Анализ состава металлов и сплавов

Обновлено: 17.05.2024

ООО «НДТ-контроль» оказывает услуги по химическому анализу металла с выездом на ваш объект и стационарно в лаборатории. Мы являемся аккредитованной лабораторией и проводим экспресс-анализ хим состава металла с выдачей заключения в этот же день.

Химический анализ металла — это комплексное исследование состава и характеристик материала посредством стилоскопирования (спектрального анализа), направленное на выявление его преимуществ и недостатков. Мы производим химический анализ стали всех марок и других металлов.

МЕТОДИЧЕСКИЕ ДОКУМЕНТЫ

В рамках химического анализа мы исследуем:

  • химический состав металла или сплава;
  • определение концентрации и массы того или иного элемента в металле (C, Be, Mg, Al, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Nb, Mo, Sn, Sb, W, Pb и др.);
  • качество металла;
  • соответствие металла техническим условиям и стандартам.


Спектральный анализатор ЛИС-1

Для проведения спектрального анализа металла мы используем лазерный анализатор металлов ЛИС-01. Это портативный стилоскоп, предназначеный для оперативного входного контроля металлопроката, а также спектрального анализа при лабораторных исследованиях, обеспечиващий высокую точность при определении состава химических элементов стали, цветных и черных металлов и сплавов. Стилоскоп ЛИС-01 позволяет измерять концентрацию углерода в высоко- и низколегированных сталях прямо на воздухе без использования аргона.

Особенности хим анализа стали и других металлов

Одной из основных задач аналитической химии, также применительно к анализу химического состава металла, является обеспечение точного, высокочувствительного избирательного результата исследования. Наиболее востребованными и эффективными становятся методы, способные обеспечить анализ микрообъектов (микрохимические исследования веществ), локальный анализ, неразрушающий анализ, дистанционную диагностику (в некотором отдалении от основного объекта), непрерывный анализ. Кроме того, существует необходимость установки вида химических компонентов, из которых формируется элемент в материале. Такое исследование называется фазовым анализом.

Статьи на тему химический анализ металла

  • Как определить химический состав сплавов, марку стали и содержание углерода
  • Оптический анализ
  • Проверка металла
  • Экспертиза металла
  • Стилоскопирование
  • Спектральный анализ
  • Марка стали и ее определение
  • Анализ металла
  • Экспертиза металла

Принцип действия качественного и количественного анализов химического состава металлов

Качественный анализ подразумевает комплекс химических, физических, физико-химических методов, позволяющих выявить и определить элементы, радикалы и соединения, входящие в состав исследуемого металла или сплава металлов. При качественном исследовании состава металла применяются простейшие химические реакции. Данные процессы, как правило, предполагают при воздействии на образец появление или исчезновение окрашивания, образование осадка или его растворение, выделение газа или прочих веществ. Посредством качественного анализа определяется тот или иной элемент в металле.

Количественный анализ представляет собой систему методов аналитической химии и направлен на определение количества (содержания) элементов (ионов), радикалов, функциональных групп, соединений или фаз в анализируемом материале. Путем количественного анализа осуществляется определение концентрации и массы того, или иного элемента в металле.

Химический анализ состава стали и сплавов

Качественный анализ наиболее часто проходит в виде стилоскопирования, визуального определения и идентификации того или иного элемента в составе по уровню интенсивности его свечения при воздействии. Особенностями, затрудняющими простоту и доступность такого метода, считаются высокие требования к подготовке операторов, невозможность установки примесей, субъективность результатов, негативное влияние на здоровье оператора при длительной работе на стилоскопе. Помимо этого, при стилоскопировании не удастся получить данные о содержании в металле таких элементов, как углерод, сера и фосфора. Поэтому, если требуется полная сортировка и исследование углеродистых и карбидосодержащих сталей, рекомендуется прибегнуть к другому способу анализа химического состава металлов и сплавов. Например, можно воспользоваться пробирным методом.

Сущность пробирного метода анализа состава сталей и сплавов заключается в физико-химических закономерностях и свойствах восстановления металлов, шлакообразовании и смачивании расплавленными веществами. Минусом такого способа считается подготовка к забору проб, которая занимает много времени, требует серьезной подготовки и предполагает значительные трудозатраты.

Спектральный анализ хим состава сплавов металла. Оптико-эмиссионный спектральный анализ металлов. Спектральный анализ золота

Методы химического анализа являются основными при определении состава различных веществ. Современный химический анализ металлов и сплавов является важным этапом экспертизы, которая используется для определения качества продукции и проверки ее соответствия текущим стандартам. Без этой процедуры не проводятся технологические процессы в отрасли производства сталей, она необходима при создании и выпуске новых материалов, а также контроле выпускаемой продукции современными предприятиями. От правильности и точности проведенного анализа будет зависеть качество и надежность будущей продукции, которая производится с использованием металлов и их сплавов.
Однако очень часто возникает необходимость повысить оперативность контроля, а также иметь возможность автоматизировать контроль. В связи с этим были разработаны физико-химические и физические методы определения состава материалов. Среди этих методов одно из главных мест занимает спектральный анализ.

Портативный анализатор Vanta C

Vanta C (Ванта С) – современный портативный рентгенофлуоресцентный спектрометр (анализатор) нового поколения от компании Olympus. Спектрометр Vanta C позволяет за считанные секунды проводить сортировку лома, подтверждение марки сплава (PMI), контроль качества руды и др., показывая при этом результаты, сопоставимые с результатами оптико-эмиссионного анализа!

XRF-спектрометр Vanta C просто находка для сортировщиков лома, прибор способен работать в самых экстремальных условиях эксплуатации (пыль, грязь, дождь, снег, удары и падения). Специальная система защиты детектора анализатора Vanta максимально снижает возможность его повреждения.

Особенности и преимущества анализатора серии Vanta C:

Области применения анализатора серии Vanta C:

  1. Сортировка лома (в том числе, лома цветных и высокотехнологичных сплавов);
  2. Подтверждение марки сплава PMI (в том числе, сплавов с низким содержанием магния);
  3. Контроль качества металлопродукции;
  4. Геологоразведка;
  5. Анализ рудных концентратов;
  6. Экомониторинг

Преимущества метода

Благодаря высокой избирательности, оказывается возможным быстро и с высокой чувствительностью определить химический состав анализируемого материала. Исследовать состав металла по спектру можно без нарушения его пригодности к использованию, т.е. можно проводить неразрушающий контроль образцов. Несмотря на громадное число аналитических методик, предназначенных для исследования различных объектов, все они основаны на общей принципиальной схеме: каждому химическому элементу принадлежит свой спектр.

Благодаря индивидуальности спектров имеется возможность определить химический состав тела. Сравнительная простота и универсальность спектрального анализа сделали метод основным методом контроля состава вещества в металлургии, машиностроении, атомной промышленности. С его помощью определяют химический руд и минералов, особое место в этой области занимает неразрушающий контроль металлов.

химический анализ

ХИМИЧЕСКИЙ АНАЛИЗ

совокупность действий, цель которых получение информации о хим. составе материальных тел, а также об их строении (структуре). Под хим. составом понимают вид и количество элементов или их соед. в анализируемом объекте и форму, в которой они присутствуют. Под строением веществ понимают порядок и пространств, расположение составляющих их структурных единиц (молекул, атомов, ионов). Термин «хим. анализ» введен Р. Бойлем в 1661, однако аналит. определения проводились с древнейших времен, а руководства по анализу разл. объектов появились значительно раньше 17 в.

В зависимости от поставленной задачи различают элементный (установление элементного состава), молекулярный (определение хим. соед., напр. оксидов в газовой смеси, орг. веществ в сточных водах), вещественный (установление и определение разных форм существования элемента и его соед., напр. в разных степенях окисления), структурно-групповой (определение функц. групп орг. соединений); фазовый (анализ включений в неоднородном объекте, напр. в минерале), изотопный анализ. Строение веществ устанавливают гл. обр. физ. и физ.-хим. методами анализа, напр., методами структурного анализа.

Х. а. составляет прикладной аспект аналитической химии. Он жлючает ряд последоват. стадий, обеспеченных соответствующими методами; пробоотбор, пробоподготовка, в т. ч. разделение компонентов, обнаружение (идентификация), определение, жработка результатов измерений. Существуют также гибридные методы, сочетающие разделение и определение (напр., в хроматографии), или пробоподготовку, разделение и определение напр., при гравиметрии, определении кремния).

Конкретное воплощение метод находит в методике — подробном описании всех процедур на каждой стадии анализа гттределенного объекта. Для осуществления методики используют приборы, реактивы, стандартные образцА, программы гн ЭВМ и др.

Наиб. значение имеют методы обнаружения и особенно гпределения. Все они основаны на зависимости между хим. составом вещества и к.-л. его хим. или физ. свойством. Свойства, не зависящие от количества вещества, напр. положение линии в спектре, лежат в основе методов обнаружения (качественный анализ); rs-ва. функционально связанные с количеством (или концентрацией) вещества, напр. интенсивность спектральной линии,- в зснове методов определения (количественный анализ). Помимо пары качественной-количественной, можно выделить др. лары видов анализа; валовый-локальный, разрушающий-не-газрушающий, контактный-дистанционный, дискретный-не-згерывный и т. д.

По характеру аналит. сигнала методы определения делят на химические, основанные на взаимод. веществ друг с другом (хим. реакции и процессы) и физические, основанные на взаимод. вещества с потоком энергии. Деление условно — многие методы можно отнести и к той и к другой группе, напр. в фотометрии, методах часто используют реакцию образования окрашенного соединения, а аналит. сигиал получают при взаимодействии этого соед. с электромаги. излучением. Иногда такие методы называют физ.-химическими. Часто физ. и физ.-хим. методы объединяют под назв. «инструментальный анализ». К отдельной группе относят биол. методы, основанные на явлениях, наблюдаемых в живой природе.

Х.а.- основная задача аналит. службы — сети сервисных лабораторий, которые обеспечивают контроль хим. состава продуктов производства, сырья, природных и сточных вод, биомасс (клинич. анализ), предметов искусства и др. Для выполнения этих задач используют спец, нормативы (методич. указания, стандарты, фармакопеи). Пром. Х. а. бывает непрерывным и выборочным, констатирующим и экспрессным (результаты его используют для немедленной корректировки технол. процесса). Х. а. все больше автоматизируется (см. автоматизированный анализ). Важное значение приобретают дистанционные (анализ на расстоянии) и недеструктивные (без разрушения объекта) методы.

Х.а.- существ. часть нормального функционирования ведущих отраслей народного хозяйства, систем охраны природы и здоровья, оборонного комплекса, развития смежных областей знания.

Лит.: Золотов Ю. А., Очерки аналитической химии, М., 1977; Шае-вил А.Б., Аналитическая служба как система, М., 1981; ЗопотовЮ.А., Аналитическая химия: проблемы и достижения, М., 1992.

Химический анализ металлов и сплавов. Назначение и современные методы исследования

Анализ химического состава металлов и сплавов - неотъемлемая часть многих технологических процессов, используемых в различных отраслях промышленности. Исследование позволяет определить присутствия в образце примесей и включений, а также прогнозировать эксплуатационные характеристики готового изделия.

Для решения этой задачи используются анализаторы - надежные и эффективные приборы, способные работать как в производственных, так и лабораторных условиях.

Назначение

лаборатория спектрального анализа металлов

Химический анализ позволяет:

  • определить количественный состав;
  • исследовать образец на присутствие примесей и определить их концентрацию;
  • идентифицировать сплав;
  • выяснить соотношение примесей сплава для его маркировки.

Проведение исследования необходимо для:

  • экспертизы продукции для определения соответствия действующим стандартам;
  • непрерывного контроля технологического процесса;
  • входного контроля исходного сырья;
  • разработки и создания новых сплавов;
  • сертификации продукции;
  • освидетельствования чистых металлов.

Основные требования

Для проведения химического анализа металлов и сплавов могут быть использованы различные методы. Однако не все они удовлетворяют следующим требованиям:

  • максимальная оперативно;
  • высокая точность результатов;
  • использование неразрушающих методов;
  • простота эксперимента;
  • применение в производственных условиях.

Методы атомно-эмиссионного спектрального анализа

Атомно-эмиссионный спектральный анализ (АЭСА) металлов и сплавов получил наибольшее распространение в различных отраслях промышленности. С его помощью можно исследовать вещества в различных агрегатных состояниях на присутствие многих химических элементов. Он имеет низкий предел обнаружения элементов, отличается простотой и низкой себестоимостью, что делает целесообразным его использование в лабораториях спектрального анализа металлов, решающих различные аналитические задачи.

Спектрографический

спектроскоп для анализа химического состава металлов и сплавов

Проводится с использованием спектрографа, который позволяет относительно быстро получить надежные результаты. Метод предусматривает регистрацию атомных спектров на фотопластинку с последующей идентификацией их с помощью планшета или на спектропроекторе.

Спектрометрический

Для исследования пробы применяются приборы с фотоэлектрической регистрацией спектра. Этот вид химического анализа металлов и сплавов относится к объективным методам и позволяет оперативно получать информацию.

  • экспрессность;
  • высокая точность результатов;
  • полная автоматизация процесса;
  • обработка результатов на ЭВМ и их архивирование.
  • сложность эксплуатации оборудования;
  • возникновение проблем оптической и электрической стабильности;
  • нельзя одновременно регистрировать широкую область спектра.

Визуальный

Отличается от двух предыдущих субъективностью, так как приемником излучения служит человеческий глаз. Несмотря на ограниченные возможности, визуальный спектральный анализ широко используется в промышленности. Особенное значение визуальный метод приобретает при необходимости контроля химического состава легированных сталей в процессе их производства.

  • экспрессность;
  • простота;
  • проведения анализа в месте нахождения проб;
  • низкая стоимость оборудования.
  • невысокая точность результатов;
  • не позволяет определять неметаллические элементы.

Заключение

Атомно-эмиссионный спектральный анализ имеет ряд преимуществ по сравнению с другими методами химического анализа.

Неразрушающий спектральный контроль состава металла изделий

Любое литейное и металлообрабатывающее производство не может обойтись без систем контроля своей продукции. Снижение качества поставляемых изделий стало большой проблемой для отечественных предприятий, которые теперь вынуждены закупать требуемые материалы за границей. Именно поэтому важным фактором на производстве является система контроля поставляемой продукции и контроль изделий.

Методы контроля изделий на производстве

Методы химического анализа являются основными при определении состава различных веществ. Современный химический анализ металлов и сплавов является важным этапом экспертизы, которая используется для определения качества продукции и проверки ее соответствия текущим стандартам. Без этой процедуры не проводятся технологические процессы в отрасли производства сталей, она необходима при создании и выпуске новых материалов, а также контроле выпускаемой продукции современными предприятиями. От правильности и точности проведенного анализа будет зависеть качество и надежность будущей продукции, которая производится с использованием металлов и их сплавов.

Однако очень часто возникает необходимость повысить оперативность контроля, а также иметь возможность автоматизировать контроль. В связи с этим были разработаны физико-химические и физические методы определения состава материалов. Среди этих методов одно из главных мест занимает спектральный анализ.

Принцип метода

Для проведения исследования вещество необходимо испарить, так как свет, излучаемый веществом в газообразном состоянии, определяется химическим составом этого вещества, в отличие от света, излучаемого твердыми телами или жидкостями. Для испарения и возбуждения вещества используют высокотемпературное пламя, различного типа электрические разряды в газах: дуга, искра и т. д.

Высокая температура в разрядах (тысячи и десятки тысяч градусов) приводит к распаду молекул большинства веществ на атомы. Поэтому эмиссионные методы служат, как правило, для атомного анализа и очень редко – молекулярного. Излучение паров вещества складывается из излучения атомов всех элементов. Для исследования необходимо выделить излучение каждого элемента.

Задачи изучения спектров

Точность атомного спектрального анализа зависит, главным образом, от состава и структуры исследуемых объектов. Анализировать состав близких по своей структуре и составу образцов, можно с погрешностью ±1 – 3% по отношению к определяемой величине.

В металлургии и машиностроении спектральный анализ металлов стал в настоящее время основным методом неразрушающего контроля, перед которым ставятся следующие задачи:

  1. Исследование сплавов в процессе плавки с целью получения сплава нужного состава;
  2. Анализ готовых сплавов с целью определения марки сплава (сортировки), либо точное определение его состава или определение содержания вредных примесей;
  3. Контроль качества готовых изделий;
  4. Контроль правильности применения сплавов при монтаже готовых изделий;
  5. Проверка различного рода покрытий;
  6. Иногда необходимо определять распределение примесей и включений в металле.

Области применения

Методы атомного спектрального анализа, качественного и количественного, разработаны значительно лучше, чем молекулярного, и имеют более широкое практическое применение. Атомные спектральные исследования используют для анализа самых разнообразных объектов. Область его применения очень широка: черная и цветная металлургия, машиностроение, геология, химия, биология, астрофизика и многие другие отрасли науки и промышленности.

Область использования молекулярной спектроскопии в основном охватывает анализ органических веществ, хотя применима и для изучения неорганических соединений. Молекулярный анализ спектров внедряется, главным образом, в химической, нефтеперерабатывающей и химико-фармацевтической промышленности.

Приборы наблюдения спектра

Это осуществляется с помощью оптических приборов – спектральных аппаратов. В этих приборах световые лучи с разными длинами волн отделяются пространственно друг от друга, позволяя проводить изучение спектра исследуемого вещества.

Для визуального наблюдения спектра используются приборы:

Анализ сплавов на основе железа: стали и цветных металлов

Номенклатура сплавов на основе железа и других металлов очень велика, что связано с многообразием условий эксплуатации деталей, технологических сред и технологий, используемых при их производстве. Современная промышленность требует разработки новых сплавов с особыми свойствами, которые удовлетворяют возрастающим и изменяющимся потребностям.

Это в свою очередь заставляет работать над созданием совершенных приборов, которые позволяют анализировать сложные сплавы быстро и точно. Атомная эмиссионная спектрометрия дает возможность решать любые аналитические задачи, и служит мощным инструментом в системе контроля качества.

Стали

Конструкционные стали получили наибольшее распространение в промышленности, и обладают комплексом механических свойств, среди которых значение какого-либо не слишком высоко. Основная задача таких железоуглеродистых сплавов - обеспечение достаточной прочности и надежности, а также сопротивляемость усталости и воздействию знакопеременных нагрузок. Такие характеристики достигаются путем легирования и термической обработки. Методики спектрального анализа углеродистых сталей отработаны и не представляют сложности.

Специальные стали обладают особым набором свойств, один из которых наиболее выражен, и определяет ее назначение. Особые свойства обуславливаются наличием одного или нескольких особых факторов: химический состав, способ производства, обработка. Высоколегированные стали также относятся к этой категории. Как правило, специальные стали имеют сложный химический состав, анализ которого требует использования современных методов и более совершенных приборов.

Нержавеющие стали

К этому виду сталей относятся свыше 120 марок, число которых постоянно растет. В сплаве содержится хром, который образует оксидный слой, служащий защитой от коррозии.

Коррозионно-стойкие стали бывают:

  • хромистые;
  • хромо-никелевые;
  • хромо-никель-молибденовые;
  • хромо-никель-молибден-медистые;
  • хром-никель-марганцевые.

Структура нержавеющих сталей различается в зависимости от соотношения в них углерода и хрома.

Инструментальные быстрорежущие стали

К быстрорежущим относят стали, из которых изготавливаются инструменты высокой производительности. Они обладают повышенной стойкостью к красноломкости, и отличаются высокой износостойкостью. Основные легирующие элементы: W, Mo, V, Cr, Co. В этих сплавах присутствуют сложные карбиды, массовая доля которых составляет около 30%, причем при повышении температуры содержание легирующих элементов снижается, так как они переходят в твердый раствор.

Износостойкие стали

Конструкционные износостойкие стали обладают высоким сопротивлением износу. К ним относят стали:

  • Шарикоподшипниковые. Они имеют повышенное содержание углерода (0,95-1,15%) и хром. Находят применения для изготовления элементов подшипников качения.
  • Высокомарганцовистые. В них высокое содержание не только марганца, но и углерода.

Существует ряд других марок сталей, относящихся к износостойким. Все они способны работать в условиях воздействия больших нагрузок, давлений и обладают сопротивлением к истиранию.

Мартенситно-стареющие стали

Эти стали обладают высокими прочностными и технологическими характеристиками, и в своем составе практически не содержат углерод. В их основу входят, кроме железа и никеля, кобальт, молибден, титан алюминий, ниобий и хром. Содержания Ni находится в диапазоне 7-20%.

Из мартенситно-стареющих сталей изготавливают ответственные детали с высокой прочностью, и обладающие вязкостью при низких температурах.

Подшипниковые стали

Характер нагрузок при работе подшипниковых сталей связан с высокими локальными нагрузками, поэтому к ним предъявляются повышенные требования по чистоте сплава. Они должны обеспечивать высокую статическую грузоподъемность и сопротивление контактной усталости. Требуемая износостойкость достигается введением углерода и хрома.

Прецизионные стали

Эта группа сталей характеризуется высоким уровнем определенных свойств, и подразделяется на следующие виды:

  • магнитомягкие и магнитотвердые;
  • с заданным коэффициентом теплового расширения;
  • с особыми упругими свойствами;
  • жаропрочные;
  • сверхпроводящие;
  • обладающие комплексом физических свойств.

Множество прецизионных сплавов получают на основе металлов, входящих в подгруппы: железа, кобальта, никеля. В настоящее время созданы сплавы, основу которых составляет: марганец, хром, титан, ниобий, ванадий, переходные и редкоземельные металлы.

Цветные металлы и сплавы

К черным металлам принято относить железо и сплавы на его основе, а к цветным - все остальные металлы. Последние находят ограниченное применение по сравнению с черными металлами, тем не менее роль их в промышленности велика, и новые сплавы создаются постоянно в соответствии с развитием технологий. Спектральный эмиссионный анализ играет большую роль в этих процессах, и позволяет решать задачи любой сложности.

Медь и сплавы

Медь (Cu) - цветной металл, который получил наибольшее распространение в промышленности. Чистая медь используется в электротехнике, а сплавы на ее основе - в различных отраслях техники.

Основные примеси технически чистой меди: висмут, сурьма, мышьяк, железо, никель, сера. Их источником служат руды. Эти примеси не удаляются даже после очистки меди. Медь обладает высокими показателями пластичности, что облегчает ее деформацию давлением, а присутствие Bi и Sn резко их снижают.

Латуни - сплавы меди с цинком.

  • Однофазные с содержанием цинка менее 39%. Они хорошо поддаются пластической деформации в холодном и горячем состоянии.
  • Двухфазные, в которых содержание цинка находится в диапазоне 39-50%. Прочность и износостойкость двухфазных латуней выше, чем у однофазных сплавов.

Латуни плохо обрабатываются резанием. Добавление в сплав свинца позволяет улучшить показатели обрабатываемости.

Специальные латуни обладают улучшенными механическими и химическими свойствами. Это достигается путем введения Sn, Si, Mn, Al и Fe.

Бронзы - это сплав на основе меди с другим элементом, за исключением цинка. Наибольшее распространение получили следующие бронзы:

  • Оловянные;
  • Безоловянные: алюминиевые, кремнистые, марганцовистые, бериллиевые, свинцовистые.

Алюминий и сплавы

Алюминий (Al) - легкий металл с высокой электропроводностью, который широко используется в электротехнике и машиностроении. Металл имеет низкую температуру плавления и высокую пластичность.

Железо и кремний - неизбежные примеси в алюминии, которые снижают его технологические характеристики. При одновременном присутствии в металле Fe и Si пластичность ухудшается.

Сплавы на основе алюминия с легирующими элементами очень разнообразны. Присутствие в сплаве меди, кремния, магния, цинка приводит к резкому изменению свойств. Марганец, никель, хром способны улучшить свойства, и добавляются при наличии в составе одного или нескольких указанных выше легирующих элементов. Натрий, бериллий, титан, церий, ниобий используются в малых количествах, и играют роль модификаторов, которые улучшают свойства.

Все алюминиевые сплавы подразделяются на две группы:

  • Деформируемые. Предназначены для производства изделий обработкой металла давлением.
  • Литейные. Используются для получения отливок.

Магний и сплавы

Магний - металл светло-серого цвета с малой плотностью и низкой температурой плавления. Он способен воспламеняться на воздухе. Область применения: пиротехника и химическая промышленность.

Сплавы на основе магния представляют соединение металла с алюминием, цинком, марганцем. Они бывают деформируемые и литейные. Магниевые сплавы обладают высокой прочностью и пластичностью, поэтому используются в машиностроении для изготовления ответственных деталей.

Титан и сплавы

Титан - полиморфный металл, который обладает малой плотностью и высокой прочностью. Уникальные свойства этого металла делают его ценным конструкционным материалом, и позволяют использовать его при строительстве летательных аппаратов, судов, ракет и в химической промышленности.

Для улучшения свойств технический титан легируют с использованием следующих металлов: алюминий, хром, железо, марганец, олово, ванадий. Присутствие того или иного элемента изменяет точку аллотропического превращения титана и структуру твердого раствора. Алюминий представляет особую ценность в титановых сплавах, и содержится в любом их них, так как улучшает свойства.

Методы анализа сложных сплавов

Из сказанного выше становится очевидно, насколько велика номенклатура сплавов, представляющих практический и научный интерес, и как разнообразны аналитические задачи. Современные подходы к построению системы контроля качества требуют использования измерительных средств, которые обеспечивают возможность оперативного получения точных результатов анализа элементного состава металла или сплава. При этом обязательно учитывается экономический эффект и окупаемость приборов.

Рентгено-флюоресцентный анализ

Возможности рентгено-флуоресцентного анализа при исследовании сложных сплавов впечатляют. Метод отличается экспрессностью, и позволяет с высокой степенью точности определить элементы от бериллия до урана, начиная с тысячных долей процента до 100%.

К преимуществам РФА относят:

  • Возможность проведения исследования твердых проб без изменения их агрегатного состояния, а жидких - без необходимости отделения органики.
  • Приборы не нуждаются в калибровке.
  • Неразрушающий характер возбуждения спектра.
  • Высокая скорость получения результатов анализа.

Несмотря на большие возможности рентгено-флуоресцентных спектрометров при решении аналитических задач любой сложности, существует ряд факторов, которые сдерживают массовое использование этого оборудования:

  • Высокая стоимость.
  • Необходимость придания пробе определенной формы и приведение к размерам, позволяющим поместить в измерительную кассету.
  • Дорогостоящая периферия прибора и его обслуживание.

Спектрометры с индуктивно-связанной плазмой

Приборы этого типа способны проводить спектральный анализ проб, находящихся в жидком состоянии. Эта особенность спектрометров с индуктивно-связанной плазмой определяет их достоинства и недостатки.

  • Возможность одновременного определения десятков элементов.
  • Линейная зависимость градуировочных характеристик по всему спектру.
  • Доступная стоимость градуировочных растворов.

К недостаткам относят:

  • Необходима помощь химико-аналитической лаборатории.
  • Большая продолжительность исследования, которая связана с необходимостью перевода пробы в раствор.
  • Прибор не способен определять углерод.
  • При повышении концентрации снижается точность результатов исследования.
  • Недостаточная нормативная база.
  • Высокая стоимость оборудования.

Оптико-эмиссионная спектрометрия

Для анализа сложных сплавов широко используются оптико-эмиссионные спектрометры с низковольтной искрой в среде аргона. Они лишены недостатков приборов с высоковольтной искрой и дуговых спектрометров, и позволяют определять неограниченное число элементов при их концентрации от тысячных долей процента. Измерения отличаются стабильностью и имеют низкую погрешность. На подавляющее большинство металлов и сплавов разработана нормативная документация.

Основные достоинства ОЭС:

  • Возможность определения неограниченного числа элементов.
  • Низкий предел обнаружения и погрешность.
  • Экспрессность.
  • Невысокая стоимость оборудования по сравнению с РФА и ИСП-приборами.
  • Простота эксплуатации и обслуживания.

Оптико-эмиссионные спектрометры не лишены недостатков:

  • Повышенные требования к качеству аргона.
  • Проведение пробоподготовки должно выполняться в соответствии с требований ГОСТ.
  • При повышении концентрации происходит снижение надежности измерений.
  • Возможен анализ только монолитных токопроводящих проб.

Выводы

Выбор спектрального прибора для анализа сложных сплавов обусловлен особенностями производства и частотой проведения исследований:

Читайте также: