Аммиак реакция с металлами

Обновлено: 04.10.2024

Атом азота находится в состоянии sp 3 -гибридизации, поэтому молекула имеет форму тетраэдра.

Также атом азота в аминах имеет неподелённую электронную пару, поэтому амины проявляют свойства органических оснований.

Классификация аминов

По количеству углеводородных радикалов, связанных с атомом азота, различают первичные, вторичные и третичные амины.

По типу радикалов амины делят на алифатические, ароматические и смешанные.

Номенклатура аминов

  • Названия аминов образуют из названий углеводородных радикалов и суффикса амин. Различные радикалы перечисляются в алфавитном порядке.

При наличии одинаковых радикалов используют приставки ди и три.

  • Первичные амины могут быть названы как производные углеводородов, в молекулах которых один или несколько атомов водорода замещены на аминогруппы -NH2.

В этом случае аминогруппа указывается в названии приставкой амино-:

1-Аминопропан 1,3-Диаминобутан
CH3-CH2-CH2-NH2 NH2-CH2-CH2-CH(NH2) -CH3

  • Для смешанных аминов, содержащих алкильные и ароматические радикалы, за основу названия обычно берется название первого представителя ароматических аминов – анилин.

Например, N-метиланилин:

Символ N- ставится перед названием алкильного радикала, чтобы показать, что этот радикал связан с атомом азота, а не является заместителем в бензольном кольце.

Изомерия аминов

Для аминов характерна изомерия углеродного скелета, изомерия положения аминогруппы и изомерия различных типов аминов.

Изомерия углеродного скелета

Для аминов характерна изомерия углеродного скелета (начиная с С4H9NH2).

Например. Ф ормуле С4Н9NH2 соответствуют два амина-изомера углеродного скелета.
н-Бутиламин (1-аминобутан) Изобутиламин (1-амин-2-метилпропан)

Изомерия положения аминогруппы

Для аминов характерна изомерия положения аминогруппы (начиная с С3H9N).

Например. Ф ормуле С4Н11N соответствуют амины положения аминогруппы.

Изомерия между типами аминов

Например. Формуле С3Н9N соответствуют первичный, вторичный и третичный амины.

Физические свойства аминов

При обычной температуре низшие алифатические амины CH3NH2, (CH3)2NH и (CH3)3N – газы (с запахом аммиака), средние гомологи – жидкости (с резким рыбным запахом), высшие – твердые вещества без запаха.

Ароматические амины – бесцветные жидкости с высокой температурой кипения или твердые вещества.

Первичные и вторичные амины образуют слабые межмолекулярные водородные связи:

Это объясняет относительно более высокую температуру кипения аминов по сравнению с алканами с близкой молекулярной массой.

Амины также способны к образованию водородных связей с водой:

Поэтому низшие амины хорошо растворимы в воде.

С увеличением числа и размеров углеводородных радикалов растворимость аминов в воде уменьшается. Ароматические амины в воде не растворяются.

Химические свойства аминов

Аммиак :NH3

Поэтому амины и аммиак обладают свойствами оснований.

1. Основные свойства аминов

Алифатические амины являются более сильными основаниями, чем аммиак, а ароматические — более слабыми.

Это объясняется тем, что радикалы СН3–, С2Н5– увеличивают электронную плотность на атоме азота:

Это приводит к усилению основных свойств.

Основные свойства аминов возрастают в ряду:


1.1. Взаимодействие с водой

В водном растворе амины обратимо реагируют с водой. Среда водного раствора аминов — слабощелочная:


1.2. Взаимодействие с кислотами

Амины реагируют с кислотами, как минеральными, так и карбоновыми, и аминокислотами, образуя соли (или амиды в случае карбоновых кислот):

При взаимодействии аминов с многоосновными кислотами возможно образование кислых солей:


1.3. Взаимодействие с солями

Амины способны осаждать гидроксиды тяжелых металлов из водных растворов.

Например, при взаимодействии с хлоридом железа (II) образуется осадок гидроксида железа (II):


2. Окисление аминов

Амины сгорают в кислороде, образуя азот, углекислый газ и воду. Например, уравнение сгорания этиламина:


3. Взаимодействие с азотистой кислотой

Первичные алифатические амины при действии азотистой кислоты превращаются в спирты:


Это качественная реакция на первичные амины – выделение азота.

Вторичные амины (алифатические и ароматические) образуют нитрозосоединения — вещества желтого цвета:


4. Алкилирование аминов

Первичные амины способны взаимодействовать с галогеналканами с образованием соли вторичного амина:


Из полученной соли щелочью выделяют вторичный амин, который можно далее алкилировать до третичного амина.

Особенности анилина

Анилин С6H5-NH2 – это ароматический амин.

Анилин – бесцветная маслянистая жидкость с характерным запахом. На воздухе окисляется и приобретает красно-бурую окраску. Ядовит. В воде практически не растворяется.

При 18 о С в 100 мл воды растворяется 3,6г анилина. Раствор анилина не изменяет окраску индикаторов.

Для анилина характерны реакции как по аминогруппе, так и по бензольному кольцу.

  • Бензольное кольцо уменьшает основные свойства аминогруппы по сравнению алифатическими аминами и даже с аммиаком:

Анилин не реагирует с водой, но реагирует с сильными кислотами, образуя соли:


  • Бензольное кольцо в анилине становится более активным в реакциях замещения, чем у бензола.

Реакция с галогенами идёт без катализатора во все три орто- и пара- положения.

Качественная реакция на анилин: реагирует с бромной водой с образованием 2,4,6-триброманилина (белый осадок ↓).


Получение аминов

Восстановление нитросоединений

Первичные амины можно получить восстановлением нитросоединений.


Алюминий реагирует с щелочами с образованием гидроксокомплексов.


В щелочной и нейтральной среде получаются амины.

Восстановлением нитробензола получают анилин.

  • Металлами в кислой среде – железом, оловом или цинком в соляной кислоте.

При этом образуются не сами амины, а соли аминов:


Амины из раствора соли выделяют с помощью щелочи:

Алкилирование аммиака и аминов

При взаимодействии аммиака с галогеналканами происходит образование соли первичного амина, из которой действием щелочи можно выделить сам первичный амин.

Если проводить реакцию с избытком аммиака, то сразу получится амин, а галогеноводород образует соль с аммиаком:


Гидрирование нитрилов

Таким образом получают первичные амины. Возможно восстановление нитрилов водородом на катализаторе:

.

Соли аминов

  • Соли аминов — это твердые вещества без запаха, хорошо растворимые в воде, но не растворимые в органических растворителях (в отличие от аминов).
  • При действии щелочей на соли аминов выделяются свободные амины:


  • Соли аминов вступают в обменные реакции в растворе:


Соль амина с более слабыми основными свойствами может реагировать с другим амином, образуя новую соль (более сильные амины вытесняют менее сильные из солей):

Понравилось это:

18 комментариев

Добавить ваш

Где получение аминов , там 2) Реакция Зинина слева написано R как радикал, а справа (после равно) уже метиламин, почему метиламин справа, а слева просто R? Разве Зинин не анилин получил этим способом?

Да, спасибо, поправил. В узком смысле реакцией Зинина называют получение именно ароматических аминов, в широком смысле так называют восстановление любых нитросоединений сульфидом аммония.

Здравствуйте! Скажите, пожалуйста, реагируют ли третичные амины с галогеналканами? Если да, то как идет реакция и что получается? Например,при взаимодействии триметиламина с хлорметаном?

Здравствуйте! Реагируют, но дальнейшее замещение по связям N-H не идет.

Здравствуйте! Не показано взаимодействие аминов со спиртами.

Третичные амины с алкилгалогенидами реагируют. Получаются четвертичные аммониевые соли. Говорить, что они вообще не реагируют, неправильно. Они не вступают в реакцию алкилирования.

R3N + RCl = R4N(+)Cl(-)

По такой схеме за счет пары электронов на азоте реагируют алифатические амины, ароматические амины, пиридин с получением N-алкилпиридинийхлорида (иодида) и пр.

Да, спасибо за комментарий. Я имел в виду, что не идет дальнейшее замещение.

спасибо, отличная идея!

для полноты информации я бы добавил оптическую изомерию и примеры этой изомерии ко всем классам органических веществ, потому что на егэ это есть

На ЕГЭ пока оптической изомерии нет.

Admin>Здравствуйте! Реагируют, но дальнейшее замещение по связям N-H не идет.

что значит «дальнейшее»? у триметиламина — и так уже нет N-H связей, может вы имели в виду протонированный триметил-амин (скажем) солянокислый, что в форме соли он останется третичным амином например до момента щелочного депротонирования(высвобождения основания амина)

а что кстати, есть способ галоидным алкилом моноалкилирование первичного ароматического амина до вторичного осуществить, избежав образования третичного амина — диалкилированного уже
на этилировании уже проще, а вот метиллирование нейромедиаторов не удавалось остановить на стадии N,N-ДиМет.(например в ацетоне с карбонатом калия, или с DIPEA), выход третичного целевого амина всегда оказывался либо самым низким из продуктов реакции, либо просто очень низким(10% в сложной смеси аминов с преобладанием четвертичной соли триметиламмония метилиодида, а сейчас подумал — если при N-метилировании первичного ароматического амина метилиодидом, образуется гидроиодид N-метил…исх.пер.амина, он же даже во второе метиллирование уже не должен входить, усиленным основанием став (скажем адреналином, основнее норадреналина исходного как я понимаю за счет появившегося электроннодонороного метила) и так будет выведен из реакционной среды(например выпав осадком соли, не солватированной в неполярной РС)
получается в отсутствие основного катализа алкилирование первичных аминов ограничивается моно-алкилированием — не далее чем до вторичного амина? или на практике соли не так надёжны как в оптимистичных прогнозах теоретизирующего учащегося?

Аммиак. Отгаданные загадки

Будет ли аммиак реагировать с металлами? У атома азота в этом соединении формально восемь внешних электронов (пять своих и три оттянуты от атомов водорода), а металлы стремятся свои валентные электроны отдать. С одной стороны, атому азота уже некуда их принять. С другой – в аммиаке есть атомы водорода, частично обедненные электронами, т. е. имеющие возможность принять их.

Известно, что активные металлы вытесняют водород из воды, а чем аммиак хуже? Ну только разве тем, что аммиак газообразен при температурах выше его точки кипения, равной –33,4 °С. Соответственно газ NH3 рассредоточен в пространстве, и требуется дополнительный подогрев, чтобы реакция пошла. Именно накаливанием металлов в атмосфере аммиака чаще всего и получают нитриды. (Нитриды – это соединения, состоящие из двух элементов, один из которых азот, причем атомы азота имеют в этом соединении отрицательный заряд.) Например:

2. Реакции с неметаллами.

Формальная степень окисления азота в аммиаке –3. Следовательно, аммиак может реагировать с кислородом (и другими окислителями!), увеличивая при этом степень окисления азота, т. е. отдавая электроны. Однако на пути к положительным степеням окисления находится нулевая – простое вещество азот, как мы уже выяснили, необычайно устойчиво.

Можно предположить, что при реакции аммиака с кислородом будут образовываться азот и вода. Именно так и происходит в действительности. Следует добавить, что аммиак горит только в чистом кислороде, а не на воздухе:

Как быть, если надо получить из аммиака оксиды азота? Вспомним о катализаторах – веществах, которые ускоряют реакцию или меняют ее направление. Катализаторы используют и при получении оксидов азота из аммиака и кислорода. Реакцию каталитического окисления проводят на металлической платине:

Интересна реакция аммиака с другим простым веществом – озоном, более агрессивным окислителем, чем кислород. Озон переводит азот из степени окисления –3 в степень окисления +5. Но не весь! В результате получается нитрат аммония:

3. Реакция с водой.

Мы уже говорили о хорошей растворимости аммиака в воде. Но почему фенолфталеин становится в таком растворе малиновым? Загадка?

Попробуем разобраться, откуда появилась в растворе щелочная среда. Для начала вспомним теорию электролитической диссоциации. В водных растворах все ионы и молекулы гидратированы – окружены «шубой» из молекул воды, сориентированных соответствующим образом: к атомам водорода потянулись «кислородные половинки», а к атому азота – «водородная половинка» (рис. 5).


Рис. 5. Аммиак в воде:
атом азота – черный шар; атомы кислорода – большие белые шары; атомы водорода – малые белые шары

В какой-то момент образовалась конструкция Н3N•••НОН. Далее, известно, что вода слабо, но диссоциирует по реакции:

Поскольку электроотрицательность кислорода больше, чем азота, связь кислорода с водородом полярнее, чем связь азота с водородом. Можно предположить, что равновесие в реакции диссоциации гидратированной молекулы аммиака будет больше смещено в сторону образования ионов (по сравнению с водой):

В растворе появляется весьма ощутимый избыток ионов ОН – , и фенолфталеин сигнализирует об этом малиновой окраской. Стоит подчеркнуть, что все эти реакции обратимые. Поэтому вместе со щелочной реакцией среды (правая часть уравнения) растворы аммиака обладают еще и характерным запахом аммиака, выделяющегося из раствора (левая часть уравнения), и заметным количеством нестойкого гидратированного молекулярного аммиака (это подтверждается, например, реакциями образования аммиачных комплексов с ионами металлов).

4. Реакции с кислотами.

Как слабое, но все же основание, водный раствор аммиака реагирует с кислотами с образованием соли и воды:

Соли аммония, подобно солям натрия и калия, хорошо растворяются в воде, но при этом частично гидролизуются:

С кислотами реагирует и газообразный аммиак, причем не только с растворами, но и с газообразными кислотами. В лабораториях, в которых работают с растворами соляной кислоты и аммиака, постоянно появляется белый налет на окружающих предметах. Даже небольших количеств аммиака и хлороводорода в воздухе достаточно для протекания реакции:

5. Реакции со щелочами.

Газообразный аммиак со щелочами не реагирует. А вот водный раствор аммиака «откликается» на добавление щелочи. Поскольку при растворении аммиака в воде протекает обратимая реакция образования иона аммония и гидроксид-иона, то добавление последнего в раствор смещает равновесие, растворимость аммиака уменьшается (а интенсивность запаха соответственно увеличивается):

4OH + NaOH = NH3 ­ + H2O + NaOH.

Физические свойства аммиака в цифрах

Молярная масса M(NH3) = 17 г/моль. Температура плавления равна –78 °C, температура кипения –33 °С. Плотность газообразного аммиака при нормальных условиях (0 °С, 1 атм) 0,771 г/л (аммиак легче воздуха почти в два раза). Растворимость при атмосферном давлении и 0 °С около 90 л (!) газа в 100 г воды, при 20 °С – 65 л в 100 г воды.

При сравнении физических свойств аммиака и азота в первую очередь обращает на себя внимание температура кипения. Почему у аммиака она настолько выше? У азота – почти –200 °С, а у аммиака – только –33 °С. Загадка? Попробуем отгадать.

Для начала сопоставим температуры кипения соединений с водородом элементов V, VI и VII групп главных подгрупп периодической системы (рис. 6).


Рис. 6. Графики зависимости температур кипения
водородных соединений элементов V( · ), VI( C )и VII( Д ) групп
главных подгрупп от номера периода (массы атома)

Если экстраполировать графики такой зависимости, можно оценить, какими должны бы быть эти температуры, исходя из общей закономерности. Из графика видно, что аммиак, вода и фтороводород имеют аномально высокие температуры кипения: аммиак – примерно на 50 °С выше «теоретической», фтороводород – на 100 °С, а вода – на 160 °С. Во-первых, видно, что аммиак не одинок, а во-вторых, вспоминается, что у азота, кислорода и фтора самая высокая электроотрицательность. Значит, и связи этих элементов с водородом самые полярные. Водород в таких соединениях почти без электрона и поэтому сильно притягивается к неподеленным парам электронов, которые есть и у азота, и у кислорода, и у фтора. Образуются водородные связи. Они, конечно, слабее обычных ковалентных связей, но их много. И это «много» многое значит.

Водородные связи играют в природе огромную роль. Например, спираль из двух молекул ДНК образуется только за счет водородных связей. Такие связи сравнительно легко разрываются, когда происходит считывание информации с определенного участка ДНК. Когда водородных связей много, получается крепкое связывание в целом.

В заключение стоит сказать, что связь водорода с фтором полярнее, чем связь азота с водородом, и соответственно притяжение сильнее, а температура кипения HF выше, чем NH3. У воды же самая высокая температура кипения из этой троицы, потому что молекулы воды образуют водородные связи сразу «двумя руками» – две неподеленные пары электронов и два атома водорода в каждой молекуле! Аммиак и фтороводород по своему строению «однорукие».

Химические свойства аммиака (дополнение)

Аммиак сам по себе устойчив и разлагается только при очень высоких температурах. Но если проводить нагревание в присутствии обыкновенного железа, он разлагается на азот и водород при значительно более низких температурах. Интересно, что при каталитическом разложении небольшая часть аммиака всегда остается в смеси газов, независимо от времени и температуры проведения реакции. Именно этот факт подсказал ученым мысль о возможности связывания атмосферного азота через аммиак. Действительно, логично предположить, что разложение аммиака – процесс обратимый, тогда изменением условий и подбором катализатора можно сместить процесс в сторону образования аммиака до такой степени, что это станет выгодно для его промышленного получения.

Еще немного о реакциях аммиака с простыми веществами. Интересны реакции аммиака с галогенами. Йод не может изменить степень окисления азота! Он просто сам диспропорционирует:

Нитрид йода (по названию понятно, что у йода в этом соединении степень окисления положительная), или иначе йодистый азот, в сухом виде разлагается со взрывом даже от простого сотрясения.

Бром и хлор могут отнять у азота только по три электрона, переведя в простое вещество. И только фтору под силу перевалить через эту сверхустойчивую нулевую степень окисления азота. Получается трифторид. И это максимально возможный, просто потому, что у атомов второго периода нет «запасных» орбиталей. Не бывает поэтому и пятивалентного азота!

Жидкий аммиак – хороший растворитель. Реакции в жидком аммиаке идут по тем же законам, что и в воде, а вот растворимость в воде и в жидком аммиаке у соединений различная. Например, реакция

в воде идет в сторону образования нерастворимого бромида серебра, а в жидком аммиаке – в сторону образования нерастворимого бромида бария.

Из жидкого аммиака, как и из воды, активные металлы вытесняют водород. Например, реакция с цезием протекает за несколько минут:

А вот аналогичная реакция с натрием протекает значительно дольше. При этом образуется сольватированный электрон! (Сольватация – процесс, аналогичный гидратации, только в других растворителях.)

Экологические свойства аммиака

Аммиак – активное и «едкое» соединение (едкость кислот и щелочей проявляется в том, что большие количества ионов Н + или ОН – разъедают живую ткань растений, животных и, естественно, человека; впрочем, неживую «ткань» они тоже разъедают). Однако если заменить в аммиаке один, два или все три атома водорода на органические радикалы, то «едкость» существенно снижается, а основные свойства остаются. Такие соединения выполняют в живой природе функции оснований.

Животные и человек используют уже приготовленные растениями азотсодержащие органические соединения, поэтому для нас с вами аммиак, безусловно, яд. При попадании на кожу концентрированный раствор аммиака вызывает химические ожоги, при вдыхании большого количества аммиака может наступить отек легких – реакция организма на вдыхание почти всех едких веществ.

Однако, как и многие другие яды, в малых дозах аммиак оказывает положительное влияние на организм: 10%-й раствор аммиака в воде используют в медицине для стимуляции дыхания (его не пьют, конечно, а просто дают понюхать), центральной нервной системы и т. п.

В больших количествах аммиак вреден и для растений. Но в небольших количествах он им необходим. Ведь без азота, и в частности без аммиака, не построить те органические соединения, которые потом превращаются в растительные белки, а в дальнейшем – в белки животных. Большим количествам газообразного аммиака растения противостоят по-разному. Некоторые стараются прекратить ему доступ внутрь (например, закрывают устьица на листьях). Другие растения перерабатывают аммиак с помощью соответствующих ферментов в нитрат-ионы, которые для растений не ядовиты, тем самым запасая ценный для своего развития элемент.

Аммиак: получение и свойства

В молекуле аммиака NH3 атом азота соединен тремя одинарными ковалентными полярными связями с атомами водорода:


Геометрическая форма молекулы аммиака — правильная треугольная пирамида. Валентный угол H-N-H составляет 107,3 о :


У атома азота в аммиаке на внешнем энергетическом уровне остается одна неподеленная электронная пара. Эта электронная пара оказывает значительное влиение на свойства аммиака, а также на его структуру. Электронная структура аммиака — тетраэдр , с атомом азота в центре:


Аммиак – бесцветный газ с резким характерным запахом. Ядовит. Весит меньше воздуха. Связь N-H — сильно полярная, поэтому между молекулами аммиака в жидкой фазе возникают водородные связи. При этом аммиак очень хорошо растворим в воде, т.к. молекулы аммиака образуют водородные связи с молекулами воды.

Способы получения аммиака

В лаборатории аммиак получают при взаимодействии солей аммония с щелочами. Поск ольку аммиак очень хорошо растворим в воде, для получения чистого аммиака используют твердые вещества.

Например , аммиак можно получить нагреванием смеси хлорида аммония и гидроксида кальция. При нагревании смеси происходит образование соли, аммиака и воды:

Тщательно растирают ступкой смесь соли и основания и нагревают смесь. Выделяющийся газ собирают в пробирку (аммиак — легкий газ и пробирку нужно перевернуть вверх дном). Влажная лакмусовая бумажка синеет в присутствии аммиака.

Видеоопыт получения аммиака из хлорида аммония и гидроксида кальция можно посмотреть здесь.

Еще один лабораторный способ получения аммиака – гидролиз нитридов.

Например , гидролиз нитрида кальция:

В промышленности аммиак получают с помощью процесса Габера: прямым синтезом из водорода и азота.

Процесс проводят при температуре 500-550 о С и в присутствии катализатора. Для синтеза аммиака применяют давления 15-30 МПа. В качестве катализатора используют губчатое железо с добавками оксидов алюминия, калия, кальция, кремния. Для полного использования исходных веществ применяют метод циркуляции непровзаимодействовавших реагентов: не вступившие в реакцию азот и водород вновь возвращают в реактор.

Более подробно про технологию производства аммиака можно прочитать здесь.

Химические свойства аммиака

1. В водном растворе аммиак проявляет основные свойства (за счет неподеленной электронной пары). Принимая протон (ион H + ), он превращается в ион аммония. Реакция может протекать и в водном растворе, и в газовой фазе:


Таким образом, среда водного раствора аммиака – щелочная. Однако аммиак – слабое основание . При 20 градусах один объем воды поглощает до 700 объемов аммиака.

Видеоопыт растворения аммиака в воде можно посмотреть здесь.

2. Как основание, аммиак взаимодействует с кислотами в растворе и в газовой фазе с образованием солей аммония.

Например , аммиак реагирует с серной кислотой с образованием либо кислой соли – гидросульфата аммония (при избытке кислоты), либо средней соли – сульфата аммония (при избытке аммиака):

Еще один пример : аммиак взаимодействует с водным раствором углекислого газа с образованием карбонатов или гидрокарбонатов аммония:

Видеоопыт взаимодействия аммиака с концентрированными кислотами – азотной, серной и и соляной можно посмотреть здесь.

В газовой фазе аммиак реагирует с летучим хлороводородом. При этом образуется густой белый дым – это выделяется хлорид аммония.

NH3 + HCl → NH4Cl

Видеоопыт взаимодействия аммиака с хлороводородом в газовой фазе (дым без огня) можно посмотреть здесь.

3. В качестве основания, водный раствор аммиака реагирует с растворами солей тяжелых металлов , образуя нерастворимые гидроксиды.

Например , водный раствор аммиака реагирует с сульфатом железа (II) с образованием сульфата аммония и гидроксида железа (II):

4. Соли и гидроксиды меди, никеля, серебра растворяются в избытке аммиака, образуя комплексные соединения – аминокомплексы.

Например , хлорид меди (II) реагирует с избытком аммиака с образованием хлорида тетрамминомеди (II):

Гидроксид меди (II) растворяется в избытке аммиака:

5. Аммиак горит на воздухе , образуя азот и воду:

Если реакцию проводить в присутствии катализатора (Pt), то азот окисляется до NO:

6. За счет атомов водорода в степени окисления +1 аммиак может выступать в роли окислителя , например в реакциях с щелочными, щелочноземельными металлами, магнием и алюминием . С металлами реагирует только жидкий аммиак.

Например , жидкий аммиак реагирует с натрием с образованием амида натрия:

Также возможно образование Na2NH, Na3N.

При взаимодействии аммиака с алюминием образуется нитрид алюминия:

2NH3 + 2Al → 2AlN + 3H2

7. За счет азота в степени окисления -3 аммиак проявляет восстановительные свойства. Может взаимодействовать с сильными окислителями — хлором, бромом, пероксидом водорода, пероксидами и оксидами некоторых металлов. При этом азот окисляется, как правило, до простого вещества.

Например , аммиак окисляется хлором до молекулярного азота:

Пероксид водорода также окисляет аммиак до азота:

Оксиды металлов , которые в электрохимическом ряду напряжений металлов расположены справа — сильные окислители. Поэтому они также окисляют аммиак до азота.

Например , оксид меди (II) окисляет аммиак:

2NH3 + 3CuO → 3Cu + N2 + 3H2O

Урок-лекция по теме "Аммиак"

Цели: формирование общеучебных умений и навыков.

образовательные: изучить строение и свойства аммиака; изучить новый вид связи – водородную; рассмотреть донорно-акцепторный механизм образования химической связи; развить умения по составлению окислительно-восстановительного баланса уравнений реакций, уравнивание МЭБ.

воспитательные: формирование умений работать с учебной и дополнительной литературой по составлению конспекта; провести профориентационную информацию.

познавательные: развивать интерес к предмету, умение высказывать свои мысли, логически рассуждать, соблюдать технику безопасности при встрече с аммиаком в быту.

Технологическая карта урока на столах учащихся (Приложение № 1); оборудование для химического эксперимента (аммиачная вода, кристаллические хлорид аммония и гидроксид кальция, фенолфталеин, лакмусовая бумажка, прибор для получения газов, стеклянные палочки, соляная кислота конц.); компьютерная презентация (Приложение № 2).

1. Организационный момент.

Вначале урока необходимо настроить учащихся на наиболее сложный тип урока-лекцию. Объяснить, что урок проходит строго по плану на столах учащихся и требует от них большой концентрации. Все вопросы, которые необходимо рассмотреть зафиксированы в технологической карте, и в ходе лекции они всегда будут перед глазами и не требуют запоминания. Для лучшего усвоения составляется конспект в технологической карте. В ходе лекции используются различные формы: компьютерная презентация, работа с учебной литературой, демонстрационные опыты.

2. Изучение нового материала.

План лекции (слайд № 2)

1. Состав молекулы аммиака

2. Строение молекулы аммиака

3. Водородная связь

4. Физические свойства аммиака

5. Химические свойства аммиака

а) аммиак-комплексообразователь.

б) аммиак-восстановитель

6. Получение аммиака

7. Применение аммиака

9. Домашнее задание

1. Состав молекулы аммиака

  • запишите молекулярную формулу аммиака;
  • укажите степень окисления элементов;
  • дайте химически верное название и запись формулы аммиака.

NH3 = H3 +1 N -3 нитрид водорода (слайд № 3)

2. Строение молекулы аммиака

  • запишите молекулярную, электронную, структурную формулы молекулы аммиака.
  • укажите вид химической связи в молекуле и способы образования,
  • укажите смещение электронной плотности к более электроотрицательному элементу.

NH3 - молекулярная формула

ковалентная полярная связь, одинарная, по обменному механизму.

3. Водородная связь

Учитель акцентирует внимание ребят на неподеленной электронной паре атома азота, сдвиге электронной плотности в сторону гораздо более электроотрицательного атома азота и возникновении в молекуле аммиака на атоме азота частично отрицательного заряда, а на атоме водорода частично положительного.

Учитель знакомит учащихся с новым для них видом химической связи – водородной связью, которая возникает между молекулами аммиака.

Отметьте особенности водородной связи:

1) между какими атомами возникает связь;

2) силу связи по сравнению с другими видами связи;

3) условное обозначению водородной связи;

4) следствие образования водородной связи в соединении.

  • слабее ковалентной связи в 10 – 20 раз;
  • условно обозначается тремя точками;
  • вещества с водородной связью обладают хорошей растворимостью в воде, повышается их температура кипения и плавления. (слайд № 6)

4. Физические свойства аммиака

  • изучите физические свойства аммиака по учебнику;
  • рассчитайте его плотность по воздуху Dвозд = 29/МNН3;
  • предложите способ собирания газа в лабораторных условиях.

NH3 – газ без цвета, с резким запахом, почти в два раза легче воздуха, при охлаждении до -33,6 о С он сжижается, а при температуре -77,8 о С превращается в твердое белое вещество, хорошо растворим в воде. (слайд № 7)

Учитель разъясняет ребятам, что поскольку аммиак легче воздуха, то при выделении он будет улетать вверх. Поэтому, для того чтобы собрать аммиак, пробирку необходимо держать перевернутой дном. (слайд № 8)

Учащиеся делают вывод, что при растворении аммиака в воде образовалась щелочь, т.к. фенолфталеин окрасился в малиновый цвет.

Учитель демонстрирует учащимся аммиачную воду (25% раствор аммиака) и нашатырный спирт (10% раствор аммиака). Напоминает, как правильно обращаться с растворами сильно пахнущих веществ.

5. Химические свойства аммиака

Особое внимание уделяется химическим свойствам аммиака:

а) аммиак – комплексообразователь

необходимо рассказать об особом ионе – ионе аммония NH4 +. Отметить его уникальность: ион, образованный только неметаллами, играет роль металла. Разъяснить, что ион аммония, так же как ионы металлов образует свои соли. (слайд № 10)

• Запишите уравнение реакции взаимодействия аммиака с соляной кислотой:

аммиак + соляная кислота = хлорид аммония,

• Рассмотрите механизм реакции.

• Отметьте образование ковалентной полярной связи по донорно-акцепторному механизму (по учебнику)

Аммиак – комплексообразователь. (слайд № 11)

б) Аммиак – восстановитель (в реакциях окисления).

• Запишите уравнение реакции горение аммиака:

аммиак + кислород = азот + вода

• Составьте электронный баланс к этому уравнению.

1) Окисление аммиака без катализатора. (слайд № 12)

2) Окисление аммиака в присутствии катализатора

• Запишите уравнение реакции каталитического окисления аммиака:

аммиак + кислород = оксид азота (II) + вода.

Составьте электронный баланс к этому уравнению. (слайд № 13)

6. Получение аммиака

В промышленности аммиак получают прямым синтезом из простых веществ – азота и водорода. Реакция идет только в присутствии катализатора, при температуре 500 о и повышенном давлении.

• Запишите уравнение реакции получение аммиака:

а) в промышленности (дайте классификацию реакции по всем известным признакам и предложите оптимальные условия проведения реакции);

б) в лаборатории (отметьте способы распознавания аммиака).

а) в промышленности

Р соединения, экзотермическая, гомогенная, обратимая, окислительно-восстановительная, каталитическая. (слайд № 14)

б) в лаборатории получают действием щелочей на соли аммония

Собирание - в перевернутую кверху дном пробирку. (слайды № 15, 16)

Распознавание аммиака:

б) по посинению влажной лакмусовой бумажки

в) по появлению белого дыма от поднесенной стеклянной палочки, смоченной HCl (конц.) (слайд № 17)

7. Применение аммиака

Учитель предлагает учащимся самостоятельно ознакомиться с применением аммиака по схеме в учебнике.

1) в холодильных установках;

2) в медицине и быту;

3) для производства азотной кислоты, солей аммония;

4) как удобрение (слайд № 18)

Профориентационная информация. Растворы аммиака довольно широко используются в медицине. Разведенный раствор аммиака, издавна называемый нашатырным спиртом, дают нюхать при обморочных состояниях и алкогольном опьянении; при этом происходит рефлекторное возбуждение сердечной деятельности и центра дыхания. При тяжелом алкогольном отравлении практикуют прием внутрь слабых растворов аммиака (3 капли на полстакана).

Более слабые растворы аммиака дают отхаркивающий эффект (нашатырно-анисовые капли).

Местнораздражающее действие аммиака используют для приготовления препаратов, применяемых как отвлекающие средства (при артритах, невралгиях и т.п.).

Хлористый аммоний – белый кристаллический порошок. Слегка гигроскопичен. Имеет солоноватый вкус, легко растворим в воде. Применяется в качестве диуретического и отхаркивающего средства.

8. Закрепление.

Для закрепления предлагается решить фронтально ряд задач:

1) При синтезе аммиака промышленном способом азот объемом 56 л. (н.у.) прореагировал с водородом взятом в избытке. Массовая доля выхода аммиака составила 50%. Рассчитайте объем и массу полученного аммиака.

2) Какая масса хлорида аммония получится при взаимодействии 3 моль аммиака с соляной кислотой?

3) Какой объем кислорода потребуется для сжигания 34 г. аммиака? (слайд № 19)

9. Домашнее задание

П. 25, упр. 1-6 (устно), 7-8 (письменно), повторить конспект (слайд № 20)

1. Габриелян О.С. Настольная книга учителя химии 9 класс, М., 2001, “Блик и К о ”.

Аммиак реакция с металлами

Температура кипения азота составляет -195,8 °C. Однако быстрого замораживания объектов, которое часто демонстрируют в кинофильмах, не происходит. Даже для заморозки растения нужно продолжительное время, это связано с низкой теплоемкостью азота.

Азот

Общая характеристика элементов Va группы

От N к Bi (сверху вниз в периодической таблице) происходит увеличение: атомного радиуса, металлических, основных, восстановительных свойств. Уменьшается электроотрицательность, энергия ионизация, сродство к электрону.

Азот, фосфор и мышьяк являются неметаллами, сурьма - полуметалл, висмут - металл.

Элементы Va группы

  • N - 2s 2 2p 3
  • P - 3s 2 3p 3
  • As - 4s 2 4p 3
  • Sb - 5s 2 5p 3
  • Bi - 6s 2 6p 3
Основное и возбужденное состояние азота

При возбуждении атома фосфора электроны на s-подуровне распариваются и переходят на p-подуровень. Однако с азотом ситуация иная. Поскольку азот находится во втором периоде, то 3ий уровень у него отсутствует, а значит распаривание электронов на s-подуровне невозможно - возбужденное состояние у азота отсутствует.

Сравнивая возможности перемещения электронов у азота и фосфора, разница становится очевидна.

Основное и возбужденное состояние атома азота

Природные соединения
  • Воздух - во вдыхаемом нами воздухе содержится 78% азота
  • Азот входит в состав нуклеиновых кислот, белков
  • KNO3 - индийская селитра, калиевая селитра
  • NaNO3 - чилийская селитра, натриевая селитра
  • NH4NO3 - аммиачная селитра (искусственный продукт, в природе не встречается)

Селитры являются распространенными азотными удобрениями, которые обеспечивают быстрый рост и развитие растений, повышают урожайность. Однако, следует строго соблюдать правила их применения, чтобы не превысить допустимые концентрации.

Аммиачная селитра

В промышленности азот получают путем сжижения воздуха. В дальнейшем путем испарения из сжиженного воздуха получают азот.

Применяют и метод мембранного разделения, при котором через специальный фильтр из сжатого воздуха удаляют кислород.

Получение азота из сжатого воздуха

В лаборатории методы не столь экзотичны. Чаще всего получают азот разложением нитрита аммония

Также азот можно получить путем восстановления азотной кислоты активными металлами.

Получение азота из нитрита аммония

Азот восхищает - он принимает все возможные для себя степени окисления от -3 до +5.

Степени окисления азота

Молекула азота отличается большой прочностью из-за наличия тройной связи. Вследствие этого многие реакции эндотермичны: даже горение азота в кислороде сопровождается поглощением тепла, а не выделением, как обычно бывает при горении.

Молекула азота

Без нагревания азот взаимодействует только с литием. При нагревании реагирует и с другими металлами.

Важное практическое значение имеет синтез аммиака, который применяется в дальнейшим при изготовлении удобрений, красителей, лекарств.

Аммиак

Бесцветный газ с резким едким запахом, раздражающим слизистые оболочки. Раствор концентрацией 10% аммиака применяется в медицинских целях, называется нашатырным спиртом.

Аммиак

В промышленности аммиак получают прямым взаимодействием азота и водорода.

В лабораторных условиях сильными щелочами действуют на соли аммония.

Аммиак проявляет основные свойства, окрашивает лакмусовую бумажку в синий цвет.

    Реакция с водой

Образует нестойкое соединение - гидроксид аммония, слабое основание. Оно сразу же распадается на воду и аммиак.

Как основание аммиак способен реагировать с кислотами с образованием солей.

NH3 + HCl → NH4Cl (хлорид аммония)

Нитрат аммония

Поскольку азот в аммиаке находится в минимальной степени окисления -3 и способен только ее повышать, то аммиак проявляет выраженные восстановительные свойства. Его используют для восстановления металлов из их оксидов.

Горение аммиака без катализатора приводит к образованию азота в молекулярном виде. Окисление в присутствии катализатора сопровождается выделением NO.

Горение аммиака

Соли аммония

Помните, что по правилам общей химии, если по итогам реакции выпадает осадок, выделяется газ или образуется вода - реакция идет.

    Реакции с кислотами

В реакциях с щелочами образуется гидроксид аммония - NH4OH. Нестойкое основание, которое легко распадается на воду и аммиак.

В воде ион аммония подвергается гидролизу с образованием нестойкого гидроксида аммония.

Фосфат аммония

Оксид азота I - N2O

Закись азота, веселящий газ - N2O - обладает опьяняющим эффектом. Несолеобразующий оксид. При н.у. является бесцветным газом с приятным сладковатым запахом и привкусом. В медицине применяется в больших концентрациях для ингаляционного наркоза.

Закись азота

Получают N2O разложением нитрата аммония при нагревании:

Оксид азота I разлагается на азот и кислород:

Оксид азота II - NO

Окись азота - NO. Несолеобразующий оксид. При н.у. бесцветный газ, на воздухе быстро окисляется до оксида азота IV.

В промышленных масштабах оксид азота II получают при каталитическом окислении аммиака.

В лабораторных условиях - в ходе реакции малоактивных металлов с разбавленной азотной кислотой.

На воздухе быстро окисляется с образованием бурого газа - оксида азота IV - NO2.

Оксид азота IV бурый газ

Оксид азота III - N2O3

При н.у. жидкость синего цвета, в газообразной форме бесцветен. Высокотоксичный, приводит к тяжелым ожогам кожи.

Оксид азота III

Получают N2O3 в две стадии: сначала реакцией оксида мышьяка III с азотной кислотой (две реакции, в которых образуется смесь оксидов азота), затем охлаждением полученной смеси газов до температуры - 36 °C.

При охлаждении газов образуется оксид азота III.

Является кислотным оксидом. соответствует азотистой кислоте - HNO2, соли которой называются нитриты (NO2 - ). Реагирует с водой, основаниями.

Оксид азота IV - NO2

Бурый газ, имеет острый запах. Ядовит.

Оксид азота IV

В лабораторных условиях данный оксид получают в ходе реакции меди с концентрированной азотной кислотой. Также NO2 выделяется при разложении нитратов.

Разложение нитратов

Проявляет высокую химическую активность, кислотный оксид.

Как окислитель NO2 ведет себя в реакциях с фосфором, углеродом и серой, которые сгорают в нем.

Окисляет SO2 в SO3 - на этой реакции основана одна из стадий получения серной кислоты.

Оксид азота IV соответствует сразу двум кислотам - азотистой HNO2 и азотной HNO3. Реакции с водой и щелочами протекают по одной схеме.

Если растворение в воде оксида проводить в избытке кислорода, образуется азотная кислота.

Оксид азота IV

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Читайте также: