Барий это щелочной металл

Обновлено: 16.05.2024

К щелочноземельным металлам относят химические элементы: двувалентные металлы, составляющие IIА группу:

Бериллий Be

магний Mg

кальций Ca,

стронций Sr,

барий Ba и

радий Ra.

Хотя бериллий Be по свойствам больше похож на алюминий, а магний Mg проявляет некоторые свойства щелочноземельных металлов, но в целом отличается от них.

Все щелочноземельные металлы — вещества серого цвета и гораздо более твердые, чем щелочные металлы.

Бериллий Be устойчив на воздухе. Магний и кальций (Mg и Ca) устойчивы в сухом воздухе. Стронций Sr и барий Ba хранят под слоем керосина.

Общая характеристка щелочноземельных металлов

От Be к Ra (сверху вниз в периодической таблице) происходит увеличение:

  • атомного радиуса,
  • металлических, основных, восстановительных свойств,
  • реакционной способности.

Уменьшается

  • электроотрицательность,
  • энергия ионизация,
  • сродство к электрону.

Периодическая таблица-2 группа

Электронные конфигурации у данных элементов схожи, все они содержат 2 электрона на внешнем уровне ns 2 :

Be — 2s 2

Mg —3s 2

Ca — 4s 2

Sr — 5s 2

Ba — 6s 2

Ra — 7s 2

Нахождение в природе щелочноземельных металлов

Как правило, щелочноземельные металлы в природе присутствуют в виде минеральных солей: хлоридов, бромидов, йодидов, карбонатов, нитратов и др.

Основные минералы, в которых присутствуют щелочноземельные металлы:

щелочноземельные металлы_нахождение в природе

Способы получения щелочноземельных металлов

Магний

  • Магний получают электролизом солей, чаще всего хлоридов: расплавленного карналлита (KCl·MgCl26H2O) или хлорида магния с добавками хлорида натрия при 720–750°С:
  • восстановлением прокаленного доломита в электропечах при 1200–1300°С:

2(CaO · MgO) + Si → 2Mg + Ca2SiO4

Кальций

Кальций получают электролизом расплавленного хлорида кальция с добавками фторида кальция:

Барий

Барий получают алюмотермическим способом — восстановление оксида бария алюминием в вакууме при 1200 °C:

Химические свойства щелочноземельных металлов

Качественные реакции

  • Окрашивание пламени солями щелочных металлов

Цвет пламени:

щелочноземельные металлы_цвет пламени

Sr — карминово-красный (алый)

щелочноземельные металлы_качественные реакции

Взаимодействие с простыми веществами — неметаллами

С кислородом

С кислородом взаимодействуют при нагревании с образованием оксидов

С галогенами

Щелочноземельные металлы реагируют с галогенами при нагревании с образованием галогенидов .

С водородом

Щелочноземельные металлы реагируют с водородом при нагревании с образованием гидридов:

Бериллий с водородом не взаимодействует.

Магний реагирует только при повышенном давлении:

С серой

Щелочноземельные металлы при нагревании взаимодействуют с серой с образованием сульфидов сульфидов:

Ca + 2C → CaC2 (карбиды)

С азотом

При комнатной температуре с азотом взаимодействует только магний с образованием нитрида:

Остальные щелочноземельные металлы реагируют с азотом при нагревании.

С углеродом

Щелочноземельные металлы реагируют с углеродом с образованием карбидов, преимущественно ацетиленидов:

Бериллий при нагревании с углеродом с образует карбид — метанид:

С фосфором

Щелочноземельные металлы при нагревании взаимодействуют с фосфором с образованием фосфидов:

Взаимодействие со сложными веществами

С водой

Кальций, стронций и барий взаимодействуют с водой при комнатной температуре с образованием щелочи и водорода:

Магний реагирует с водой при кипячении, а бериллий с водой не реагирует.

С кислотами

с концентрированной серной:

с разбавленной и концентрированной азотной:

С водными растворами щелочей

В водных растворах щелочей растворяется только бериллий:

С солями

В расплаве щелочноземельные металлы могут взаимодействовать с некоторыми солями:

Запомните! В растворе щелочноземельные металлы взаимодействуют с водой, а не с солями других металлов.

С оксидами

Щелочноземельные металлы могут восстанавливать из оксидов такие неметаллы как кремний, бор, углерод:

2Ca + SiO2 → 2CaO + Si

Магний сгорает в атмосфере углекислого газа с образованием оксида магния и сажи (С):

Щелочноземельные металлы

К щелочноземельным металлам относятся металлы IIa группы: бериллий, магний, кальций, стронций, барий и радий. Отличаются легкостью, мягкостью и сильной реакционной способностью.

Общая характеристика

От Be к Ra (сверху вниз в периодической таблице) происходит увеличение: атомного радиуса, металлических, основных, восстановительных свойств, реакционная способность. Уменьшается электроотрицательность, энергия ионизация, сродство к электрону.

Щелочноземельные металлы

  • Be - 2s 2
  • Mg - 3s 2
  • Ca - 4s 2
  • Sr - 5s 2
  • Ba - 6s 2
  • Ra - 7s 2
Природные соединения
  • Be - BeO*Al2O3*6SiO2 - берилл
  • Mg - MgCO3 - магнезит, MgO*Al2O3 - шпинель, 2MgO*SiO2 - оливин
  • Ca - CaCO3 - мел, мрамор, известняк, кальцит, CaSO4*2H2O - гипс, CaF2 - флюорит

Кальцит, берилл, магнезит

Получение

Это активные металлы, которые нельзя получить электролизом раствора. С целью их получения применяют электролиз расплавов, алюминотермию и вытеснением их из солей другими более активными металлами.

MgCl2 → (t) Mg + Cl2 (электролиз расплава)

CaO + Al → Al2O3 + Ca (алюминотермия - способ получения металлов путем восстановления их оксидов алюминием)

Алюминотермия

Химические свойства

Все щелочноземельные металлы (кроме бериллия и магния) реагируют с холодной водой с образованием соответствующих гидроксидов. Магний реагирует с водой только при нагревании.

Гашение извести

Щелочноземельные металлы - активные металлы, стоящие в ряду активности левее водорода, и, следовательно, способные вытеснить водород из кислот:

Хорошо реагируют с неметаллами: кислородом, образуя оксиды состава RO, с галогенами (F, Cl, Br, I). Степень окисления у щелочноземельных металлов постоянная +2.

Mg + O2 → MgO (оксид магния)

При нагревании реагируют с серой, азотом, водородом и углеродом.

Mg + S → (t) MgS (сульфид магния)

Ca + H2 → (t) CaH2 (гидрид кальция)

Ba + C → (t) BaC2 (карбид бария)

Барий

Ba + TiO2 → BaO + Ti (барий, как более активный металл, вытесняет титан)

Оксиды щелочноземельных металлов

Имеют общую формулу RO, например: MgO, CaO, BaO.

Оксиды щелочноземельных металлов можно получить путем разложения карбонатов и нитратов:

Рекомендую взять на вооружение общую схему разложения нитратов:

Разложение нитратов

Проявляют преимущественно основные свойства, все кроме BeO - амфотерного оксида.

    Реакции с кислотами и кислотными оксидами

В нее вступают все, кроме оксида бериллия.

Амфотерные свойства оксида бериллия требуют особого внимания. Этот оксид проявляет двойственные свойства: реагирует с кислотами с образованием солей, и с основаниями с образованием комплексных солей.

BeO + NaOH + H2O → Na2[Be(OH)4] (тетрагидроксобериллат натрия)

Если реакция проходит при высоких температурах (в расплаве) комплексная соль не образуется, так как происходит испарение воды:

BeO + NaOH → Na2BeO2 + H2O (бериллат натрия)

Бериллий

Гидроксиды щелочноземельных металлов

Проявляют основные свойства, за исключением гидроксида бериллия - амфотерного гидроксида.

Получают гидроксиды в реакции соответствующего оксида металла и воды (все кроме Be(OH)2)

Основные свойства большинства гидроксидов располагают к реакциям с кислотами и кислотными оксидами.

Известковое молоко

Реакции с солями (и не только) идут в том случае, если соль растворимы и по итогам реакции выделяется газ, выпадает осадок или образуется слабый электролит (вода).

Гидроксид бериллия относится к амфотерным: проявляет двойственные свойства, реагируя и с кислотами, и с основаниями.

Жесткость воды

Жесткостью воды называют совокупность свойств воды, зависящую от присутствия в ней преимущественно солей кальция и магния: гидрокарбонатов, сульфатов и хлоридов.

Различают временную (карбонатную) и постоянную (некарбонатную) жесткость.

Жесткость воды

Вероятно, вы часто устраняете жесткость воды у себя дома, осмелюсь предположить - каждый день. Временная жесткость воды устраняется обычным кипячением воды в чайнике, и известь на его стенках - CaCO3 - бесспорное доказательство устранения жесткости:

Также временную жесткость можно устранить, добавив Na2CO3 в воду:

С постоянной жесткостью бороться кипячением бесполезно: сульфаты и хлориды не выпадут в осадок при кипячении. Постоянную жесткость воды устраняют добавлением в воду Na2CO3:

Жесткость воды можно определить с помощью различных тестов. Чрезмерно высокая жесткость воды приводит к быстрому образованию накипи на стенках котлов, труб, чайника.

Карбонат кальция - накипь в чайнике

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Щелочные металлы

К щелочным металлам относят химические элементы: одновалентные металлы, составляющие Ia группу: литий, натрий, калий, рубидий, цезий и франций.

Эти металлы очень активны, быстро окисляются на воздухе и бурно реагируют с водой. Их хранят под слоем керосина из-за их сильной реакционной способности.

Натрий под слоем керосина

От Li к Fr (сверху вниз в периодической таблице) происходит увеличение: атомного радиуса, металлических, основных, восстановительных свойств, реакционной способности. Уменьшается электроотрицательность, энергия ионизации, сродство к электрону.

Щелочные металлы

  • Li - 2s 1
  • Na - 3s 1
  • K - 4s 1
  • Rb - 5s 1
  • Cs - 6s 1
  • Fr - 7s 1
  • NaCl - галит (каменная соль)
  • KCl - сильвин
  • NaCl*KCl - сильвинит

Галит и сильвит

Получить такие активные металлы электролизом водного раствора - невозможно. Для их получения применяют электролиз расплавов при высоких температурах (естественно - безводных):

NaCl → Na + Cl2↑ (электролиз расплава каменной соли)

Одной из особенностей щелочных металлов является их реакция с кислородом. Литий в такой реакции преимущественно образует оксид, натрий - пероксид, калий, рубидий и цезий - супероксиды.

K + O2 → KO2 (супероксид калия)

Помните, что металлы никогда не принимают отрицательных степеней окисления. Щелочные металлы одновалентны, и проявляют постоянную степень окисления +1 в различных соединениях: гидриды, галогениды (фториды, хлориды, бромиды и йодиды), нитриды, сульфиды и т.д.

Li + H2 → LiH (в гидридах водород -1)

Na + F2 → NaF (в фторидах фтор -1)

Na + S → Na2S (в сульфидах сера -2)

K + N2 → K3N (в нитридах азот -3)

Щелочные металлы бурно взаимодействуют с водой, при этом часто происходит воспламенение, а иногда - взрыв.

Na + H2O → NaOH + H2↑ (воду можно представить в виде HOH - натрий вытесняет водород)

Иногда в задачах может проскользнуть фраза такого плана: ". в ходе реакции выделился металл, окрашивающий пламя горелки в желтый цвет". Тут вы сразу должны догадаться: речь, скорее всего, про натрий.

Щелочные металлы по-разному окрашивают пламя. Литий окрашивает в алый цвет, натрий - в желтый, калий - в фиолетовый, рубидий - синевато-красный, цезий - синий.

Окраска пламени щелочными металлами

Оксиды щелочных металлов

Имеют общую формулу R2O, например: Na2O, K2O.

Получение оксидов щелочных металлов возможно в ходе реакции с кислородом. Для лития все совсем несложно:

В подобных реакциях у натрия и калия получается соответственно пероксид и супероксид, что приводит к затруднениям. Как из пероксида, так и из супероксида, при желании можно получить оксид:

По свойствам эти оксиды являются основными. Они хорошо реагируют c водой, кислотными оксидами и кислотами:

Li2O + H2O → LiOH (осн. оксид + вода = основание - реакция идет, только если основание растворимо)

Na2O + SO2 → Na2SO3 (обратите внимание - мы сохраняем СО серы +4)

Гидроксиды щелочных металлов

Относятся к щелочам - растворимым основаниям. Наиболее известные представители: NaOH - едкий натр, KOH - едкое кали.

Гидроксиды щелочных металлов получаются в ходе электролиза водных растворов их солей, в реакциях обмена, в реакции щелочных металлов и их оксидов с водой:

KCl + H2O → (электролиз!) KOH + H2 + Cl2 (на катоде выделяется водород, на аноде - хлор)

Калий с водой

Проявляют основные свойства. Хорошо реагируют с кислотами, кислотными оксидами и солями, если в ходе реакции выпадает осадок, выделяется газ или образуется слабый электролит (вода).

LiOH + H2SO4 → LiHSO4 + H2O (соотношение 1:1, кислота в избытке - получается кислая соль)

2LiOH + H2SO4 → Li2SO4 + 2H2O (соотношение 2:1, основание в избытке - получается средняя соль)

KOH + SO2 → KHSO3 (соотношение 1:1 - получается кислая соль)

2KOH + SO2 → K2SO3 + H2O (соотношение 2:1 - получается средняя соль)

С амфотерными гидроксидами реакции протекают с образованием комплексных солей (в водном растворе) или с образованием окиселов - смешанных оксидов (при высоких температурах - прокаливании).

NaOH + Al(OH)3 → Na[Al(OH)4] (в водном растворе образуются комплексные соли)

NaOH + Al(OH)3 → NaAlO2 + H2O (при прокаливании образуется окисел - смесь двух оксидов: Al2O3 и Na2O, вода испаряется)

Реакции щелочей с галогенами заслуживают особого внимания. Без нагревания они идут по одной схеме, а при нагревании эта схема меняется:

NaOH + Cl2 → NaClO + NaCl + H2O (без нагревания хлор переходит в СО +1 и -1)

NaOH + Cl2 → NaClO3 + NaCl + H2O (с нагреванием хлор переходит в СО +5 и -1)

В реакциях щелочей с йодом образуется исключительно иодат, так как гипоиодит неустойчив даже при комнатной температуре, не говоря о нагревании. С серой реакция протекает схожим образом:

NaOH + I2 → NaIO3 + NaI + H2O (с нагреванием)

Выделение йода

NaOH + S → Na2S + Na2SO3 + H2O (сера переходит в СО -2 и +4)

Уникальным является также взаимодействие щелочей с кислотным оксидом NO2, который соответствует сразу двум кислотам - и азотной, и азотистой.

Барий – польза, возможности и опасность металла

Первое название этого химического элемента – тяжелая земля. Свойства бария ценят атомщики, врачи, металлурги. Его влияние на человека бывает фатальным.

Барий

Что представляет собой

Барий – это химический элемент, занимающий ячейку 56 таблицы Менделеева:

  • Изначально это мягкое, пластичное с вязкой структурой вещество серебристого цвета.
  • Относится к щелочноземельным металлам.
  • Подобно другим элементам этого сегмента, наделен повышенной химической активностью.
  • По составу – конгломерат семи стабильных изотопов. Две трети (72%) приходится на Ba138. Синтезированы радиоактивные изотопы.

Самый востребованный из искусственных изотопов – Ba140. Этот продукт урано-торие-плутониевого распада служит маркером радиоактивности.

Международное обозначение – Ba (Barium).

Как был открыт

История открытия вещества связана с именами европейских ученых:

  • Первым продуктом стал оксид вещества. Его получили шведские химики Юхан Ган и Карл Шееле.
  • Спустя 34 года (1808 год) их английский коллега Гемфри Дэви «добыл» амальгаму бария, применив электролиз увлажненного гидроксида на катоде ртути, затем нагрев состав до температуры испарения ртути. Остатком был металл барий.

Название металла отражает «массивность» его оксида: древнегреческое βαρύς означает «тяжёлый». Не случайно Карл Шееле окрестил свое детище «тяжелой землей». Хотя в группу тяжелых металлов барий не входит.

Нахождение в природе

В природе чистый барий не найден. Он представлен минералами, самые распространенные – барит (тяжелый шпат) и витерит.

минерал Барит

Минерал Барит

Вещество не относится к редким.

Тонна земной коры содержит 500 грамм бария, литр морской воды – 0,02 мг.

Для разработки рентабельны баритовые, с добавкой сульфидов и флюоритов гидротермальные жилы. Промышленный интерес представляют месторождения метасоматических пластов и россыпей.

Технология получения

Исходник для промышленного извлечения бария – сульфитовый продукт (82-96%). Его добывают флотацией барита. Цель металлургов – получение бария в виде металла. Методика предусматривает восстановление оксида порошковым алюминием при высоких температурах.

Барий металлический Ba 99,9%

Барий металлический Ba 99,9%

  • Сульфат бария восстанавливают газом либо углем.
  • Сульфид нагревают.
  • Полученный гидроксид становится карбонатом, затем оксидом (850-1100°C).
  • Из оксида восстанавливают металлическую форму бария. Задействуется алюминий и термовоздействие (1220-1260°С).

Процесс происходит в вакууме. Алгоритм работы аппаратуры позволяет проводить в режиме нон-стоп полный технологический цикл: восстановление, дистилляция, конденсация, плавка металла.

Продукт повышенной чистоты (примесей менее 0,001%) получают плавкой либо двойной вакуумной перегонкой.

Физико-химические характеристики

Барий наделен типичными для щелочноземельных металлов свойствами:

  • Пластичен, хорошо куется, мягок (2 балла из 10 по Моосу).
  • Хрупок, от сильного удара разрушается.
  • Строение кристаллической решетки представлено двумя модификациями в зависимости от температуры (граница – 374,9°C).

По свойствам химический элемент барий сродни кальцию и стронцию, но более активен.

Активность проявляется даже при комнатных температурах:

  • На воздухе окисляется.
  • Бурно взаимодействует с галогенами, фосфором, водой, разбавленными кислотами.
  • Восстанавливает до металла большинство оксидов, галогенидов, сульфидов.

Загорается даже при малом нагреве. Эту характеристику нейтрализуют погружением активного металла в парафин либо керосин.

Свойства атома
Название, символ, номер Барий / Barium (Ba), 56
Атомная масса
(молярная масса)
137,327(7) а. е. м. (г/моль)
Электронная конфигурация [Xe] 6s2
Радиус атома 222 пм
Химические свойства
Ковалентный радиус 198 пм
Радиус иона (+2e) 134 пм
Электроотрицательность 0,89 (шкала Полинга)
Электродный потенциал -2,906
Степени окисления +2
Энергия ионизации
(первый электрон)
502,5 (5,21) кДж/моль (эВ)
Термодинамические свойства простого вещества
Плотность (при н. у.) 3,5 г/см³
Температура плавления 1 002 K
Температура кипения 1 910 K
Уд. теплота плавления 7,66 кДж/моль
Уд. теплота испарения 142,0 кДж/моль
Молярная теплоёмкость 28,1 Дж/(K·моль)
Молярный объём 39,0 см³/моль
Кристаллическая решётка простого вещества
Структура решётки кубическая
объёмноцентрированная
Параметры решётки 5,020 Å
Прочие характеристики
Теплопроводность (300 K) (18.4) Вт/(м·К)
Номер CAS 7440-39-3

Вещество легко опознать по цвету пламени: соединения бария делают его желтовато-зеленым.

Где используется

Утилитарные характеристики металла (пластичность, ковкость, вязкость) обеспечили востребованность промышленниками и учеными. Чаще это соединения, сплавы, чем чистый металл. Область использования – от атомной станции до салюта.

Атом, химия

Материал востребован серьезными отраслями:

  • Источники тока (химические). Фторид – компонент электролита во фторионных, оксид – в медных, сульфат – в свинцово-кислотных аккумуляторах.
  • Сверхпроводники. Смесь оксидов бария, меди, редкоземельных элементов – ингредиент при производстве керамики-сверхпроводника.
  • Атомная промышленность. Оксид добавляют к стеклу-облицовке урановых стержней.

Это компонент «щита» рентгеновских и ядерных установок. Так используется свойство металла стягивать на себя рентген- и гамма-лучи.

Другие отрасли промышленности

Применение нашлось металлу и сплавам (особенно с алюминием) в гражданском сегменте:

  • «Впитыватель» газа в высоковакуумной электронике.
  • Добавка (с цирконием) в жидкие теплоносители для повышения порога коррозийности (трубопроводы, металлургическое оборудование).
  • В металлургии это раскислитель, очиститель меди, свинца от примесей.
  • Фторид – основа линз, призм, другой продукции оптического назначения.
  • Бариево-никелевый сплав – материал электродов свечей зажигания двигателей.

Нарасхват идут соединения элемента:

  • Пероксид. Исходник отбеливателя волокон шелкопряда, хлопка, шерсти. Дезинфектор.
  • Сульфид. Истребитель волосяного покрова со шкур животных.
  • Перхлорат. Топ-осушитель.
  • Хромат, манганат. Желтый и зеленый пигменты в лако-красочном производстве.

Нитрат, хлорат создают зеленые огни салюта, других пиротехнических зрелищ.

Непромышленный сегмент

Карбонатом изничтожают грызунов.

Медициной востребован сульфат. Он нетоксичен, используется как контрастный материал при исследовании ЖКТ.

Биологическое воздействие

Барий не классифицируется как жизненно необходимый микроэлемент:

  • В организме человека порядка 20 мг вещества.
  • За сутки организм получает до 1 мг.
  • Микродозы выявлены во всех органах и тканях.
  • Больше всего вещества содержат селезенка, мышцы, головной мозг, хрусталик глаза.

Порядка 90% микроэлемента аккумулирует скелет и зубы.

Сколько бария нужно человеку, не установлено.

Предупреждение

Воздействие вещества на человека бывает опасным.

Барий, его растворимые соли токсичны:

  • Отравление наступает при превышении безопасной концентрации.
  • Особо опасны растворимые соли. Попадая в ЖКТ, они «высвобождаются». Затем провоцируют паралич сердца и смерть за несколько часов.
  • Тяжелое отравление (попадание в организм 0,19-0,49 г растворимых солей металла) влечет смерть в течение 24 часов. 0,79-0,89 г вызывают мгновенную смерть.
  • Среди симптомов интоксикации барием – расстройство речи, зрения, походки из-за паралича мышц. Плюс головокружение, одышка, шум в ушах.

На коже, слизистых оболочках металл оставляет химический ожог.

По стандартам РФ, барий относится ко 2-му классу опасности. Кубический дециметр воды (объем 10х10х10 см) не может содержать более 0,7 мг вещества.

Стоимость

На мировом рынке представлен ассортимент продукции из бария. Цены определяются чистотой продукта. Например, слитки чистотой 99,91% идут по $32-35 за кг.

Щелочноземельные металлы – перечень, свойства и польза элементов

Этой группе металлов отдан весь второй столбец таблицы Менделеева. И атомщики, и ювелиры используют щелочноземельные металлы. С ними интересно экспериментировать, но требуется осторожность.

Щелочноземельные металлы

Что представляют собой

Щелочноземельные металлы – это вся вторая группа таблицы Менделеева.

К щёлочноземельным металлам относятся:

То есть «щелочноземельный» список насчитывает шесть позиций, которые обычно располагаются по возрастанию атомного номера – от бериллия к радию.

История

Двойное название группы – отражение природы и характеристик входящих в нее элементов:

  1. Они способны образовывать щелочи.
  2. Ряд свойств их оксидов близки окислам алюминия и железа. Такие вещества еще средневековые алхимики именовали «землями».

Сегодняшний состав щелочноземельной группы сформировался не сразу: бериллий и магний отсутствовали.

Это объяснялось отличием свойств данных элементов от остальных:

  • По большинству характеристик они ближе к алюминию, чем к другим элементам группы.
  • Их гидроксиды – не щелочи.
  • Магний взаимодействует с водой в замедленном режиме, у бериллия реакция в таком растворе нулевая. Та же картина при контакте с неметаллами.

Однако специалисты Международного союза теоретической и прикладной химии (IUPAC) решили все-таки причислить бериллий и магний к щелочноземельной группе.

Формы нахождения в природе

Щёлочноземельным металлам присуща чрезмерная активность, поэтому в природе они как самостоятельный элемент отсутствуют.

Почти всегда это составляющая минералов либо руд:

  • Самый распространенный элемент щелочноземельной группы – кальций (2,9-12,9% по массе). Его получают из известняков, им насыщены мрамор, гранит.
  • Почти три процента забирает магний.
  • В сто раз реже в литосфере представлены барий со стронцием.
  • Содержание остальных элементов измеряется тысячными долями процента.

Самым редким на планете щёлочноземельным металлом является радий. Но найти его легче других: это обязательный компонент урановых рудников.

Элементы группы наделены общими физическими свойствами:

  • Серебристый с сероватостью цвет.
  • Твердость в стандартных условиях, ножом режется только стронций.
  • Металлический блеск.
  • Тускнение на воздухе с разной скоростью вследствие образования оксидной пленки.
  • Хорошая пропускная способность для тепла и электричества.
  • Два электрона на внешнем слое атома у каждого элемента, степень окисления – всегда +2. Это отражают формулы соединений, образованных металлами группы.

Самая тяжелая «щелочная земля» – радий. Кубик вещества с ребром в 1 см весит 5,5 грамма.

Более интересны химические свойства «земель».

Есть общие и оригинальные:

  • Покрытый пленкой-оксидом бериллий способен на реакцию только при 600+°С (кроме фтора).
  • Окисленный магний при средней температуре не реагирует ни с чем. Получение соединений металла возможно при температуре от 645°C.
  • Кальций окисляется неспешно и только если воздух влажный. При незначительном нагреве горит, растворяется водой.
  • Осмотрительности требуют барий, стронций, радий. На открытом пространстве взаимодействие этих металлов с кислородом и азотом чревато взрывом. Их держат в герметичных контейнерах, залив керосином. Эта особенность объединяет щелочные и щелочноземельные металлы.

Общие свойства щёлочноземельных металлов – растворение в кислотах, образование солей, щелочей при взаимодействии с водой.

Химическая активность щелочноземельных металлов усиливается с увеличением габаритов атома – от бериллия к радию.

Где используются

Свойства металлов щелочноземельной группы обусловили применение каждого во всех сегментах – от авиастроения до медицины и ювелирного дела:

  • Бериллий. Исходник при выплавке сплавов, включая «атомные», получения ракетного топлива. Компонент ювелирных минералов первого ряда – аквамарина, гелиодора, изумруда.
  • Кальций. Базис большинства огнеупоров, строительных материалов. Металл задействован при производстве топлива, аптечных препаратов.
  • Магний. Самый легкий щелочноземельный металл. Как восстановитель нашел применение в металлургии. Без проблем куется, раскатывается. Чаще используется как «ингредиент» сплавов, снижающий их массивность, – материал корпусов и деталей ракет, самолетов, автомобилей, электроники. А также приборов для нужд оборонного комплекса и предприятий приборостроения.

Сегодня на первое место по использованию магниевых сплавов выходят смартфоны, планшеты, другие гаджеты.

  • Стронций. Металлургами используется как лигатура сплавов, очиститель сталей, чугуна, меди от серы, других вредных примесей. Сырье закупают производители радиоэлектроники, химических источников тока, атомщики, пиротехники. Продукция «высокого сегмента» из металла – чистый уран, керамика-сверхпроводник, вакуумный инструментарий.

Стронций создает насыщенно-красные оттенки огней салюта. Изотопом вещества лечат онкологию.

  • Барий. Используются соединения металла. Главный потребитель – атомщики. Ассортимент: вакуумные, пьезоэлектрические приборы, жидкий теплоноситель, линзы, стекло для урановых стержней, керамика-сверхпроводник. Нетоксичный сульфат используется рентгенологами как контрастное вещество.

На особом счету радий. Это самый редкий щелочноземельный металл: на планете его получено всего полтора килограмма.

Даже микродозы радиоактивного вещества смертельно опасны для человека. Однако это свойство используется исследователями ядерных процессов и для лечения онкологии.

Шкалы, стрелки компасов, бортовых приборов, изготовленных до 1970-х годов, покрыты краской, содержащей радий. Она светится в темноте, но с тех пор не используется как опасная для человека.

Биологическое значение

Значение щелочноземельных элементов разнообразно:

  • Без кальция не формируется скелет, зубы, не сокращаются мышцы. Элемент «курирует» параметры крови.
  • Магний – компонент биологических структур (к примеру, хлорофилла у растений). В организме человека содействует синтезу нуклеиновых кислот, работе ферментов, нервной системы.
  • Микродозы стронция присутствуют в организме как аналог кальция. Особо важен щелочноземельный элемент для детей младше четырех лет.

Барий, радий, бериллий, их соединения ядовиты. Поэтому для биологических структур опасны.

Читайте также: