплавов — медь, марганец, магний, цинк и кремний. Реже встречаются сплавы с титаном, бериллием, цирконием и литием.

Алюминиевые сплавы условно разделяют на две группы: литейные и деформируемые.

Для изготовления литейных сплавов расплавленный алюминий заливают в литейную форму, которая соответствует конфигурации получаемого изделия. Эти сплавы часто содержат значительные примеси кремния для улучшения литейных свойств.

Деформируемые сплавы сначала разливают в слитки, а затем придают им нужную форму.

  1. Прокаткой, если необходимо получить листы и фольгу.
  2. Прессованием, если нужно получить профили, трубы и прутки.
  3. Формовкой, чтобы получить сложные формы полуфабрикатов.
  4. Ковкой, если требуется получить сложные формы с повышенными механическими свойствами.

Марки алюминиевых сплавов

  • А — технический алюминий;
  • Д — дюралюминий;
  • АК — алюминиевый сплав, ковкий;
  • АВ — авиаль;
  • В — высокопрочный алюминиевый сплав;
  • АЛ — литейный алюминиевый сплав;
  • АМг — алюминиево-магниевый сплав;
  • АМц — алюминиево-марганцевый сплав;
  • САП — спеченные алюминиевые порошки;
  • САС — спеченные алюминиевые сплавы.
  • М — сплав после отжига (мягкий);
  • Т — после закалки и естественного старения;
  • А — плакированный (нанесен чистый слой алюминия);
  • Н — нагартованный;
  • П — полунагартованный.

Виды и свойства алюминиевых сплавов

Алюминиево-магниевые сплавы

Эти пластичные сплавы обладают хорошей свариваемостью, коррозийной стойкостью и высоким уровнем усталостной прочности.

В алюминиево-магниевых сплавах содержится до 6% магния. Чем выше его содержание, тем прочнее сплав. Повышение концентрации магния на каждый процент увеличивает предел прочности примерно на 30 МПа, а предел текучести — примерно на 20 МПа. При подобных условиях уменьшается относительное удлинение, но незначительно, оставаясь в пределах 30–35%. Однако при содержании магния свыше 6% механическая структура сплава в нагартованном состоянии приобретает нестабильных характер, ухудшается коррозийная стойкость.

Для улучшения прочности в сплавы добавляют хром, марганец, титан, кремний или ванадий. Примеси меди и железа, напротив, негативно влияют на сплавы этого вида — снижают свариваемость и коррозионную стойкость.

Алюминиево-марганцевые сплавы

Это прочные и пластичные сплавы, которые обладают высоким уровнем коррозионной стойкости и хорошей свариваемостью.

Для получения мелкозернистой структуры сплавы этого вида легируют титаном, а для сохранения стабильности в нагартованном состоянии добавляют марганец. Основные примеси в сплавах вида Al-Mn — железо и кремний.

Сплавы алюминий-медь-кремний

Сплавы этого вида также называют алькусинами. Из-за высоких технических свойств их используют во втулочных подшипниках, а также при изготовлении блоков цилиндров. Обладают высокой твердостью поверхности, поэтому плохо прирабатываются.

Алюминиево-медные сплавы

Механические свойства сплавов этого вида в термоупрочненном состоянии порой превышают даже механические свойства некоторых низкоуглеродистых сталей. Их главный недостаток — невысокая коррозионная стойкость, потому эти сплавы обрабатывают поверхностными защитными покрытиями.

Алюминиево-медные сплавы легируют марганцем, кремнием, железом и магнием. Последний оказывает наибольшее влияние на свойства сплава: легирование магнием значительно повышает предел текучести и прочности. Добавление железа и никеля в сплав повышает его жаропрочность, кремния — способность к искусственному старению.

Алюминий-кремниевые сплавы

Сплавы этого вида иначе называют силуминами. Некоторые из них модифицируют добавками натрия или лития: наличие буквально 0,05% лития или 0,1% натрия увеличивает содержание кремния в эвтектическом сплаве с 12% до 14%. Сплавы применяются для декоративного литья, изготовления корпусов механизмов и элементов бытовых приборов, поскольку обладают хорошими литейными свойствами.

Сплавы алюминий-цинк-магний

Прочные и хорошо обрабатываемые. Типичный пример высокопрочного сплава этого вида — В95. Подобная прочность объясняется высокой растворимостью цинка и магния при температуре плавления до 70% и до 17,4% соответственно. При охлаждении растворимость элементов заметно снижается.

Основной недостаток этих сплавов — низкую коррозионную стойкость во время механического напряжения — исправляет легирование медью.

Авиаль

Авиаль — группа сплавов системы алюминий-магний-кремний с незначительными добавлениями иных элементов (Mn, Cr, Cu). Название образовано от сокращения словосочетания «авиационный алюминий».

Применять авиаль стали после открытия Д. Хансоном и М. Гейлером эффекта искусственного состаривания и термического упрочнения этой группы сплавов за счет выделения Mg2Si.

Эти сплавы отличаются высокой пластичностью и удовлетворительной коррозионной стойкостью. Из авиаля изготавливают кованые и штампованные детали сложной формы. Например, лонжероны лопастей винтов вертолетов. Для повышения коррозионной стойкости содержание меди иногда снижают до 0,1%.

Также сплав активно используют для замены нержавеющей стали в корпусах мобильных телефонов.

Физические свойства

  • Плотность — 2712 кг/м 3 .
  • Температура плавления — от 658°C до 660°C.
  • Удельная теплота плавления — 390 кДж/кг.
  • Температура кипения — 2500 °C.
  • Удельная теплота испарения — 10,53 МДж/кг.
  • Удельная теплоемкость — 897 Дж/кг·K.
  • Электропроводность — 37·10 6 См/м.
  • Теплопроводность — 203,5 Вт/(м·К).

Химический состав алюминиевых сплавов

Алюминиевые сплавы
Марка Массовая доля элементов, % Плотность, кг/дм³
ГОСТ ISO 209-1-89 Кремний (Si) Железо (Fe) Медь (Cu) Марганец (Mn) Магний (Mg) Хром (Cr) Цинк (Zn) Титан (Ti) Другие Алюминий не менее
Каждый Сумма
АД000 A199,8 1080A 0,15 0,15 0,03 0,02 0,02 0,06 0,02 0,02 99,8 2,7
АД00 1010 A199,7 1070A 0,2 0,25 0,03 0,03 0,03 0,07 0,03 0,03 99,7 2,7
АД00Е 1010Е ЕА199,7 1370 0,1 0,25 0,02 0,01 0,02 0,01 0,04 Бор:0,02 Ванадий+титан:0,02 0,1 99,7 2,7

Применение алюминия

Ювелирные изделия

В далеком прошлом из-за высокой стоимости алюминия его использовали для изготовления ювелирных изделий. Так, весы с алюминиевыми и золотыми чашами были подарены Д. И. Менделееву в 1889 г.

Когда себестоимость алюминия снизилась, мода на ювелирные изделия из этого металла прошла. Но и в наши дни его используют для изготовления бижутерии. В Японии, например, алюминием заменяют серебро при производстве национальных украшений.

Столовые приборы

По-прежнему пользуются популярностью столовые приборы и посуда из алюминия. В частности, в армии широко распространены алюминиевые фляжки, котелки и ложки.

Стекловарение

Алюминий широко применяют в стекловарении. Высокий коэффициент отражения и низкая стоимость вакуумного напыления — основные причины использования алюминия при изготовления зеркал.

Пищевая промышленность

Военная промышленность

Из-за небольшого веса и низкой стоимости алюминий широко применяют при изготовлении ручного стрелкового оружия — автоматов и пистолетов.

Ракетная техника

Алюминий и его соединения используют в качестве ракетного горючего в двухкомпонентных ракетных топливах и в качестве горючего компонента в твердых ракетных топливах.

Алюмоэнергетика

В алюмоэнергетике алюминий используют для производства водорода и тепловой энергии, а также выработки электроэнергии в воздушно-алюминиевых электрохимических генераторах.

АЛЮМИНИЙ — дороги, которые он выбирает

Металл алюминий — мечта многих производств. Коррозия ему не страшна, он прекрасно проводит электрический ток, цветной металл легче железа почти в три раза, отличается прочностью. Не магнитится, легко образует сплавы с металлами.

Второе имя алюминия — крылатый металл. Появление чистого алюминия открыло человеку дорогу в небо.

Алюминий

Как искали неизвестный алюминий

История открытия алюминия вяло тянулась с античности. Плиний пишет о квасцах (Alumen). Но под квасцами понимались разные вещества. Это антимоний, тартар, щелочь, гипс.

Лавуазье высказал здравую мысль: алюмина является окислом неизвестного металла. Тут химики оживились и стали пытаться «выцепить» незнакомца. Попыток было много, но только в 1825 году датчанин Эрстед извлек-таки неизвестный металл, напоминающий олово. Назвали его алюминием.

Свойства крылатого металла

Алюминий (Aluminium) имеет несчастливый 13 номер в периодической таблице Менделеева. Однако на счастливую судьбу металла это не повлияло.

Алюминий элемент

Этот легкий серебристый металл послушно поддается механической обработке и литью, имеет большую тягучесть.

Редкая способность — быстро образовывать окисные пленки на поверхности чистого металла. Но эти пленки не слишком хорошо защищают от коррозии. Надежнее химическое и электрохимическое оксидирование. Формула оксидной пленки А12Оз.

Химические и физические характеристики алюминия:

  • плотность 2,7 г/см3;
  • температура плавления 660°С;
  • кипит цветной металл при температуре 2518°С;
  • строение кристаллической решетки гранецентрированное, кубическое;
  • степени окисления 0; +3.

С помощью металлического алюминия (его взаимодействия с оксидами металлов) получают трудновосстанавливаемые металлы. Этот метод называется алюминотермия.

Алюминий имеет один стабильный изотоп, 27Al.

Микроструктура алюминия на протравленной поверхности слитка, чистотой 99,9998 %, размер видимого сектора около 55×37 мм

Неправда, но хорошо придумано

В печатных изданиях, а сейчас и в интернете гуляет история о крестьянине, который вел «крамольные беседы о полете на Луну». Крестьянина (или мещанина), по одним сведениям Петрова, по другим Никифорова, сослали в киргизский поселок Байконур» Якобы известие о факте напечатано был в Московских губернских новостях», в 1848 году. Сейчас, когда с космодрома Байконура ушли в космос не один десяток спутников и станций, этот факт выглядит пророческим и мистическим.

Алюминиевые сплавы, плюсы и минусы


Чистый алюминий в строительных конструкциях применять нецелесообразно. Прочностные характеристики у него «так себе». А вот алюминиевые сплавы — другое дело. Сейчас известны и используются около 60 сплавов. Можно выбрать для любых нужд, на любой вкус.

Классификация сплавов проводится по составу, свойствам, по способности к термической обработке.

Добавки меди, магния и марганца, цинка существенно улучшают характеристики сплава в сравнении с чистым металлом. Этими металлами чаще всего легируют алюминий. Титан, литий, ванадий, церий, скандий, некоторые редкоземельные элементы для легирования применяются реже, но свойства этих сплавов также востребованы в промышленности.

Дюраль

Дюралюмины — сплавы алюминия с медью (4%), магнием (0,5%) и небольшого количества железа, марганца, кремния. Недостаток дюралей — подверженность коррозии; с ней справляются, применяя анодирование, плакировку, авиационную грунтовку, окрашивание.

Востребованные свойства сплава: хорошая статическая и усталостная прочность, высокая вязкость разрушения.

Широко применяется в деталях и конструкциях, где большую роль играет масса изделия. Главные потребители сплава — авиация, судостроение, космонавтика.

Сплав 7075

Разрабатывался компанией Sumitomo Metal Corporation (Япония) в строжайшей тайне.

Представляет соединение алюминия с цинком (до 6%), магния (2-2,5%), меди (до 1,5%). В тот же сплав добавлены титан, кремний, марганец, хром, железо. Добавки эти составляют не более 0,5%, но свой вклад в свойства сплава вносят.

  • 7075-0;
  • 7075-06;
  • 7075-Т651;
  • 7075-Т7;
  • 7075-АСР.

Сплавы устойчивы к коррозии, хорошо полируются.

Алюминий металл

Применяются в производстве винтовок для армии и граждан. Промышленности автомобильная, авиационная, морская активно используют сплав. Его минус — достаточно высокая цена.

Сплавов разных много

В России довольно много сплавов с разными свойствами:

  • D1, D16, 1161, 1163 — алюминий, магний, медь;
  • АМГ1 — АМГ6, сплав алюминия и магния;
  • AD31, AD33, AD35, AB — алюминий, кремний, магний. Список легко продолжить.

Старость в радость

Не всегда старость — это плохо. Металл — как человек или вино; с возрастом свойства алюминия меняются; он становится лучше, крепче, сильнее.

Естественное старение металла происходит при нормальных условиях; можно сказать, что металл «дозревает».

Искусственное старение проходит при термообработке и пластическом деформировании.

Термическая обработка бывает разных видов. Выбор зависит от назначения будущего сплава.

Вид термообработки Что дает термообработка
Закалка с полным искусственным старением Высокая прочность сплава, но некоторое снижение пластичности
Закалка со стабилизирующим старением Хорошая прочность, довольно высокая стабильность структуры
Закалка с последующим смягчающим отпуском Хорошая пластичность, но снижение прочности сплава
Искусственное старение Повышает прочность сплава, улучшает возможность обработки резанием
Отжиг Повышение пластичности, уменьшение остаточных напряжений металла
Закалка Улучшает прочностные характеристики
Закалка и неполное искусственное старение Повышает прочность при сохранении пластичности

Минералы, месторождения…а самородный алюминий?

Запасы алюминия в природе огромны. Среди металлов он держит первое место по распространенности. Но «общительность», активность элемента привела к тому, что в чистом виде металл практически отсутствует.

Производство алюминия в миллионах тонн

Минералов, содержащих алюминий, много:

  • бокситы;
  • глиноземы;
  • полевые шпаты;
  • нефелины;
  • корунды.

Так что добыча алюминиевого сырья не составляет большого труда.

Если все запасы на Земле истощатся (что сомнительно), то алюминий можно добывать из морской воды. Там его содержание составляет 0,01 мг/л.

Кто захочет увидеть самородный алюминий, тому придется опускаться в жерла вулканов.

Происхождением такой металл из самых глубин нашей планеты.

Как производят крылатый металл

Производство металла можно разделить на две стадии.

  • Первая — добыча бокситов, их дробление и отделение кремния при помощи пара.
  • Вторая стадия: глинозем смешивают с расплавленным криолитом и воздействуют на смесь электротоком. В процессе реакции жидкий алюминий оседает на дне ванны.

Образовавшийся металл отливают в слитки; далее он отправляется потребителям или на производство сплавов и высокочистого алюминия.

Метод энергозатратный, «кушает» много электричества.

Бывает технический и сверхчистый

Полученный алюминий называется техническим или нелегированным. В нем содержание чистого металла не менее 99%. Его потребляет электронная промышленность, он необходим в производстве теплообменных и нагревательных устройств, осветительного оборудования.

Часть этого металла отправляется на дополнительную очистку, «рафинирование». В результате имеем металл высокой чистоты, с содержанием алюминия не менее 99,995%.

Его употребляют в электронике, в производстве полупроводников. Кабельное производство, химическое машиностроение сейчас не обойдется без сверхчистого алюминия.

Интересно: до открытия промышленного способа получения алюминия он был редкостью и стоил дороже золота. Нашего великого химика, Д.И. Менделеева, британцы почтили подарком. Это были аналитические весы (вещь, незаменимая для химика), у которых чашечки изготовили из золота и алюминия.

Металл для крыльев

Без такого металла, как алюминий, невозможно покорение неба. Крыльев людям не дано, а летать хочется человеку с давних времен. Не напрасно миф об Икаре живет с античных времен. Попытки взлететь предпринимались неоднократно.

Но прорыв случился в 1903 году, когда романтики неба и замечательные механики братья Райт подняли в воздух самолетик. Этот самолет открыл путь в небо.

Где применяется

Применение легкого и прочного металла необходимо не только в авиации.

Алюминиевый прокат

В пуленепробиваемых и бронированные стеклах, экранчиках смартфонов присутствует сапфир. У таких стекол высокая прочность на сжатие.

Познавательно: ученые продолжают разработку видов стекол, обладающих противопульной устойчивостью при меньших толщине и весе. Перспективным направлением считается прозрачная броня на основе монокристалла сапфира.

Из алюминия делают фольгу, которую используют в электрических конденсаторов. Домохозяйки с удовольствием запекают в фольге вкусняшки для домашних. Кастрюли, сковородки, другие изделия для домашнего хозяйства производят из «крылатого металла».

посуда из алюминия

Тонко молотый порошок металла используют для производства прочной краски.

Вы удивитесь, но алюминиевая кастрюлька в кухне, самолет и перстень с сапфиром — родня. В каждом есть наш герой.

Удивительно: железнодорожный транспорт на треть возит сам себя. Вес груженого товарного вагона на треть состоит из веса вагона. Про пассажирские вагоны и говорить нечего, вес людей в них всего 5%, остальное приходится на вагон.

Оксид алюминия — это корунд. А к ним относятся сапфиры, рубины, изумруды — все эти короли драгоценных камней содержат алюминий. Сам корунд используют как наждак.

Купить металл

Стоимость металла на бирже 148 USD за тонну (на 05.05.2020).

admin

Мне 42 года и я специалист в области минералогии. Здесь на сайте я делюсь информацией про камни и их свойства — задавайте вопросы и пишите комментарии!

Об алюминии

Лёгкий, прочный, стойкий к коррозии и функциональный – именно это сочетание качеств сделало алюминий главным конструкционным материалом нашего времени. Алюминий есть в домах, в которых мы живем, автомобилях, поездах и самолетах, на которых мы преодолеваем расстояния, в мобильных телефонах и компьютерах, на полках холодильников и в современных интерьерах. А ведь еще 200 лет назад об этом металле мало что было известно.

«То, что казалось несбыточным на протяжении веков, что вчера было лишь дерзновенной мечтой, сегодня становится реальной задачей, а завтра — свершением».

Сергей Павлович Королев
учёный, конструктор, основоположник практической космонавтики


Алюминий – серебристо-белый металл, 13-й элемент периодической таблицы Менделеева. Невероятно, но факт: алюминий – самый распространенный металл на Земле, на него приходится более 8% всей массы земной коры, и это третий по распространенности химический элемент на нашей планете после кислорода и кремния.

При этом алюминий не встречается в природе в чистом виде из-за своей высокой химической активности. Вот почему мы узнали о нем относительно недавно. Формально алюминий был получен лишь в 1824 году, и прошло еще полвека, прежде чем началось его промышленное производство.

Чаще всего в природе алюминий встречается в составе квасцов. Это минералы, объединяющие в себе две соли серной кислоты: одну на основе щелочного металла (лития, натрия, калия, рубидия или цезия), а другую – на основе металла третьей группы таблицы Менделеева, преимущественно алюминия.

Квасцы и сегодня применяют при очистке воды, в кулинарии, медицине, косметологии, в химической и других отраслях промышленности. Кстати, свое имя алюминий получил как раз благодаря квасцам, которые на латыни назывались alumen.

Рубины, сапфиры, изумруды и аквамарин являются минералами алюминия.
Первые два относятся к корундам – это оксид алюминия (Al2O3) в кристаллической форме. Он обладает природной прозрачностью, а по прочности уступает только алмазам. Пуленепробиваемые стекла, иллюминаторы в самолетах, экраны смартфонов производятся именно с применением сапфира.
А один из менее ценных минералов корунда – наждак используется как абразивный материал, в том числе для создания наждачной бумаги.


На сегодняшний день известно почти 300 различных соединений и минералов алюминия – от полевого шпата, являющегося основным породообразующим минералом на Земле, до рубина, сапфира или изумруда, уже не столь распространенных.

Ханс Кристиан Эрстед (1777–1851) – датский физик, почетный член Петербургской академии наук (1830). Родился в городе Рудкёрбинге в семье аптекаря. В 1797 году окончил Копенгагенский университет, в 1806 – стал профессором.

Но каким бы распространенным ни был алюминий, его открытие стало возможным только, когда в распоряжении ученых появился новый инструмент, позволяющий расщеплять сложные вещества на простые, – электрический ток.

И в 1824 году с помощью процесса электролиза датский физик Ханс Кристиан Эрстед получил алюминий. Он был загрязнен примесями калия и ртути, задействованных в химических реакциях, однако это был первый случай получения алюминия.

Используя электролиз, алюминий производят и в наши дни.

Сырьем для производства алюминия сегодня служит еще одна распространенная в природе алюминиевая руда – бокситы. Это глинистая горная порода, состоящая из разнообразных модификаций гидроксида алюминия с примесью оксидов железа, кремния, титана, серы, галлия, хрома, ванадия, карбонатных солей кальция, железа и магния – чуть ли не половины таблицы Менделеева. В среднем из 4-5 тонн бокситов производится 1 тонна алюминия.

Бокситы в 1821 году открыл геолог Пьер Бертье на юге Франции. Порода получила свое название в честь местности Ле-Бо (Les Baux), где была найдена. Около 90% мировых запасов бокситов сосредоточено в странах тропического и субтропического поясов – в Гвинее, Австралии, Вьетнаме, Бразилии, Индии и на Ямайке.


Из бокситов получают глинозем. Это оксид алюминия Al2O3, который имеет форму белого порошка и из которого путем электролиза на алюминиевых заводах производят металл.

Производство алюминия требует огромного количества электроэнергии. Для производства одной тонны металла необходимо около 15 МВт*ч энергии – столько потребляет 100-квартирный дом в течение целого месяца.Поэтому разумнее всего строить алюминиевые заводы поблизости от мощных и возобновляемых источников энергии. Самое оптимальное решение – гидроэлектростанции, представляющие самый мощный из всех видов «зеленой энергетики».

Алюминий имеет редкое сочетание ценных свойств. Это один из самых легких металлов в природе: он почти в три раза легче железа, но при этом прочен, чрезвычайно пластичен и не подвержен коррозии, так как его поверхность всегда покрыта тончайшей, но очень прочной оксидной пленкой. Он не магнитится, отлично проводит электрический ток и образует сплавы практически со всеми металлами.

Легкий

Прочный


Пластичный


Нет коррозии

Алюминий легко обрабатывается давлением, причем как в горячем, так и в холодном состоянии. Он поддается прокатке, волочению, штамповке. Алюминий не горит, не требует специальной окраски и не токсичен в отличие от пластика.

Очень высока ковкость алюминия: из него можно изготовить листы толщиной всего 4 микрона и тончайшую проволоку. А сверхтонкая алюминиевая фольга втрое тоньше человеческого волоса. Кроме того, по сравнению с другими металлами и материалами он более экономичен.

Высокая способность к образованию соединений с различными химическими элементами породила множество сплавов алюминия. Даже незначительная доля примесей существенно меняет характеристики металла и открывает новые сферы для его применения. Например, сочетание алюминия с кремнием и магнием в повседневной жизни можно встретить буквально на дороге – в форме литых колесных дисков, двигателей, в элементах шасси и других частей современного автомобиля. А если добавить в алюминиевый сплав цинк, то, возможно, вы сейчас держите его в руках, ведь именно этот сплав используется при производстве корпусов мобильных телефонов и планшетов. Тем временем ученые продолжают изобретать новые и новые алюминиевые сплавы.

Сегодня существование строительной, автомобильной, авиационной, космической, электротехнической, энергетической, пищевой и других отраслей промышленности невозможно без алюминия. Более того, именно этот металл стал символом прогресса – все новейшие электронные устройства, средства передвижения изготавливаются из алюминия.


Алюминий против меди

Если заменить всю медную проводку в автомобиле
на алюминиево-циркониевую, то его общий
вес уменьшится на 12 кг


По расчетам Международного института алюминия (IAI), в мире накопилось около 400 миллионов тонн алюминия в инфраструктуре, быту, транспорте.

Казалось бы, вышеперечисленный набор характеристик уже сам по себе достаточен для того, чтобы алюминий стал металлом приоритетного выбора в индустрии, однако есть еще одна, не менее значимая характеристика. Использование алюминия может быть бесконечно: этот металл и сплавы из него можно неоднократно переплавлять без утраты механических характеристик. Ученые подсчитали, что 1 кг собранных и сданных в переплавку алюминиевых банок позволяет сэкономить 8 кг боксита, 4 кг различных фторидов и 14 кВт/ч электроэнергии.

Около 75% алюминия, выпущенного за все время существования отрасли, используется до сих пор.

Несмотря на то, что алюминий самый распространенный металл на нашей планете, в чистом виде на Земле его не встретить. Из-за высокой химической активности атомы алюминия легко образуют соединения с другими веществами. При этом «крылатый металл» нельзя получить плавлением руды в печи, как это происходит, например, с железом. Процесс получения алюминия значительно сложнее и основан на использовании электричества огромной мощности. Поэтому алюминиевые заводы всегда строятся рядом с крупными источниками электроэнергии – чаще всего гидроэлектростанциями, не загрязняющими окружающую среду. Но обо всем по порядку.

«В природе ничто не возникает мгновенно и ничто не появляется в свете в совершенно готовом виде».

Александр Герцен
русский публицист, писатель


Производство металла делится на три основных этапа: добыча бокситов – алюминийсодержащей руды, их переработка в глинозем – оксид алюминия, и, наконец, получение чистого металла с использованием процесса электролиза – распада оксида алюминия на составные части под воздействием электрического тока. Из 4-5 тонн бокситов получается 2 тонны глинозема, из которого производят 1 тонну алюминия.

В мире существуют несколько видов алюминиевых руд, но основным сырьем для производства этого металла являются именно бокситы. Это горная порода, состоящая, в основном, из оксида алюминия с примесью других минералов. Боксит считается качественным, если он содержит более 50% оксида алюминия.


Запасы бокситов
Общие мировые подтвержденные запасы бокситов оцениваются в 18,6 миллиардов тонн. При нынешнем уровне добычи это обеспечивает потребность в алюминий больше, чем на сто лет.

Бокситы могут сильно отличаться друг от друга. По структуре они бывают твердые и плотные либо рыхлые и рассыпчатые. По цвету – как правило, кирпично-красные, рыжеватые или коричневые из-за примеси оксида железа. При небольшом содержании железа бокситы имеют белый или серый цвет. Но иногда встречаются руды желтого, темно-зеленого цвета и даже пестрые – с голубыми, красно-фиолетовыми или черными прожилками.

Около 90% мировых запасов бокситов сосредоточено в странах тропического и субтропического поясов – из них 73% приходится на пять стран: Гвинею, Бразилию, Ямайку, Австралию и Индию. В Гвинее бокситов больше всего – 5,3 миллиарда тонн (28,4%), при этом они высокого качества, содержат минимальное количество примесей и залегают практически на поверхности.


Чаще всего добыча бокситов ведется открытым способом – специальной техникой руду «срезают» слой за слоем с поверхности земли и транспортируют для дальнейшей переработки. Однако в мире есть места, где алюминиевая руда залегает очень глубоко, и для ее добычи приходится строить шахты – одна из самых глубоких шахт в мире «Черемуховская-Глубокая» находится в России, на Урале, ее глубина – 1550 метров.

Следующим этапом является производственной цепочки является переработка бокситов в глинозем – это оксид алюминия Al2O3, который представляет собой белый рассыпчатый порошок. Основным способом получения глинозема в мире является метод Байера, открытый более ста лет назад, но актуальный до сих пор – около 90% глинозема в мире производятся именно так. Этот способ весьма экономичен, но использовать его можно только при переработке высококачественных бокситов со сравнительно низким содержанием примесей – в первую очередь кремнезема.

Метод Байера основан на следующем: кристаллическая гидроокись алюминия, входящая в состав боксита, хорошо растворяется при высокой температуре в растворе едкого натра (каустической щёлочи, NaOH) высокой концентрации, а при понижении температуры и концентрации раствора вновь кристаллизуется. Посторонние, входящие в состав боксита (так называемый балласт), не переходят при этом в растворимую форму или перекристаллизовываются и выпадают в осадок до того, как производится кристаллизация гидроокиси алюминия. Поэтому после растворения гидроокиси алюминия балласт легко может быть отделен – он называется красный шлам.

Это густая масса красно-бурого цвета, состоящая из соединений кремния, железа, титана и других элементов. Его складируют на тщательно изолированных территориях – шламохранилищах. Их обустраивают таким образом, чтобы содержащиеся в отходах щёлочи не проникали в грунтовые воды. Как только хранилище отрабатывает свой потенциал, территорию можно вернуть в первоначальный вид, покрыв её песком, золой или дёрном и посадив определённые виды деревьев и трав. На полное восстановление могут уйти годы, но в итоге местность возвращается в изначальное состояние.

Многие специалисты не считают красный шлам отходом, так как он может служить сырьем для переработки. Например, из него извлекают скандий для дальнейшего производства алюминиево-скандиевых сплавов. Скандий придает таким сплавом особую прочность, сферы использования – автомобиле- и ракетостроение, спортивная экипировка, производство электропроводов.

Также красный шлам может использоваться для производства чугуна, бетона, получения редкоземельных металлов.

Крупные частицы гидроксида алюминия легко отделяются от раствора фильтрованием, их промывают водой, высушивают и кальцинируют – то есть нагревают для удаления воды. Так получают глинозем.


Нефелин
Бокситы – самое распространенное, но не единственное сырье для производства глинозема. Его также можно получить из нефелина. В природе он встречается в виде апатито-нефелиновых пород (апатит – материал из группы фосфорнокислых солей кальция). В процессе производства глинозема из нефелина также получают сода, поташ (используется в строительном секторе, производстве бытовой химии, кондитерской промышленности и так далее), редкий металл галлий. А из отходов производства – белого шлама – высококачественный цемент. Чтобы получить 1 тонну глинозема в среднем требуется 4 тонны нефелина и 7,5 тонн известняка.

У глинозема нет срока годности, но хранить его непросто, так как при малейшей он возможности активно впитывает влагу – поэтому производители предпочитают как можно быстрее отправлять его на алюминиевое производство. Сначала глинозем складывают в штабели весом до 30 тысяч тонн – получается своеобразный слоеный пирог высотой до 10-12 метров. Потом пирог «нарезают» и грузят для отправки в железнодорожные вагоны – в среднем, в один вагон от 60 до 75 тонн (зависит от вида самого вагона).

Существует еще один, гораздо менее распространенный способ получения глинозема – метод спекания. Его суть заключается в получения твердых материалов из порошкообразных при повышенной температуре. Бокситы спекают с содой и известняком – они связывают кремнезем в нерастворимые в воде силикаты, которые легко отделить от глинозема. Этот способ требует больших затрат, чем способ Байера, но в то же время дает возможность перерабатывать бокситы с высоким содержанием вредных примесей кремнезема.

Ивиттуут
Одно из единичных месторождений природного криолита на Земле. Расположено в Гренландии и было обнаружено в 1799 году. Добыча криолита прекратилась там в 1987 году, когда был изобретен способ искусственного получения этого редкого минерала. Позднее криолит был найден в Ильменских горах на Южном Урале (Миасс) и в штате Колорадо (США).

Глинозем выступает непосредственным источником металла в процессе производства алюминия. Но для создания среды, в которой этот процесс будет происходить, необходим еще один компонент – криолит.

Это редкий минерал из группы природных фторидов состава Na3AlF6. Обычно он образует бесцветные, белые или дымчато-серые кристаллические скопления со стеклянным блеском, иногда – почти черные или красновато-коричневые. Криолит хрупкий и легко плавится.

Природных месторождений этого минерала крайне мало, поэтому в промышленности используется искусственный криолит. В современной металлургии его получают взаимодействием плавиковой кислоты с гидроксидом алюминия и содой.

Итак, мы добыли боксит, получили из него глинозем, запаслись криолитом. Все готово для последней стадии – электролизу алюминия. Электролизный цех является сердцем алюминиевого завода и не похож на цеха других металлургических предприятий, производящих, например, чугун или сталь. Он состоит из нескольких прямоугольных корпусов, протяженность которых зачастую превышает 1 км. Внутри рядами установлены сотни электролизных ванн, последовательно подключенных массивными проводами к электричеству. Постоянное напряжение на электродах каждой ванны находится в диапазоне всего 4-6 вольт, в то время как сила тока составляет 300 кА, 400 кА и более. Именно электрический ток является здесь главной производственной силой – людей в этом цехе крайне мало, все процессы механизированы.


Ток для производства алюминия

Для запуска двигателя автомобильный аккумулятор должен обеспечить электрический ток в 300-350 А в течение 30 секунд. То есть в 1000 раз меньше, чем нужно одному электролизеру для постоянной работы.

В каждой ванне происходит процесс электролиза алюминия. Емкость ванны заполняется расплавленным криолитом, который создает электролитическую (токопроводящую) среду при температуре 950°С. Роль катода выполняет дно ванны, а анода – погружаемые в криолит угольные блоки длиной около 1,5 метров и шириной 0,5 метра, со стороны они выглядят как впечатляющих размеров молот.

Каждые полчаса при помощи автоматической системы подачи глинозема в ванну загружается новая порция сырья. Под воздействием электрического тока связь между алюминием и кислородом разрывается – алюминий осаждается на дне ванны, образуя слой в 10-15 см, а кислород соединяется с углеродом, входящим в состав анодных блоков, и образует углекислый газ.

Примерно раз в 2-4 суток алюминий извлекают из ванны при помощи вакуумных ковшей. В застывшей на поверхности ванны корке электролита пробивают отверстие, в которое опускают трубу. Жидкий алюминий по ней засасывается в ковш, из которого предварительно откачан воздух. В среднем, из одной ванны откачивается около 1 тонны металла, а в один ковш вмещается около 4 тонн расплавленного алюминия. Далее этот ковш отправляется в литейное производство.

При производстве каждой тонны алюминия выделяется 280 000 м 3 газов. Поэтому каждый электролизер независимо от его конструкции оснащен системой газосбора, которая улавливает выделяющиеся при электролизе газы и направляет их в систему газоочистки. Современные «сухие» системы газоочистки для улавливания вредных фтористых соединений используют ни что иное, а глинозем. Поэтому перед тем как использоваться для производства алюминия, глинозем на самом деле сначала участвует в очистке газов, которые образовались в процессе производства металла ранее. Вот такой замкнутый цикл.

Для процесса электролиза алюминия требуется огромное количество электроэнергии, поэтому важно использовать возобновляемые и не загрязняющие окружающую среду источники этой энергии. Чаще всего для этого используются гидроэлектростанции – они обладают достаточной мощностью и не имеют выбросов в атмосферу. Например, в России 95% алюминиевого мощностей обеспечены гидрогенерацией. Однако есть в места в мире, где угольная генерация пока доминирует – в частности, в Китае на нее приходится 93% производства алюминия. В результате для производства 1 тонны алюминия с использованием гидрогенерации в атмосферу выделяется чуть более 4 тонн углекислого газа, а при использовании угольной генерации – в пять раз больше – 21,6 тонны.



Для сравнения - за один солнечный день 1 гектар леса поглощает из воздуха 120-280 кг углекислого газа и выделяет 180-200 кг кислорода.

Читайте также: