Ar это металл или неметалл

Обновлено: 14.05.2024

Арго́н — элемент главной подгруппы восьмой группы, третьего периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 18. Обозначается символом Ar (лат. Argon ). Третий по распространённости элемент в земной атмосфере (после азота и кислорода) — 0,93 % по объёму. Простое вещество аргон (CAS-номер: 7440-37-1) — инертный одноатомный газ без цвета, вкуса и запаха.

Содержание

История

История открытия аргона начинается в 1785 году, когда английский физик и химик Генри Кавендиш, изучая состав воздуха, решил установить, весь ли азот воздуха окисляется. В течение многих недель он подвергал воздействию электрического разряда смесь воздуха с кислородом в U-образных трубках, в результате чего в них образовывались все новые порции бурых окислов азота, которые исследователь периодически растворял в щёлочи. Через некоторое время образование окислов прекратилось, но после связывания оставшегося кислорода остался пузырек газа, объём которого не уменьшался при длительном воздействии электрических разрядов в присутствии кислорода. Кавендиш оценил объём оставшегося газового пузыря в 1/120 от первоначального объёма воздуха [3] [4] [5] . Разгадать загадку пузыря Кавендиш не смог, поэтому прекратил свое исследование, и даже не опубликовал его результатов. Только спустя много лет английский физик Джеймс Максвелл собрал и опубликовал неизданные рукописи и лабораторные записки Кавендиша.

Дальнейшая история открытия аргона связана с именем Рэлея, который несколько лет посвятил исследованиям плотности газов, особенно азота. Оказалось, что литр азота, полученного из воздуха, весил больше литра «химического» азота (полученного путём разложения какого-либо азотистого соединения, например, закиси азота, окиси азота, аммиака, мочевины или селитры) на 1,6 мг (вес первого был равен 1,2521, а второго 1,2505 г). Эта разница была не так уж мала, чтобы можно было её отнести на счет ошибки опыта. К тому же она постоянно повторялась независимо от источника получения химического азота [3] .

Не придя к разгадке, осенью 1892 года Рэлей в журнале «Nature» опубликовал письмо к учёным, с просьбой дать объяснение тому факту, что в зависимости от способа выделения азота он получал разные величины плотности. Письмо прочли многие учёные, однако никто не был в состоянии ответить на поставленный в нём вопрос [3] [4] .

У известного уже в то время английского химика Уильяма Рамзая также не было готового ответа, но он предложил Рэлею свое сотрудничество. Интуиция побудила Рамзая предположить, что азот воздуха содержит примеси неизвестного и более тяжелого газа, а Дьюар обратил внимание Рэлея на описание старинных опытов Кавендиша (которые уже были к этому времени опубликованы) [4] .

Пытаясь выделить из воздуха скрытую составную часть, каждый из учёных пошел своим путём. Рэлей повторил опыт Кавендиша в увеличенном масштабе и на более высоком техническом уровне. Трансформатор под напряжением 6000 вольт посылал в 50-литровый колокол, заполненный азотом, сноп электрических искр. Специальная турбина создавала в колоколе фонтан брызг раствора щёлочи, поглощающих окислы азота и примесь углекислоты. Оставшийся газ Рэлей высушил, и пропустил через фарфоровую трубку с нагретыми медными опилками, задерживающими остатки кислорода. Опыт длился несколько дней [3] .

Рамзай воспользовался открытой им способностью нагретого металлического магния поглощать азот, образуя твёрдый нитрид магния. Многократно пропускал он несколько литров азота через собранный им прибор. Через 10 дней объём газа перестал уменьшаться, следовательно, весь азот оказался связанным. Одновременно путём соединения с медью был удален кислород, присутствовавший в качестве примеси к азоту. Этим способом Рамзаю в первом же опыте удалось выделить около 100 см³ нового газа [3] .

Итак, был открыт новый элемент. Стало известно, что он тяжелее азота почти в полтора раза и составляет 1/80 часть объёма воздуха. Рамзай при помощи акустических измерений нашёл, что молекула нового газа состоит из одного атома — до этого подобные газы в устойчивом состоянии не встречались. Отсюда следовал очень важный вывод — раз молекула одноатомна, то, очевидно, новый газ представляет собой не сложное химическое соединение, а простое вещество [3] .

Много времени затратили Рамзай и Рэлей на изучение его реакционной способности по отношению ко многим химически активным веществам. Но, как и следовало ожидать, пришли к выводу: их газ совершенно недеятелен. Это было ошеломляюще — до той поры не было известно ни одного настолько инертного вещества [3] .

Большую роль в изучении нового газа сыграл спектральный анализ. Спектр выделенного из воздуха газа с его характерными оранжевыми, синими и зелёными линиями резко отличался от спектров уже известных газов. Уильям Крукс, один из виднейших спектроскопистов того времени, насчитал в его спектре почти 200 линий. Уровень развития спектрального анализа на то время не дал возможности определить, одному или нескольким элементам принадлежал наблюдаемый спектр. Несколько лет спустя выяснилось, что Рамзай и Рэлей держали в своих руках не одного незнакомца, а нескольких — целую плеяду инертных газов [3] .

Через 10 лет, в 1904 году, Рэлей за исследования плотностей наиболее распространённых газов и открытие аргона получает Нобелевскую премию по физике, а Рамзай за открытие в атмосфере различных инертных газов — Нобелевскую премию по химии [3] .

Происхождение названия

По предложению доктора Медана (председателя заседания, на котором был сделан доклад об открытии) Рэлей и Рамзай дали новому газу имя «аргон» (от др.-греч. ἀργός — ленивый, медленный, неактивный). Это название подчеркивало важнейшее свойство элемента — его химическую неактивность [3] .

Распространённость

Во Вселенной

Содержание аргона в мировой материи оценивается приблизительно в 0,02 % по массе [6] .

Аргон (вместе с неоном) наблюдается на некоторых звездах и в планетарных туманностях. В целом его в космосе больше, чем кальция, фосфора, хлора, в то время как на Земле существуют обратные отношения [7] .

Земная кора

Аргон — третий по содержанию после азота и кислорода компонент воздуха, его среднестатистическое содержание в атмосфере Земли составляет 0,934 % по объему и 1,288 % по массе [4] [7] , его запасы в атмосфере оцениваются в 4·10 14 т [2] [4] . Аргон — самый распространённый инертный газ в земной атмосфере, в 1 м³ воздуха содержится 9,34 л аргона (для сравнения: в том же объеме воздуха содержится 18,2 см³ неона, 5,2 см³ гелия, 1,1 см³ криптона, 0,09 см³ ксенона) [4] [7] .

Содержание аргона в литосфере — 4·10 −6 % по массе [2] . В каждом литре морской воды растворено 0,3 см³ аргона, в пресной воде его содержится 5,5·10 −5 — 9,7·10 −5 %. Его содержание в Мировом океане оценивается в 7,5·10 11 т, а в изверженных породах земной оболочки — 16,5·10 11 т [7] .

Определение

Качественно аргон обнаруживают с помощью эмиссионного спектрального анализа, основные характеристические линии — 434,80 и 811,53 нм. При количественном определении сопутствующие газы (O2, N2, H2, CO2) связываются специфичными реагентами (Ca, Cu, MnO, CuO, NaOH) или отделяются с помощью поглотителей (например, водных растворов органических и неорганических сульфатов). Отделение от других инертных газов основано на различной адсорбируемости их активным углём. Используются методы анализа, основанные на измерении различных физических свойств (плотности, теплопроводности и др.), а также масс-спектрометрические и хроматографические методы анализа [2] .

Физические свойства

Аргон — одноатомный газ с температурой кипения (при нормальном давлении) −185,9 °C (немного ниже, чем у кислорода, но немного выше, чем у азота). В 100 мл воды при 20 °C растворяется 3,3 мл аргона, в некоторых органических растворителях аргон растворяется значительно лучше, чем в воде. Плотность при нормальных условиях составляет 1,7839 кг/м 3

Химические свойства

Пока известны только 2 химических соединения аргона — гидрофторид аргона и CU(Ar)O, которые существуют при очень низких температурах. Кроме того, аргон образует эксимерные молекулы, то есть молекулы, у которых устойчивы возбужденные электронные состояния и неустойчиво основное состояние. Есть основания считать, что исключительно нестойкое соединение Hg—Ar, образующееся в электрическом разряде, — это подлинно химическое (валентное) соединение. Не исключено, что будут получены другие валентные соединения аргона с фтором и кислородом, которые тоже должны быть крайне неустойчивыми. Например, при электрическом возбуждении смеси аргона и хлора возможна газофазная реакция с образованием ArCl. Также со многими веществами, между молекулами которых действуют водородные связи (водой, фенолом, гидрохиноном и другими), образует соединения включения (клатраты), где атом аргона, как своего рода «гость», находится в полости, образованной в кристаллической решётке молекулами вещества-хозяина.

Соединение CU(Ar)O получено из соединения урана с углеродом и кислородом CUO [8] . Вероятно существование соединений со связями Ar-Si и Ar-C: FArSiF3 и FArCCH.

Изотопы



Аргон представлен в земной атмосфере тремя стабильными изотопами: [4] [7] . Почти вся масса тяжёлого изотопа 40 Ar возникла на Земле в результате распада радиоактивного изотопа калия 40 K (содержание этого изотопа в изверженных породах в среднем составляет 3,1 г/т). Распад радиоактивного калия идёт по двум направлениям одновременно:

_K>\rightarrow\mathrm^_Ca>+ e^- + \bar_e" />

_K> + e^- \rightarrow \mathrm^_Ar>+ \nu_e + \gamma" />

Первый процесс (обычный β-распад) протекает в 88 % случаев и ведет к возникновению стабильного изотопа кальция. Во втором процессе, где участвуют 12 % атомов, происходит электронный захват, в результате чего образуется тяжёлый изотоп аргона. Одна тонна калия, содержащегося в горных породах или водах, в течение года генерирует приблизительно 3100 атомов аргона. Таким образом, в минералах, содержащих калий, постепенно накапливается 40 Ar, что позволяет измерять возраст горных пород; калий-аргоновый метод является одним из основных методов ядерной геохронологии.

Вероятные источники происхождения изотопов 36 Ar и 38 Ar — неустойчивые продукты спонтанного деления тяжёлых ядер, а также реакции захвата нейтронов и альфа-частиц ядрами лёгких элементов, содержащихся в урано-ториевых минералах.

Подавляющая часть космического аргона состоит из изотопов 36 Ar и 38 Ar. Это вызвано тем обстоятельством, что калий распространён в космосе примерно в 50 000 раз меньше, чем аргон (на Земле калий преобладает над аргоном в 660 раз). Примечателен произведенный геохимиками подсчёт: вычтя из аргона земной атмосферы радиогенный 40 Ar, они получили изотопный состав, очень близкий к составу космического аргона [7] .

Получение

В промышленности аргон получают как побочный продукт при крупномасштабном разделении воздуха на кислород и азот. При температуре −185,9 °C аргон конденсируется, при −189,4 °C — кристаллизуется.

Применение


Ниже перечислены области применения аргона:

Биологическая роль

Аргон не играет никакой биологической роли.

Физиологическое действие

Инертные газы обладают физиологическим действием, которое проявляется в их наркотическом воздействии на организм. Наркотический эффект от вдыхания аргона проявляется только при барометрическом давлении свыше 0,2 МПа [10] .

Содержание аргона в высоких концентрациях во вдыхаемом воздухе может вызвать головокружение, тошноту, рвоту, потерю сознания и смерть от асфиксии (в результате кислородного голодания) [11] .

Все что нужно знать об аргоне простыми словами

Аргон – это химический элемент, занимающий в периодической таблице Д.И. Менделеева место под номером 18. Инертный, по-другому благородный, одноатомный газ аргон, который, при нормальных условиях не вступает в химические реакции и является чистым веществом, незаменим во многих сферах человеческой деятельности.

В данной статье рассказывается о его физических и химических свойствах, областях применения, технике безопасности при использовании.

Происхождение названия

Впервые с аргоном во второй половине XVIII века столкнулся английский ученый Кавендиш при изучении состава воздуха.

Во время проведения эксперимента после удаления с помощью химических реакций кислорода и азота в трубке оставался небольшой пузырек газа, который не реагировал на внешние воздействия. Его размер составлял около 1/120 первоначального объема. Понять причину этого Кавендишу не удалось.

И только более чем через столетие, на исходе XIX века, совместные усилия ученых Рэлея и Рамзая, также англичан, привели к ликвидации белого пятна в периодической таблице.

Они заинтересовались разницей в весе двух объемов азота, равных 1 л, один из которых был получен из воздуха, другой – в результате химической реакции. Эта разница составляла 1,6 мг и не могла быть отнесена на счет погрешности измерения.

Ученые предположили, что в первом случае, кроме азота, присутствует неизвестный газ, что и подтвердил последующий спектральный анализ. Поскольку этот газ оказался химически неактивным, то есть не вступал в какие-либо реакции, то и название он получил соответствующее.

В переводе с древнегреческого языка ἀργός (читается как «аргос») – медленный, ленивый.

Несколько позднее, также с помощью спектрального анализа, были открыты и другие инертные газы, присутствующие в составе атмосферы, хотя и в значительно меньших, чем аргон, количествах.

Распространенность

Температура кипения аргона при атмосферном давлении очень низка, поэтому на Земле его можно встретить лишь в виде газа.

По количеству в составе атмосферного воздуха, которое составляет около 1%, элемент уступает лишь азоту и кислороду, и это в несколько десятков раз больше, чем общее количество других инертных газов – ксенона, криптона, гелия, неона.

Поэтому он наиболее популярен. А такого содержания в воздухе вполне достаточно для промышленной добычи, тем более что после использования газ практически полностью возвращается в атмосферу, не вступая в какие-либо реакции по причине своей инертности.

Чтобы понять, как добывают аргон, необходимо учесть, что температуры кипения кислорода и азота различны и равны, соответственно, 90 °К (-183 °С) и 77 °К (-196 °С). В то же время аргон закипает при температуре, большей, чем азот, и меньшей, чем кислород.

Данную физическую особенность и используют инженеры, чтобы получить газ в чистом виде. Происходит это при низкотемпературной ректификации воздуха, то есть разделения его на азот и кислород путем многократного ожижения и испарения. Аргон в этом процессе появляется в качестве побочного продукта.

В окружающей наш мир материи аргона немного – всего 0,02% от общей массы.

Ученые обнаружили его входящим вместе с еще одним инертным газом – неоном в состав некоторых звезд, а также планетарных туманностях – оболочках ионизированных газов, образующихся вокруг звезд на исходе их существования.

Ar 1

Распространение в природе

На нашей планете, кроме атмосферы, аргон содержится в земной коре и морской воде, но в значительно меньшей степени – его количество составляет лишь тысячные доли процента от общей массы.

1 см3 аргона в газообразном состоянии при стандартных условиях весит 1,78×10-3г, что означает, что его плотность равна 1,78×10-3г/см3.

То есть аргон тяжелее, чем воздух, который имеет плотность 1,2×10-3г/см3. Поэтому при попадании в атмосферу из какой-либо емкости, например, газового баллона, аргон будет занимать объем в нижней части помещения, вытесняя оттуда воздух и постепенно с ним смешиваясь.

Температура конденсации аргона, то есть его кипения, в условиях атмосферного давления равна 87,3 °К (-185,9 °С). При температуре 83,8 °К (– 189,3 °С) жидкость отвердевает. Плотность аргона в жидком состоянии при давлении в одну атмосферу равна 1,39х103 кг/м3.

Ar 2

Аргон является инертным газом, не имеющим ни запаха, ни вкуса, ни цвета и в периодической таблице занимает место среди других неметаллов в столбце с прочими благородными газами. Его химическая формула – Ar (первые две буквы латинского слова argon).

Атомная и молекулярная масса

Атомной массой называется средняя масса существующих в земных условиях изотопов с учетом их распространенности. Для аргона она составляет 39,948. Его молекулярная масса равна атомной.

Изотопы

Изотопы – это разновидности атомов с одинаковым зарядом ядра и различной массой. На Земле существуют следующие изотопы аргона:

  • 40Ar с ядром, состоящим из 18 протонов и 22 нейтронов в земной атмосфере представлен наиболее всего – 99,6% от общего количества газа;
  • 36Ar (18 нейтронов) – 0,337%;
  • 38Ar (20 нейтронов) – 0,063%.

Источником изотопа 40Ar является изотоп калия 40К, являющийся радиоактивным и попадающий на поверхность земли вместе с продуктами извержения вулканов.

Также существуют изотопы, создаваемые искусственно. Их масса может иметь значение от 30 до 55 атомных единиц, но они нестабильны. Наиболее устойчивым является 39Ar с периодом полураспада, составляющим 269 лет, самые неустойчивые существуют в течение десятков наносекунд.

Для того чтобы оторвать от атома электрон, необходимо потратить энергию, которая называется энергией ионизации.

Для создания катиона (положительно заряженного иона) Ar+ потребуется 1520 кДж/моль. Это можно осуществить с помощью пропускания через газ электрических разрядов.

Молекула и атом

Атом имеет положительно заряженное ядро, в состав которого входит 18 протонов. Вокруг ядра по трем орбитам вращаются 18 электронов – 2 на первой, на второй и третьей – по 8.

Ar 3

Таким образом, внешняя орбита заполнена электронами полностью. Именно этим объясняется отсутствие каких-либо химических соединений с участием аргона – при нормальных условиях он существует только в свободном виде.

Такое свойство присуще всем остальным инертным газам – у каждого из них внешняя электронная орбита заполнена полностью.

Молекула по этой же причине состоит из одного атома и так же, как и атом, обозначается – Ar.

Молярная масса

Один моль – это 6,02х1023 молекул данного вещества. Величина 6,02х1023 называется числом Авогадро и обозначается как NA. Молярная масса, определяющая свойства аргона, как и любого газа – это масса одного моля. Для аргона она равна 39,948 г/моль.

Чаще всего аргон получают с помощью криогенной ректификации воздуха. Для этого воздух сначала тщательно очищают от частиц пыли, прогоняя через несколько фильтров, осушают, затем сжимают при помощи компрессоров до перехода в состояние жидкости.

Последнюю отправляют в ректификационную колонну – устройство, в котором при различных температурах происходит последовательное испарение азота, аргона и кислорода.

Аргонная фракция, содержащая 12%, аргона, подвергается еще одной ректификации, в результате чего доля газа в смеси доходит до 85%, остальное приходится на кислород с небольшим количеством азота.

Ava ar 8

Такой газ называют сырым аргоном и уже из него получают чистый аргон, который в зависимости от количества оставшихся примесей в соответствии с ГОСТ 10157-62 может быть трех марок:

  • марка А – объемный процент содержания аргона, не менее 99,99%. Применяется при сварке титановых сплавов, нержавеющей стали, конструкционной стали – при повышенных требованиях к прочности;
  • марка Б – не менее 99,96%. Используется во время сварки алюминия, менее активных, чем титан, цветных металлов;
  • марка В – не менее 99,90%. Востребована при работе с жаростойкими сплавами, алюминиевыми материалами, конструкционными сталями. Часто используется совместно с углекислым газом и кислородом.

Еще один способ получения аргона – при синтезировании аммиака. Побочным продуктом реакции является продувочный газ, содержащий до 20% аргона, причем стоимость его получения заметно ниже.

Под биологической ролью элемента подразумевается его участие в жизнедеятельности каких-либо организмов. Аргон в таких процессах участия не принимает, следовательно, этой роли не выполняет.

Область применения

Аргон применяется в самых различных областях деятельности человека. В первую очередь востребовано отсутствие его химическая активности.

Наиболее широко газ используется при сварке – для создания вокруг дуги газового слоя, оттесняющего атмосферные кислород и азот. Поскольку этот газ тяжелее воздуха, то применять его лучше при использовании нижнего положения.

Аргон растекается над поверхностью материала, вытесняя вверх кислород с азотом, и прикрывает не только область расплава, но также и нагретую часть поверхности.

Это важно во время работы с металлами, отличающимися активностью при высокой температуре, например, такими как титан. Аргон также используют во время сварки высоколегированных и нержавеющих сталей. Неметаллы обычно соединяют с использованием газовой сварки.

Использование инертного газа дает возможность увеличить температуру дуги, а это сказывается на проплавлении шва, который приобретает форму кинжала и позволяет в один проход соединять куски металла большой толщины.

В связи с тем, что в отсутствие кислорода шов получается значительно более ровным и прочным, аргон востребован при изготовлении ответственных конструкций в строительстве: высоких зданий, железнодорожных и автомобильных мостов.

Швы высокого качества востребованы в химическом и пищевом машиностроении, атомной промышленности, аэрокосмической сфере. Нефте- и газопроводы также сооружаются с применением аргонной сварки.

В электронике инертность аргона также находит применение. Его закачивают в колбы осветительных и радиоламп – для защиты, соответственно, нити накаливания или электродов, используют при выращивании полупроводниковых кристаллов.

В сфере производства продуктов питания газ применяется в качестве вытеснителя (в первую очередь, присутствующего в воздухе кислорода). Его закачивают в герметичные упаковки с продуктами с целью увеличения срока хранения.

Низкое значение теплопроводности аргона дает возможность применять его в качестве теплоизолятора – в оконных рамах, гидрокостюмах.

Способность излучать фиолетовый свет при нагревании находит применение в рекламных афишах и надписях.

Ava ar 5

Другие области применения:

  • пожаротушение;
  • лазеры;
  • хирургические операции

и многое другое.

Окраска баллона

При использовании баллонов для хранения газов за каждым из них закреплен цвет, в который окрашена сама емкость, а также цвет полосы, нанесенной по окружности на ее образующую вблизи горловины. Баллон, предназначенный для аргона, окрашен в серый цвет, при этом цвет полоса и надпись – зеленые.

Ar 6

Для транспортировки жидкого аргона применяются специальные емкости типа сосуда Дьюара и цистерны.

Зависимость давления аргона в баллоне от температуры

При заправке давление аргона в баллоне составляет порядка 150 атм. Однако в соответствии с законами физики все газы при нагревании расширяются. Если отсутствует возможность для расширения, что и наблюдается в замкнутом объеме, то при повышении температуры давление внутри него будет нарастать. В случае идеального газа соблюдается следующая зависимость:

где P – давление внутри замкнутого объема;

Т – абсолютная температура газа по шкале Кельвина, которая выше температуры по шкале Цельсия на 273°, то есть

где t – температура по шкале Цельсия.

Ar 7

Зависимость давления реального газа в баллоне от температуры приведена в таблице:

Температура, °С Давление, атм
-30 111,8
-20 120,5
-10 127,5
0 135,6
+10 144,3
+20 151,3
+30 158,2

Таким образом, при увеличении температуры на 60 ° (от -30 °С до +30 °С) давление аргона в баллоне растет более чем на 40%.

ДЛЯ СПРАВКИ: аргон в 40-литровом баллоне при давлении 150 атм и комнатной температуре весит около 7,5 кг. При этом вес баллона, изготовленного из углеродистой стали, составляет 58,5 кг.

Техника безопасности при работе с аргоном

Газ не является ни токсичным, ни взрывоопасным, тем не менее, попадание излишнего количества аргона в воздух ведет к уменьшению в нем процентной доли кислорода, а это уже опасно для здоровья и жизни человека и может привести к кислородной недостаточности.

В обычном атмосферном воздухе содержится 20,9% кислорода, уменьшение его доли до 18% ведет к появлению головной боли и сонливости, при значении менее 15–16% человек теряет сознание.

В случае вдыхания аргона, так же как и других инертных газов, возникает мгновенное удушье и потеря сознания, чреватые летальным исходом.

Поэтому во время работы в замкнутом пространстве должны отсутствовать какие-либо утечки газа через уплотнения в соединениях трубопроводов или трещины в шлангах.

С особым вниманием за этим нужно следить при проведении сварки в слабопроветриваемых помещениях, а также приямках, где газ может скапливаться, поскольку тяжелее воздуха. Перед началом работы следует проверить содержание кислорода в окружающем пространстве – оно должно быть не менее 19%.

В противном случае необходимо надеть изолирующий противогаз, который предотвращает какой-либо контакт органов дыхания с окружающим воздухом. Работы в таких условиях проводят два человека.

Ar 8

Первая помощь в случае отравления газообразным аргоном заключается в эвакуации пострадавшего на свежий воздух, проведении искусственного дыхания, использовании кислородной подушки.

Жидкий аргон при попадании на тело человека может вызвать ожоги, поэтому, работая с ним, необходимо надевать защитные очки и спецодежду, способную предохранить поверхность тела от контакта с ним.

Неметаллы

Немета́ллы — химические элементы с типично неметаллическими свойствами, которые занимают правый верхний угол Периодической системы. Расположение их в главных подгруппах соответствующих периодов следующее:

Группа III IV V VI VII VIII
2-й период B C N O F Ne
3-й период Si P S Cl Ar
4-й период As Se Br Kr
5-й период Te I Xe
6-й период At Rn

Кроме того, к неметаллам относят также водород [источник?] и гелий.

Характерной особенностью неметаллов является большее (по сравнению с металлами) число электронов на внешнем энергетическом уровне их атомов. Это определяет их большую способность к присоединению дополнительных электронов, и проявлению более высокой окислительной активности, чем у металлов.

Неметаллы имеют высокие значения сродства к электрону, большую электроотрицательность и высокий окислительно-восстановительный потенциал.

Благодаря высоким значениям энергии ионизации неметаллов, их атомы могут образовывать ковалентные химические связи с атомами других неметаллов и амфотерных элементов. В отличие от преимущественно ионной природы строения соединений типичных металлов, простые неметаллические вещества, а также соединения неметаллов имеют ковалентную природу строения.

В свободном виде могут быть газообразные неметаллические простые вещества — фтор, хлор, кислород, азот, водород, инертные газы, твёрдые — иод, астат, сера, селен, теллур, фосфор, мышьяк, углерод, кремний, бор, при комнатной температуре в жидком состоянии существует бром.

У некоторых неметаллов наблюдается проявление аллотропии. Так, для газообразного кислорода характерны две аллотропных модификации — кислород (O2) и озон (O3), у твёрдого углерода множество форм — алмаз, астралены, графен, графан, графит, карбин, лонсдейлит, фуллерены, стеклоуглерод, диуглерод, углеродные наноструктуры (нанопена, наноконусы, нанотрубки, нановолокна) и аморфный углерод уже открыты, а ещё возможны и другие модификации, например, чаоит и металлический углерод.

В молекулярной форме в виде простых веществ в природе встречаются азот, кислород и сера. Чаще неметаллы находятся в химически связанном виде: это вода, минералы, горные породы, различные силикаты, фосфаты, бораты. По распространённости в земной коре неметаллы существенно различаются. Наиболее распространёнными являются кислород, кремний, водород; наиболее редкими — мышьяк, селен, иод.

См. также

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое "Неметаллы" в других словарях:

НЕМЕТАЛЛЫ — НЕМЕТАЛЛЫ, химические элементы, которые не обладают свойствами, характерными для металлов. Неметаллы как правило плохие проводники тепла и электричества (они обычно являются изоляторами тепла и электричества). К неметаллам относятся углерод,… … Научно-технический энциклопедический словарь

НЕМЕТАЛЛЫ — химические элементы, которые образуют простые тела, не обладающие свойствами, характерными для металлов. К неметаллам обычно относят 22 элемента: газы водород, азот, кислород, фтор, хлор и благородные газы; жидкость бром; твердые тела бор,… … Большой Энциклопедический словарь

НЕМЕТАЛЛЫ — хим. элементы, которые образуют в свободном состоянии простые вещества, не обладающие физ. и хим. свойствами (см.); устаревшее название металлоиды. К Н. принято относить 22 элемента Периодической системы элементов Д. И. Менделеева (см.): водород … Большая политехническая энциклопедия

неметаллы — химические элементы, которые образуют простые тела, не обладающие свойствами, характерными для металлов. К неметаллам обычно относят 22 элемента: газы водород, азот, кислород, фтор, хлор и благородные газы; жидкость бром; твёрдые тела бор,… … Энциклопедический словарь

Неметаллы — [nonmetals, metalloids] химические элементы, которые образуют простые тела, не обладающие характерными для металлов свойствами. К неметаллам относятся 22 элемента. Из них при комнатной температуре находятся в газообразном состоянии Н, N, О, F, Cl … Энциклопедический словарь по металлургии

Неметаллы — химические элементы, которые образуют простые тела, не обладающие свойствами, характерными для металлов (См. Металлы). Название Металлоиды, которое иногда применяют для Н., выходит из употребления. К Н. относятся 22 элемента. Из них при… … Большая советская энциклопедия

НЕМЕТАЛЛЫ — простые в ва, не обладающие св вами металлов. Хотя резкой границы между металлами и Н. провести нельзя, к Н. принято относить благородные газы, водород, галогены, кислород, халькогены, азот, фосфор, мышьяк, углерод, кремний и бор … Большой энциклопедический политехнический словарь

НЕМЕТАЛЛЫ — хим. элементы, к рые образуют простые тела, не обладающие свойствами, характерными для металлов. К Н. обычно относят 22 элемента: газы водород, азот, кислород, фтор, хлор и благородные газы; жидкость бром; тв. тела бор, углерод, кремний, фосфор,… … Естествознание. Энциклопедический словарь

НЕМЕТАЛЛЫ — простые вещества, не обладающие свойствами металлов: они не имеют металлического блеска, нековки, плохо проводят теплоту и электричество. Резкой границы между неметаллами и металлами нет. К неметаллам относятся 22 элемента. Из них при нормальной… … Металлургический словарь

Неорганическая химия — Неорганическая химия раздел химии, связанный с изучением строения, реакционной способности и свойств всех химических элементов и их неорганических соединений. Это область охватывает все химические соединения, за исключением органических… … Википедия

Список химических элементов по атомным номерам

Это список химических элементов, упорядоченный в порядке возрастания атомных номеров. В таблице приводятся название элемента, символ, группа и период в Периодической системе, атомная масса (наиболее стабильного изотопа), плотность, температура плавления, температура кипения, год открытия, фамилия первооткрывателя. Цвета строк отвечают семействам элементов:

Аббревиатуры

  • GSI, Gesellschaft für Schwerionenforschung (Общество исследования тяжёлых ионов), Вихаузен, Дармштадт, Германия
  • ОИЯИ, Объединённый институт ядерных исследований), Дубна, Московская область, Россия( == JINR, (Joint Institute for Nuclear Research,)
  • LLNL, Lawrence Livermore National Laboratory (Ливерморская национальная лаборатория им. Э.Лоуренса), Ливермор, Калифорния, США
  • LBNL, Lawrence Berkeley National Laboratory, Беркли, Калифорния, США

Примечания

  1. ↑ Изотопный состав этого элемента различается в различных геологических образцах, и отклонения могут превышать указанную в таблице погрешность.
  2. ↑ Изотопный состав элемента может различаться в различных продажных материалах, что может приводить к существенным отклонениям от приведённых значений.
  3. ↑ Изотопный состав различается в земных материалах настолько, что более точный атомный вес не может быть приведён.
  4. ↑ Атомный вес продажного лития может варьироваться между 6,939 и 6,996, для получения более точного значения необходим анализ конкретного материала.
  5. ↑ Данный элемент не имеет стабильных изотопов, и значение в скобках, например [209], обозначает массовое число наиболее долгоживущего изотопа элемента или характерный изотопный состав.

Ссылки

  • Atomic Weights of the Elements 2001, Pure Appl. Chem. 75(8), 1107—1122, 2003. Retrieved June 30, 2005. Atomic weights of elements with atomic numbers from 1-109 taken from this source. (2005). . Retrieved June 30, 2005. Atomic weights of elements with atomic numbers 110—116 taken from this source.

Смотреть что такое "Список химических элементов по атомным номерам" в других словарях:

Список химических элементов по символам — См. также: Список химических элементов по атомным номерам и Алфавитный список химических элементов Содержание 1 Символы, используемые в данный момент … Википедия

Алфавитный список химических элементов — См. также: Список химических элементов по атомным номерам и Список химических элементов по символам Алфавитный список химических элементов. Азот N Актиний Ac Алюминий Al Америций Am Аргон Ar Астат At … Википедия

Периодическая законность химических элементов — Периодическая система химических элементов (таблица Менделеева) классификация химических элементов, устанавливающая зависимость различных свойств элементов от заряда атомного ядра. Система является графическим выражением периодического закона,… … Википедия

Периодическая таблица химических элементов — Периодическая система химических элементов (таблица Менделеева) классификация химических элементов, устанавливающая зависимость различных свойств элементов от заряда атомного ядра. Система является графическим выражением периодического закона,… … Википедия

Периодическая система элементов — Периодическая система химических элементов (таблица Менделеева) классификация химических элементов, устанавливающая зависимость различных свойств элементов от заряда атомного ядра. Система является графическим выражением периодического закона,… … Википедия

ПСХЭ — Периодическая система химических элементов (таблица Менделеева) классификация химических элементов, устанавливающая зависимость различных свойств элементов от заряда атомного ядра. Система является графическим выражением периодического закона,… … Википедия

Переодичная система — Периодическая система химических элементов (таблица Менделеева) классификация химических элементов, устанавливающая зависимость различных свойств элементов от заряда атомного ядра. Система является графическим выражением периодического закона,… … Википедия

Периодическая система — химических элементов (таблица Менделеева) классификация химических элементов, устанавливающая зависимость различных свойств элементов от заряда атомного ядра. Система является графическим выражением периодического закона, установленного русским… … Википедия

Периодическая система Менделеева — Периодическая система химических элементов (таблица Менделеева) классификация химических элементов, устанавливающая зависимость различных свойств элементов от заряда атомного ядра. Система является графическим выражением периодического закона,… … Википедия

Периодическая таблица — Периодическая система химических элементов (таблица Менделеева) классификация химических элементов, устанавливающая зависимость различных свойств элементов от заряда атомного ядра. Система является графическим выражением периодического закона,… … Википедия

Аргон

Аргон

Аргон

История открытия аргона начинается в 1785 году, когда английский физик и химик Генри Кавендиш, изучая состав воздуха, решил установить, весь ли азот воздуха окисляется. В течение многих недель он подвергал воздействию электрического разряда смесь воздуха с кислородом в U-образных трубках, в результате чего в них образовывались всё новые порции бурых оксидов азота, которые исследователь периодически растворял в щёлочи. Через некоторое время образование окислов прекратилось, но после связывания оставшегося кислорода остался пузырёк газа, объём которого не уменьшался при длительном воздействии электрических разрядов в присутствии кислорода. Кавендиш оценил объём оставшегося газового пузыря в 1/120 от первоначального объёма воздуха. Разгадать загадку пузыря Кавендиш не смог, поэтому прекратил своё исследование и даже не опубликовал его результатов. Только спустя много лет английский физик Джеймс Максвелл собрал и опубликовал неизданные рукописи и лабораторные записки Кавендиша.

Дальнейшая история открытия аргона связана с именем Рэлея, который несколько лет посвятил исследованиям плотности газов, особенно азота. Оказалось, что литр азота, полученного из воздуха, весил больше литра «химического» азота (полученного путём разложения какого-либо азотистого соединения, например, закиси азота, окиси азота, аммиака, мочевины или селитры) на 1,6 мг (вес первого был равен 1,2521, а второго — 1,2505 г). Эта разница была не так уж мала, чтобы можно было её отнести на счет ошибки опыта. К тому же она постоянно повторялась независимо от источника получения химического азота.

Не придя к разгадке, осенью 1892 года Рэлей в журнале «Nature» опубликовал письмо к учёным, с просьбой дать объяснение тому факту, что в зависимости от способа выделения азота он получал разные величины плотности. Письмо прочли многие учёные, однако никто не был в состоянии ответить на поставленный в нём вопрос.

У известного уже в то время английского химика Уильяма Рамзая также не было готового ответа, но он предложил Рэлею своё сотрудничество. Интуиция побудила Рамзая предположить, что азот воздуха содержит примеси неизвестного и более тяжёлого газа, а Дьюар обратил внимание Рэлея на описание старинных опытов Кавендиша (которые уже были к этому времени опубликованы).

Пытаясь выделить из воздуха скрытую составную часть, каждый из учёных пошёл своим путём. Рэлей повторил опыт Кавендиша в увеличенном масштабе и на более высоком техническом уровне. Трансформатор под напряжением 6000 вольт посылал в 50-литровый колокол, заполненный азотом, сноп электрических искр. Специальная турбина создавала в колоколе фонтан брызг раствора щёлочи, поглощающих окислы азота и примесь углекислоты. Оставшийся газ Рэлей высушил, и пропустил через фарфоровую трубку с нагретыми медными опилками, задерживающими остатки кислорода. Опыт длился несколько дней.

Рамзай воспользовался открытой им способностью нагретого металлического магния поглощать азот, образуя твёрдый нитрид магния. Многократно пропускал он несколько литров азота через собранный им прибор. Через 10 дней объём газа перестал уменьшаться, следовательно, весь азот оказался связанным. Одновременно путём соединения с медью был удалён кислород, присутствовавший в качестве примеси к азоту. Этим способом Рамзаю в первом же опыте удалось выделить около 100 см³ нового газа.

Итак, был открыт новый элемент. Стало известно, что он тяжелее азота почти в полтора раза и составляет 1/80 часть объёма воздуха. Рамзай при помощи акустических измерений нашёл, что молекула нового газа состоит из одного атома — до этого подобные газы в устойчивом состоянии не встречались. Отсюда следовал очень важный вывод — раз молекула одноатомна, то, очевидно, новый газ представляет собой не сложное химическое соединение, а простое вещество.

Много времени затратили Рамзай и Рэлей на изучение его реакционной способности по отношению ко многим химически активным веществам. Но, как и следовало ожидать, пришли к выводу: их газ совершенно недеятелен. Это было ошеломляюще — до той поры не было известно ни одного настолько инертного вещества.

Большую роль в изучении нового газа сыграл спектральный анализ. Спектр выделенного из воздуха газа с его характерными оранжевыми, синими и зелёными линиями резко отличался от спектров уже известных газов. Уильям Крукс, один из виднейших спектроскопистов того времени, насчитал в его спектре почти 200 линий. Уровень развития спектрального анализа на то время не дал возможности определить, одному или нескольким элементам принадлежал наблюдаемый спектр. Несколько лет спустя выяснилось, что Рамзай и Рэлей держали в своих руках не одного незнакомца, а нескольких — целую плеяду инертных газов.

Через 10 лет, в 1904 году, Рэлей за исследования плотностей наиболее распространённых газов и открытие аргона получает Нобелевскую премию по физике, а Рамзай за открытие в атмосфере различных инертных газов — Нобелевскую премию по химии.

По предложению доктора Медана (председателя заседания, на котором был сделан доклад об открытии) Рэлей и Рамзай дали новому газу имя «аргон» (от др.-греч. ἀργός — ленивый, медленный, неактивный). Это название подчёркивало важнейшее свойство элемента — его химическую неактивность.

Содержание аргона в мировой материи мало и оценивается приблизительно в 0,02 % по массе.

Аргон (вместе с неоном) наблюдается на некоторых звёздах и в планетарных туманностях. В целом его в космосе больше, чем кальция, фосфора, хлора, в то время как на Земле существуют обратные отношения.

Аргон

Аргон — третий по содержанию после азота и кислорода компонент воздуха, его среднестатистическое содержание в атмосфере Земли составляет 0,934 % по объёму и 1,288 % по массе, его запасы в атмосфере оцениваются в 4⋅10 14 т. Аргон — самый распространённый инертный газ в земной атмосфере, в 1 м³ воздуха содержится 9,34 л аргона (для сравнения: в том же объёме воздуха содержится 18,2 см³ неона, 5,2 см³ гелия, 1,1 см³ криптона, 0,09 см³ ксенона).

Содержание аргона в литосфере — 4⋅10 −6 % по массе. В каждом литре морской воды растворено 0,3 см³ аргона, в пресной воде его содержится 5,5⋅10 −5 — 9,7⋅10 −5 %. Его содержание в Мировом океане оценивается в 7,5⋅10 11 т, а в изверженных породах земной оболочки — 16,5⋅10 11 т.

Качественно аргон обнаруживают с помощью эмиссионного спектрального анализа, основные характеристические линии — 434,80 и 811,53 нм. При количественном определении сопутствующие газы (O2, N2, H2, CO2) связываются специфичными реагентами (Ca, Cu, MnO, CuO, NaOH) или отделяются с помощью поглотителей (например, водных растворов органических и неорганических сульфатов). Отделение от других инертных газов основано на различной адсорбируемости их активным углём. Используются методы анализа, основанные на измерении различных физических свойств (плотности, теплопроводности и др.), а также масс-спектрометрические и хроматографические методы анализа.

Пока известны только 2 химических соединения аргона — гидрофторид аргона и CU(Ar)O, которые существуют при очень низких температурах. Кроме того, аргон образует эксимерные молекулы, то есть молекулы, у которых устойчивы возбуждённые электронные состояния и неустойчиво основное состояние. Есть основания считать, что исключительно нестойкое соединение Hg—Ar, образующееся в электрическом разряде, — это подлинно химическое (валентное) соединение. Не исключено, что будут получены другие валентные соединения аргона с фтором и кислородом, которые тоже должны быть крайне неустойчивыми. Например, при электрическом возбуждении смеси аргона и хлора возможна газофазная реакция с образованием ArCl. Также со многими веществами, между молекулами которых действуют водородные связи (водой, фенолом, гидрохиноном и другими), образует соединения включения (клатраты), где атом аргона, как своего рода «гость», находится в полости, образованной в кристаллической решётке молекулами вещества-хозяина, например, Ar·6H2O.

Соединение CU(Ar)O получено из соединения урана с углеродом и кислородом CUO. Вероятно существование соединений со связями Ar-Si и Ar-C: FArSiF3 и FArCCH.

Аргон

Аргон представлен в земной атмосфере тремя стабильными изотопами: 36 Ar (0,337 %), 38 Ar (0,063 %), 40 Ar (99,600 %). Почти вся масса тяжёлого изотопа 40 Ar возникла на Земле в результате распада радиоактивного изотопа калия 40 K (содержание этого изотопа в изверженных породах в среднем составляет 3,1 г/т). Распад радиоактивного калия идёт по двум направлениям одновременно:

19 40 K → 20 40 Ca + e − + ν¯e

Первый процесс (обычный β-распад) протекает в 88 % случаев и ведёт к возникновению стабильного изотопа кальция. Во втором процессе, где участвуют 12 % атомов, происходит электронный захват, в результате чего образуется тяжёлый изотоп аргона. Одна тонна калия, содержащегося в горных породах или водах, в течение года генерирует приблизительно 3100 атомов аргона. Таким образом, в минералах, содержащих калий, постепенно накапливается 40 Ar, что позволяет измерять возраст горных пород; калий-аргоновый метод является одним из основных методов ядерной геохронологии.

Подавляющая часть космического аргона состоит из изотопов 36 Ar и 38 Ar. Это вызвано тем обстоятельством, что калий распространён в космосе примерно в 50 000 раз меньше, чем аргон (на Земле калий преобладает над аргоном в 660 раз). Примечателен произведенный геохимиками подсчёт: вычтя из аргона земной атмосферы радиогенный 40 Ar, они получили изотопный состав, очень близкий к составу космического аргона.

В промышленности аргон получают как побочный продукт при крупномасштабном разделении воздуха на кислород и азот. При температуре −185,9 °C (87,3 кельвина) аргон конденсируется, при −189,35 °C (83,8 Кельвина) — кристаллизуется.

Ввиду близости температур кипения аргона и кислорода (90 K) разделение этих фракций ректификационным способом затруднительно. Аргон считается посторонней примесью, допускаемой только в техническом кислороде чистотой 96 %.

Аргон

Аргон не играет никакой заметной биологической роли.

Инертные газы обладают физиологическим действием, которое проявляется в их наркотическом воздействии на организм. Наркотический эффект от вдыхания аргона проявляется только при барометрическом давлении свыше 0,2 МПа. В 2014 году WADA признала аргон допингом.

Содержание аргона в высоких концентрациях во вдыхаемом воздухе может вызвать головокружение, тошноту, рвоту, потерю сознания и смерть от асфиксии (в результате кислородного голодания).

Читайте также: