Цезий металл или неметалл

Обновлено: 27.09.2024

Цезий был открыт в 1860 немецкими учеными Р. В. Бунзеном и Г. Кирхгофом в водах Дюрхгеймского минерального источника в Германии методом спектрального анализа. Назван цезием по двум ярким линиям в синей части спектра (от лат. caesius — небесно-голубой). Металлический цезий впервые был выделен в 1882 шведским химиком К. Сеттербергом при электролизе расплава смеси CsCN и Ba.

Происхождение названия

Название происходит от латинского caesius — голубой (элемент открыт по ярко-синим спектральным линиям).

Получение

Основной рудой цезия является Мировые ресурсы цезия

Металлический цезий (99,99999%) в ампуле.

Цезий входит в группу элементов с ограниченными запасами вместе с гафнием, танталом, бериллием, рением, платиноидами, кадмием, теллуром. Общие выявленные мировые ресурсы составляют около 180 тыс. тонн (в пересчете на окись цезия), но они крайне распылены и к сожалению сверхвысокие цены это неотъемлемая черта сопровождающая цезий и рубидий в прошлом, настоящем и будущем. Мировой объём добычи цезия состовляет около 9 тонн в год, а потребности свыше 85 тонн в год и она постоянно растет. По добыче цезиевой руды (поллуцита) лидирует Канада. В месторождении Берник-Лейк (юго-восточная Манитоба) сосредоточено около 70% мировых запасов цезия. Поллуцит также добывается в Намибии и Зимбабве. В России его мощные месторождения находятся на Кольском полуострове, в Восточном Саяне и Забайкалье. Месторождения поллуцита также имеются в Казахстане, Монголии и Италии (о.Эльба), но обладают малыми запасами и не имеют важного экономического значения. У цезия есть и недостатки, которые обусловливают постоянный поиск его минералов, это то обстоятельство что во первых его извлечение из руд неполное, в процессе эксплуатации материала он рассеивается и потому безвозвратно теряется, запасы его руд очень ограничены и не могут обеспечить постоянно растущий спрос на металлический цезий (потребности в металле более чем в 8,5 раз превышают его добычу и положение в металлургии цезия ещё более тревожное чем например в металлургии тантала или рения). Сюда же можно указать что промышленность нуждается именно в очень чистом материале (на уровне 99,9—99,999 %) и это является одной из труднейших задач в металлургии редких элементов. Для получения цезия достаточной степени чистоты требуется многократная ректификация в вакууме, очистка от механических примесей на металлокерамических фильтрах, нагревание с геттерами для удаления следов водорода, азота, кислорода, с помощью очень чистого циркония (геттер), и многократная ступенчатая кристаллизация. Цезий весьма активен и агрессивен по отношению к контейнерным материалам и требует хранения например в сосудах из специального стекла в атмосфере аргона или водорода (обычные марки лабораторного стекла цезий разрушает).

Физические свойства

Цезий моноизотопный элемент состоящий из одного единственного полностью устойчивого изотопа цезия-133. Самым долгоживущим радиоактивным изотопом цезия является цезий-135 (период полураспада около 3 млн лет). Металлический цезий представляет собой вещество золотисто-белого цвета по внешнему виду очень похожее на золото но светлее, легко плавится и превращается в очень подвижную жидкость и при этом его цвет становится более серебристым.

Химические свойства

Цезий в свободном состоянии (металлический) является наиболее химически активным металлом. С воздухом взаимодействует со взрывом (в немалой степени это обусловлено присутствием паров воды, которая резко ускоряет реакцию), с водой, льдом (даже при —120 °C) и простыми спиртами, галогеноорганическими соединениями, галогенидами тяжелых металлов, кислотами, сухим льдом (взаимодействие протекает с сильным взрывом). Активность цезия обусловлена не только высоким отрицательным электрохимическим потенциалом, но и невысокой температурой плавления и кипения (быстро развивается очень большая контактная поверхность, что увеличивает скорость реакции). Все виды солей, образуемых цезием - нитрат, хлорид, бромид, фторид, йодид, хромат, манганат, перхлорат, хлорат, азид, цианид, карбонат и т. д - чрезвычайно легко растворимы в воде и ряде органических растворителей, наименее растворим перхлорат (что важно для технологии получения и очистки цезия). Следует отметить то обстоятельство что хотя цезий и весьма активный металл, тем не менее он при обычных условиях не вступает в реакцию с азотом в отличии от лития, и даже при сильнейшем нагревании не способен образовать с азотом соединений в отличие от бария, кальция, магния и ряда других металлов. Нитрид и азид цезия могут быть получены только косвенными методами.

Гидроксид цезия — сильнейшее основание с высочайшей электропроводностью в водном растворе; так, например, при работе с ним необходимо учитывать, что концентрированный раствор CsOH разрушает стекло даже при обычной температуре, а расплав разрушает железо, кобальт, никель, а также платину, корунд и диоксид циркония, и даже постепенно разрушает серебро и золото (а в присутствии кислорода - очень быстро). Единственным устойчивым в расплаве гидроксида цезия металлом является родий (и его некоторые сплавы).

Применение

Цезий открытый в 1860 году длительное время представлял чисто научный интерес, но в начале XX века, в связи с разработкой технологии его получения в чистом виде и нахождением ряда (хотя и очень редких) собственных минералов, постепенно вошел в сферу человеческой деятельности и развитие технологий, и приобрел ряд весьма важных и стратегических областей своего применения.

Фотоэлементы, фотоумножители

Значительное практическое применение цезия имеет производство фотоэлектрических приборов — фотоэлементов, фотоумножителей. Цезий является элементом с наиболее низкой работой выхода электрона и соответственно затраты энергии излучения для получения электрического тока в приборах на его основе наиболее низкие. В связи с этим приборы на основе цезия наиболее чувствительны к воздействию излучения и кроме того обладают весьма малой инерционностью. В фотоэлементах цезий обычно применяется в виде сплавов с сурьмой, кальцием, барием, алюминием, или серебром (для улучшения эффективности, экономии чрезвычайно дорогого цезия и удобства использования), кроме того, недавно обнаружено свойство цезия при диффузии в золото очень резко снижать работу выхода. Диапазон работы таких фотоэлементов очень широк, от дальней ультрафиолетовой, до видимой и дальней инфракрасной области электромагнитного излучения. В этой связи применение цезия намного более эффективно чем применение рубидия.

Счетчики заряженных частиц

Марса выполнялись с помощью гамма спектрометра на основе CsI (Tl), установленного на космическом орбитальном аппарате «Марс-5».

Оптика

Йодид и бромид цезия применяются в качестве оптических материалов в специальной оптике — инфракрасные приборы, очки и бинокли ночного видения, прицелы, обнаружение техники и живой силы противника (в том числе из космоса).

Источники света

В электротехнике цезий применяется в изготовлении светящихся трубок, где он применяется в виде соединений с цирконием или оловом (метацирконаты и ортостаннаты цезия).

Химические источники тока

На основе цезия создан и применяется высокоэффективный твердый электролит для топливных элементов (в том числе автомобильных), и аккумуляторов чрезвычайно высокой энергоемкости — цезий-бета-глинозем (алюминат цезия).

Изотопы

Радиоактивный изотоп цезий-137 (период полураспада 33 года) используется гамма-дефектоскопии, измерительной технике и при стерилизации пищевых продуктов (консервы, туши птиц и животных, мяса), а также для стерилизации медицинских препаратов и лекарств. В радиотерапии для лечения злокачественных опухолей. Так же цезий-137 используется в производстве радиоизотопных источников тока , где он применяется в виде хлорида (плотность 3,9 г/см, энерговыделение около 1,27 Вт/см).

Медицина

На основе соединений цезия созданы эффективные лекарственные препараты для лечения язвенных заболеваний, дифтерии, шоков, шизофрении.

Применение цезия в энергетике и космосе

Значительной сферой применения металлического цезия являются новейшие и стремительно развивающиеся работы и производство энергетических агрегатов. Цезиевая плазма является важнейшей и неотъемлемой компонентой Металлургия

Металлический цезий на заре поисков его ассимиляции в промышленности обнаружил свойство резко повышать жаропрочность магния и алюминия, так например добавка 0,3—0,4 % цезия к магнию в 3 раза повышает его прочность на разрыв и резко улучшает его коррозионную стойкость, но ввиду весьма высокой цены, и наличия других более дешевых металлов для легирования он не применяется для этой цели.

Высокотемпературная сверхпроводимость

Недавно найдено что продукты внедрения цезия в графит (фуллериды) обладают свойством высокотемпературной сверхпроводимости и интенсивно изучаются.

Производство лазеров

В последние годы цезий так же весьма интенсивно изучается как рабочее тело и излучательная среда для создания лазеров имеющих рекордные значения пиковых мощностей как в непрерывном так и в импульсном режиме работы, и в значительной степени этот интерес и огромные капиталовложения направлены на разработку лазеров для вооружения и в области получения термоядерной энергии, но. в равной степени интересу и капиталовложениям противопоставлена закрытость и минимум информации для печати (обусловленных некоторой соревновательностью развитых в технологическом отношении стран, заинтересованных в этом направлении).

Производство электродов

Совершенно особое место и очень большую область применения и расхода металлического цезия в последние годы представляет его использование в качестве добавки к вольфраму для производства электродов мощных осветительных дуговых ламп и электродов применяемых для сварки алюминия, магния, титана, церия, нержавеющей стали и целого ряда активных сплавов в среде аргона, гелия и водорода. Применение этой добавки (около 0,1—0,35 %) в значительной степени облегчает зажигание и горение дуги при низком напряжении.

Термоэлектрические материалы

Совсем недавно цезий приобрел новое направление своей ассимиляции (освоение практикой), и это направление является революционным прорывом для разработки новейшей компьютерной техники, генераторов энергии, холодильников глубокого холода (криогенных) и. т.д. Оказалось что сплав сверхчистого висмута, сверхчистого теллура, и сверхчистого цезия обладает поистине фантастическими возможностями для создания охладителей основанных на эффекте Пельтье. Как показывает практический опыт эксплуатации этого нового полупроводникового материала, его использование наиболее эффективо именно в новейших суперпроцессорах на основе нитрида бора и монокристаллического алмаза в качестве теплоотвода и основы схемы, и надо сказать что применение этого материала открывает широкие возможности для повышения быстродействия — т. е "ускорения холодом". Так в опытах с этим новым полупроводниковым материалом удалось на сегодняшний день получить охлаждение вплоть до —237 °C, и это в свою очередь позволяет создавать микрохолодильники для охлаждения мощных процессоров (в том числе нанопроцессоров), холодильники для глубокой замарозки тканей и клеточного материала, сжижения газов, охлаждения боевых ультрафиолетовых и инфракрасных лазерных систем, Оптические материалы микроэлектроники

Триборат цезия и триборат цезия-лития, а так же фосфат цезия-галлия используются как специальные оптические материалы в новейших областях радиоэлектроники.

Новейшие исследования плазмы цезия

В последние годы обостренный интерес к цезию так же обусловлен необычным эффектом открытым с использованием цезия. Атомы цезия могут находиться в шестнадцати возможных квантовомеханических состояниях, называемых "сверхтонкие магнитные подуровни основного состояния". При помощи оптической лазерной накачки почти все атомы приводились только к одному из этих шестнадцати состояний, которое соответствует почти абсолютному нулю температуры по шкале Кельвина (-273,15 °C). Длина цезиевой камеры составляла 6 сантиметров. В вакууме свет проходит 6 сантиметров за 0,2 нс. Через камеру же с цезием, как показали выполненные измерения, световой импульс проходил за время на 62 нс меньшее, чем в вакууме. Другими словами, время прохождения импульса через цезиевую среду имеет знак "минус"! Действительно, если из 0,2 нс вычесть 62 нс, получим "отрицательное" время. Эта "отрицательная задержка" в среде — непостижимый временной скачок — равен времени, в течение которого импульс совершил бы 310 проходов через камеру в вакууме. Следствием этого "временного переворота" явилось то, что выходящий из камеры импульс успел удалиться от неё на 19 метров, прежде чем приходящий импульс достиг ближней стенки камеры. Как же можно объяснить такую невероятную ситуацию (если, конечно, не сомневаться в чистоте эксперимента)? Судя по развернувшейся дискуссии, точное объяснение ещё не найдено, но несомненно, что здесь играют роль необычные дисперсионные свойства среды: пары цезия, состоящие из возбужденных лазерным светом атомов, представляют собой среду с аномальной дисперсией. Изучение такой необычной способности цезия связано с поиском обработки и передачи информации.

Атомно-водородная энергетика

Совершенно исключительное значение металлический цезий играет в атомно-водородной энергетике при разложении воды термохимическим способом (цикл "Аэроджет Дженерал").

Защита воздушных судов

Очень важной областью применения цезия является производство специальных ламп с электронным управлением, для создания тепловых помех для ракет противника. Такие цезиевые лампы устанавливаются на современных боевых самолетах и в значительной степени повышают живучесть самолетов в бою.

Прочие области ассимиляции цезия

Фторид цезия применяют для получения фторорганических соединений, пьезоэлектрической керамики, специальных стекол. Хлорид цезия — электролит в топливных элементах, флюс при сварке молибдена.

Биологическая роль

Цезий и рубидий относят к малоизученым микроэлементам. Эти элементы находятся в окружающей среде и поступают в организм различными путями, в основном с пищей. Установлено их постоянное наличие в организме. Однако до сих пор эти элементы не считаются биотическими.

Рубидий и цезий найдены во всех исследованных органах млекопитающих и человека. Поступая в организм с пищей, они быстро всасываются из желудочно-кишечного тракта в кровь. Средний уровень рубидия в крови составляет 2,3—2,7 мг/л, причем его концентрация в эритроцитах почти в три раза выше, чем в плазме. Рубидий и цезий весьма равномерно распределяется в органах и тканях, причем, рубидий, в основном, накапливается в мышцах, а цезий поступает в кишечник и вновь реабсорбируется в нисходящих его отделах.

Известна роль рубидия и цезия в некоторых физиологических процессах. В настоящее время установлено стимулирующее влияние этих элементов на функции кровообращения и эффективность применения их солей при гипотониях различного происхождения. Исходя из выраженного гипертензивного и сосудосуживающего действия, соли цезия ещё в 1888 г. впервые были применены С. С.Боткиным при нарушениях функции сердечно-сосудистой системы. В лаборатории И. П.Павлова С. С.Боткиным было установлено, что хлориды цезия и рубидия вызывают повышение артериального давления на длительное время и, что это действие связано, главным образом, с усилением сердечно-сосудистой деятельности и сужением периферических сосудов.

Установлено адреноблокирующее и симпатомиметическое действие солей цезия и рубидия на центральные и периферические адренореактивные структуры, которое особенно ярко выражено при подавлении тонуса симпатического отдела центральной нервной системы и дефиците катехоламинов. Солям этих металлов свойственен, главным образом, бетта-адреностимулирующий эффект.

Соли рубидия и цезия оказывают влияние на неспецифические показатели иммунобиологической резистентности — они вызывают значительное увеличение титра комплемента, активности лизоцима, фагоцитарной активности лейкоцитов. Есть указание на стимулирующее влияние солей рубидия и цезия на функции кроветворных органов. В микродозах они вызывают стимуляцию эритро- и лейкопоэза (на 20—25 %), заметно повышают резистентность эритроцитов, увеличивают содержание гемоглобина в них.

Хлорид рубидия и хлорид цезия участвуют в газовом обмене, активируя деятельность окислительных ферментов, соли этих элементов повышают устойчивость организма к гипоксии.

Цезий

Cs, химический элемент I группы периодической системы Менделеева; атомный номер 55, атомная масса 132, 9054; серебристо-белый металл, относится к щелочным металлам (См. Щелочные металлы). В природе встречается в виде стабильного изотопа 133 Cs. Из искусственно полученных радиоактивных изотопов с массовыми числами (См. Массовое число) от 123 до 142 наиболее устойчив 137 Cs с периодом полураспада T1/2 = 33 г.

Историческая справка. Ц. открыт в 1860 Р. В. Бунзеном и Г. Р. Кирхгофом в водах Дюркхеймского минерального источника (Германия) методом спектрального анализа. Назван Ц. (от лат. caesius — небесно-голубой) по двум ярким линиям в синей части спектра. Металлический Ц. впервые выделил шведский химик К. Сеттерберг в 1882 при электролизе расплавленной смеси CsCN и Ba.

Распространение в природе. Ц. — типичный редкий и рассеянный элемент (см. Рассеянные элементы, Редкие металлы). Среднее содержание Ц. в земной коре (кларк) 3,7․10 -4 % по массе. В ультраосновных горных породах содержится 1․10 -5 % Ц., в основных — 1․10 -4 %. Ц. геохимически тесно связан с гранитной магмой, образуя концентрации в пегматитах вместе с Li, Be, Ta, Nb; в особенности в пегматитах, богатых Na (альбитом) и Li (лепидолитом). Известно 2 крайне редких минерала Ц. — Поллуцит и авогадрит (К, Cs) (BF)4; наибольшая концентрация Ц. в поллуците (26—32% Cs2O). Большая часть атомов Ц. изоморфно замещает К и Rb в полевых шпатах и слюдах. Примесь Ц. встречается в Берилле, Карналлите, вулканическом стекле. Слабое обогащение Ц. установлено в некоторых термальных водах. В целом Ц. — слабый водный мигрант. Основное значение в истории Ц. имеют процессы Изоморфизма и сорбции крупных катионов Ц. В геохимическом отношении Ц. близок к Rb и К, отчасти к Ba.

Физические и химические свойства. Ц. — очень мягкий металл; плотность 1,90 г/см 3 (20 °С); tпл 28,5 °С; tкип 686 °С. При обычной температуре кристаллизуется в кубической объёмноцентрированной решётке (а = 6,045 Å). Атомный радиус 2,60 Å, ионный радиус Cs + 1,86 Å. Удельная теплоёмкость 0,218 кдж/(кгК) [0,052 кал/(го С)]; удельная теплота плавления 15,742 кдж/кг (3,766 кал/г); удельная теплота испарения 610,28 кдж/кг (146,0 кал/г); температурный коэффициент линейного расширения (0—26 °С) 9,7․10 -5 ; коэффициент теплопроводности (28,5°С) 18,42 вт/(мК) [0,44 кал/(смсек°С)]; удельное электросопротивление (20 °С) 0,2 мкомм; температурный коэффициент электросопротивления (0—30 °С) 0,005. Ц. диамагнитен, удельная магнитная восприимчивость (18 °С) — 0,1․10 -6 . Динамическая вязкость 0,6299 Мнсек/м 2 (43,4°С), 0,4065 Мнсек/м 2 (140,5 °С). Поверхностное натяжение (62 °С) 6,75․10 -2 н/м (67,5 дин/см); сжимаемость (20 °С) 7,05 Мн/м 2 (70,5 кгс/см 2 ). Энергия ионизации 3,893 эв; стандартный электродный потенциал — 2,923 в, работа выхода электронов 1,81 эв. Твёрдость по Бринеллю 0,15 Мн/м 2 (0,015 кгс/см 2 ). Конфигурация внешних электронов атома Ц. 6s 1 ; в соединениях имеет степень окисления + 1.

Ц. обладает очень высокой реакционной способностью. На воздухе мгновенно воспламеняется с образованием пероксида Cs2O2 и надпероксида CsO2; при недостатке воздуха получается оксид Cs2O; известен также озонид CsO3. С водой, галогенами, углекислым газом, серой, четырёххлористым углеродом Ц. реагирует со взрывом, давая соответственно гидроксид CsOH, галогениды, оксиды, сульфиды, CsCI. С водородом взаимодействует при 200—350 °С и давлении 5—10 Мн/м 2 (50—100 кгс/см 2 ), образуя гидрид. Выше 300 °С Ц. разрушает стекло, кварц и др. материалы, а также вызывает коррозию металлов. Ц. при нагревании соединяется с фосфором (Cs2P5), кремнием (CsSi), графитом (C8Cs и C24Cs). При взаимодействии Ц. со щелочными и щёлочноземельными металлами, а также с Hg, Au, Bi и Sb образуются сплавы; с ацетиленом — ацетиленид Cs2C2. Большинство простых солей Ц., особенно CsF, CsCI, Cs2CO3, Cs2SO4, CsH2PO4, хорошо растворимы в воде; малорастворимы CsMnO4, CsClO4 и Cs2Cr2O7. Ц. не принадлежит к числу комплексообразующих элементов, но он входит в состав многих комплексных соединений в качестве катиона внешней среды.

Получение. Ц. получают непосредственно из поллуцита методом вакуумтермического восстановления. В качестве восстановителей используют Ca, Mg, Al и др. металлы.

Различные соединения Ц. также получают путём переработки поллуцита. Сначала руду обогащают (флотацией, ручной рудоразработкой и т.п.), а затем выделенный концентрат разлагают либо кислотами H2SO4, HNO3 и др.), либо спеканием с оксидно-солевыми смесями (например, CaO с CaCI2). Из продуктов разложения поллуцита Ц. осаждают в виде CsAI (SO4)2․12H2O, Cs3[Sb2Cl9] и др. малорастворимых соединений. Далее осадки переводят в растворимые соли (сульфат, хлорид, иодид и др.). Завершающим этапом технологического цикла является получение особо чистых соединений Ц., для чего применяют методы кристаллизации из растворов Cs [l (l)2], Cs3[Bi2l9], Cs2(TeI6] и сорбцию примесей на окисленных активированных углях. Глубокую очистку металлического Ц. производят методом ректификации. Перспективно получение Ц. из отходов от переработки Нефелина, некоторых слюд, а также подземных вод при добыче нефти; Ц. извлекают экстракционными и сорбционными методами.

Хранят Ц. либо в ампулах из стекла «пирекс» в атмосфере аргона, либо в стальных герметичных сосудах под слоем обезвоженного вазелинового или парафинового масла.

Применение. Ц. идёт для изготовления Фотокатодов (сурьмяно-цезиевых, висмуто-цезиевых, кислородно-серебряно-цезиевых), Электровакуумных фотоэлементов, фотоэлектронных умножителей, электронно-оптических преобразователей (см. Электронные приборы, Фотоэлектронная эмиссия). Перспективно применение «цезиевой плазмы» в ионных ракетных двигателях, Ц. — в магнитогидродинамических генераторах (См. Магнитогидродинамический генератор) и в термоэмиссионных преобразователях энергии (См. Термоэмиссионный преобразователь энергии). Изотопы Ц. применяют: 133 Cs в квантовых стандартах частоты, 137 Cs в радиологии. Резонансная частота энергетического перехода между подуровнями основного состояния 133 Cs положена в основу современного определения секунды (См. Секунда).

Цезий в организме. Ц. — постоянный химический микрокомпонент организма растений и животных. Морские водоросли содержат 0,01—0,1 мкг Ц. в 1 г сухого вещества, наземные растения — 0,05—0,2. Животные получают Ц. с водой и пищей. В организме членистоногих около 0,067—0,503 мкг/г Ц., пресмыкающихся — 0,04, млекопитающих — 0,05. Главное депо Ц. в организме млекопитающих — мышцы, сердце, печень; в крови — до 2,8 мкг/л. Ц. относительно малотоксичен; его биологическая роль в организме растений и животных окончательно не раскрыта.

Цезий-137 ( 137 Cs) — бета-гамма-излучающий радиоизотоп Ц.; один из главных компонентов радиоактивного загрязнения (См. Радиоактивное загрязнение) биосферы. Содержится в радиоактивных выпадениях, радиоактивных отходах, сбросах заводов, перерабатывающих отходы атомных электростанций. Интенсивно сорбируется почвой и донными отложениями; в воде находится преимущественно в виде ионов. Содержится в растениях и организме животных и человека. Коэффициент накопления 137 Cs наиболее высок у пресноводных водорослей и арктических наземных растений, особенно лишайников. В организме животных 137 Cs накапливается главным образом в мышцах и печени. Наибольший коэффициент накопления его отмечен у северных оленей и северных американских водоплавающих птиц. В организме человека 137 Cs распределён относительно равномерно и не оказывает значительного вредного действия.

Лит.: Плющев В. Е., Степин Б. Д., Химия и технология соединений лития, рубидия и цезия, М., 1970; их же, Аналитическая химия рубидия и цезия, М., 1975; Коган Б. И., Названова В. А., Солодов Н. А., Рубидий и цезий, М., 1971; Моисеев А. А., Рамзаев П. В., Цезий-137 в биосфере, М., 1975; Mattsson S., Radionuclides in lichen, reindeer and man, Lund, 1972.

Большая советская энциклопедия. — М.: Советская энциклопедия . 1969—1978 .

ЦЕЗИЙ — металл со взрывным характером

Цезий в ампуле

История цезия начинается в XIX веке. Ученые (химики Кирхгоф и Бунзен) исследовали минеральные источники Шварцвальда с помощью спектрального анализа и нашли небесно-голубые линии неизвестного элемента. Элемент получил название по цвету линий на спектрограмме (caesius — голубой).

Свойства

Цезий (Caesium) относится к щелочным металлам.

  1. Чрезвычайно пирофорен: на открытом воздухе самовозгорается, в воде или на льду взрывается.
  2. Самый мягкий металл (режется ножом, как масло).
  3. Структура решетки объемноцентрированная, кубическая.
  4. Цвет серебристо-желтый.
  5. Парамагнитен.

Химические свойства цезия:

  1. При соприкосновении с водой взрывается.
  2. Азот — единственный элемент, который цезий «игнорирует» даже при нагреве.
  3. Металл является самым сильным восстановителем в природе.
  4. Активно реагирует со многими неметаллами.
  5. Растворяется почти во всех кислотах, образуя соли.

Добыча

Нахождение в природе затруднено ввиду «распыленности» цезиевых руд.

По добыче цезиевой руды лидирует Канада. Месторождение Берник-Лейк обладает 70% мировых запасов основной руды цезия — поллуцита. В России месторождения цезиевых минералов открыты на Кольском полуострове, в Саянах и Забайкалье.

Добыча цезия из руды

Производство металла затруднено сложностью извлечения металла высокой очистки из руд.

Кристаллы цезия

Способы получения предполагают ректификацию, очистку от мехпримесей, удаление следов газов (O2, H2, N2), ступенчатая кристаллизация.

Сплавы

В состав сплавов и соединений обычно входят: барий, сурьма, таллий. Эти сплавы получают методом электролиза.

Плюсы и минусы

К достоинствам металла можно отнести его невероятную активность. По чувствительности к свету ему нет равных. Из цезия легче всего получить (энергетически малозатратно) плазму.

Интересно: многие физики считают, что плазму целесообразно создавать, используя энергию атомных реакторов. Это даст возможность непосредственного превращения тепловой энергии в электрическую.

Недостатками можно считать сложность работы с металлом и ограниченный запас цезийсодержащих руд.

Использование цезия

Металл используют в двигателях орбитальных спутников, в МГД-генераторах.

цезий-133

  1. В источниках тока для топливных элементов.
  2. В атомных часах (погрешность хода 1 секунда на 100 миллионов лет). Частота перехода для 137Cs равна 9193 Мгц, называемой «стандартом цезия». Это основной стандарт времени в передаче данных GPS, Интернета, мобильной связи.
  3. Для лечения рака используют радиоактивный 137Cs.
  4. В оптических приборах (оружейные прицелы, бинокли, ноктовизоры).
  5. Лазеры с очень высоким КПД.

Познавательно: японские ученые изобрели ткань, которая может впитывать радиоактивный цезий из воды и почвы.

Купить соединения металла

Цены на соединения металла:

  • Cs2WO4 от 19500 рублей за кг;
  • CsF 14000 рублей за килограмм;
  • CsBr, CsI 3000 руб/кг.

admin

Мне 42 года и я специалист в области минералогии. Здесь на сайте я делюсь информацией про камни и их свойства — задавайте вопросы и пишите комментарии!

[от лат. caesius - голубой (по ярко-синим спектр. линиям); лат. Cesium] Cs, хим. элемент I гр. периодич. системы, ат. н. 55, ат. м. 132,9054; относится к щелочным металлам. Природный Ц. состоит из стабильного нуклида 133 Cs. Поперечное сечение захвата тепловых нейтронов 2,9 х 10 -27 м 2 . Конфигурация внеш. электронной оболочки атома 6s 1 ; степень окисления +1; энергия ионизации при переходе Cs

Химическая энциклопедия. — М.: Советская энциклопедия . Под ред. И. Л. Кнунянца . 1988 .

Смотреть что такое "ЦЕЗИЙ" в других словарях:

ЦЕЗИЙ — очень мягкий металл серебристого цвета; в свободном состоянии не встречается, а только в соединениях. Полный словарь иностранных слов, вошедших в употребление в русском языке. Попов М., 1907. ЦЕЗИЙ щелочной металл, недавно открытый посредством… … Словарь иностранных слов русского языка

ЦЕЗИЙ — хим. элемент, символ Cs (лат. Caesium), ат. н. 55, ат. м. 132,9, относится к группе щелочных металлов, всегда проявляет степень окисления + 1. Цезий мягкий, как воск, бледно золотистого цвета, лёгкий (плотность 1900 кг/м3) металл, температура… … Большая политехническая энциклопедия

ЦЕЗИЙ — (символ Cs), редкий серебристо белый металл первой группы периодической таблицы. Самый щелочной элемент, с положительным электрическим зарядом. Цезий открыт в 1860 г. отличается тянучестью, используют его в фотоэлектрических элементах. Изотоп… … Научно-технический энциклопедический словарь

Цезий — Cs (от лат. caesius голубой; лат. Caesium * a. caesium; н. Zasium; ф. cesium; и. cesio), хим. элемент I группы периодич. системы Mенделеева, относится к щелочным металлам, ат. н. 55, ат. м. 132,9054. B природе встречается в виде… … Геологическая энциклопедия

цезий — поллуцит Словарь русских синонимов. цезий сущ., кол во синонимов: 3 • металл (86) • поллуцит … Словарь синонимов

Цезий — (Cesium), Cs, химический элемент I группы периодической системы, атомный номер 55, атомная масса 132,9054; мягкий щелочной металл. Открыт немецкими учеными Р. Бунзеном и Г. Кирхгофом в 1860; металлический цезий выделен шведским химиком К.… … Иллюстрированный энциклопедический словарь

ЦЕЗИЙ — (лат. Caesium) Cs, химический элемент I группы периодической системы Менделеева, атомный номер 55, атомная масса 132,9054. Назван от латинского caesius голубой (открыт по ярко синим спектральным линиям). Серебристо белый металл из группы… … Большой Энциклопедический словарь

ЦЕЗИЙ — ЦЕЗИЙ, цезия, мн. нет, муж. (от лат. caesius голубой) (хим.). Химический элемент, мягкий металл серебристого цвета. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

ЦЕЗИЙ — (лат. Caesium), Cs, хим. элемент I группы перио дич. системы элементов, ат. номер 55, ат. масса 132,9054, щелочной металл. В природе представлен стабильным Cs. Конфигурация внеш. электронной оболочки 6s1. Энергия последоват. ионизации 3,894;… … Физическая энциклопедия

Цезий — (хим. Caesium; Cs=133 при O=16, среднее из определений Бунзена,Джонсона с Алленом и Годефруа, 1861 1876) первый при содействииспектрального анализа открытый металл. Он получил это название отcaesius небесно синий, лазоревый за цвет двух резких… … Энциклопедия Брокгауза и Ефрона

ЦЕЗИЙ — ЦЕЗИЙ, Cs, хим. элемент с ат. в. 132,7. Принадлежит к II группе щелочных металлов. По своим свойствам Ц. очень похож на элементы калий и рубидий. Ц. открыт в 1860 г. Бунзеном и Кирхгофом.. В природе встречается в очень небольших количествах… … Большая медицинская энциклопедия

Цезий – полезные свойства и особенности редкого металла

Это вещество – одно из редких на планете. Потребности превышают предложение в разы. Цезий востребован наукой, атомщиками, промышленниками, врачами.

Цезий металл

Что представляет собой

Цезий – химический элемент, в таблице Д.Менделеева занимает ячейку №55.

Это весьма мягкое (0,2 по Моосу), вязкое вещество цвета бледного золота. Относится к металлам щелочной группы.

Цезий – самый мягкий элемент периодической таблицы, но самый тяжелый из устойчивых щелочных металлов.

Структура кристаллической решетки металла – куб.

Полное международное обозначение – Cesium, краткое и формула – Cs.

История открытия

Вещество обнаружили немецкие ученые Вильгельм Бунзен и Роберт Кирхгоф, испробовав оптико-спектроскопический метод.

К 1860 году это было новейшее средство исследования:

  • Исходником стала местная минеральная вода.
  • Спектральный анализ выявил две линии цвета летнего неба. Таких раньше не видели.
  • Новичок получил соответствующее название: на латыни термин caesius означает «небесный голубой».

Цезий – первый в истории химический элемент, открытый методом спектрального анализа.

Через 22 года удалось получить чистый металл. Это заслуга шведского химика Карла Сеттерберга. Он экспериментировал с цианистым цезий-бариевым расплавом.

Нахождение в природе

Типичные для цезия формы нахождения в природе – рассеянность в толще других пород либо в составе минералов. Промышленный интерес представляют минералы поллуцит и лепидолит.

Природный элемент по составу – это единственный стабильный изотоп цезий-133. При работе реакторов атомных станций формируется изотоп цезий-137. В отличие от природного аналога, это сильный и суперопасный загрязнитель окружающей среды.

Цезий 133

Это редкий элемент: подтвержденные глобальные резервы цезия – всего 70 тысяч тонн.

Физико-химические характеристики

Металл наделен неординарными физическими и химическими свойствами.

Это самое активное из известных веществ:

  • Взаимодействует со всеми веществами, включая лед.
  • На холоде чистый цезий окисляется.
  • Это легкоплавкий металл: плавится при +29°C, летом может растекаться даже при комнатной температуре.
  • Сплавы со щелочными металлами плавятся при отрицательных температурах (например, с калием и натрием – при минус 78°С).
  • Произвольно загорается на воздухе, взрывается в воде, льду при температуре выше минус 115°C.
  • Требует специальных условий хранения: обычное стекло контакта с металлом не выдерживает.

Данные характеристики позволяют отличить цезий от других металлов.

Свойства атома
Название, символ, номер цезий / caesium (Cs), 55
Атомная масса
(молярная масса)
132,9054519(2) а. е. м. (г/моль)
Электронная конфигурация [Xe] 6s1
Радиус атома 267 пм
Химические свойства
Ковалентный радиус 235 пм
Радиус иона (+1e) 167 пм
Электроотрицательность 0,79 (шкала Полинга)
Электродный потенциал -2,923
Степени окисления 0; +1
Энергия ионизации
(первый электрон)
375,5 (3,89) кДж/моль (эВ)
Термодинамические свойства простого вещества
Плотность (при н. у.) 1,873 г/см³
Температура плавления 28,7 °C; 28,5 °C; 28,44 °C
Температура кипения 667,6 °C; 688 °C; 669,2 °C
Уд. теплота плавления 2,09 кДж/моль
Уд. теплота испарения 68,3 кДж/моль
Молярная теплоёмкость 32,21 Дж/(K·моль)
Молярный объём 70,0 см³/моль
Кристаллическая решётка простого вещества
Структура решётки кубическая объёмноцентрированная
Параметры решётки 6,140 Å
Температура Дебая 39,2 K
Прочие характеристики
Теплопроводность (300 K) 35,9 Вт/(м·К)
Номер CAS 7440-46-2

Цезий сопоставим с францием. Но франций еще неустойчивее, поэтому пока существует умозрительно.

Месторождения

Крупных месторождений руды единицы:

  • 70% разведанных запасов сырья приходится на Канаду. Она же – поставщик металла на глобальный рынок номер один.
  • Запасами располагают Италия, Намибия, Зимбабве, Монголия, Казахстан.
  • У России источники сырья – Кольский полуостров, Забайкалье, Восточные Саяны.

Цезий редок, годовая глобальная добыча обогащенной руды измеряется 20-22 тоннами, металла – 9 тонн. Потребность – вчетверо больше.

Литр морской воды содержит 0,000005 г цезия. Тонна земной коры – 3,7 г, самые «богатые» минералы – до 15 г.

Химическая активность вещества усложняет добычу.

Технология получения

Металлический цезий получают лабораторно и промышленными методами:

  • Промышленное производство основано на извлечении соединений цезия из поллуцита. Минерал обрабатывается теплой соляной кислотой, осаждается, промывается горячей водой либо аммиачным составом.
  • Способ получения особо чистого металла многоступенчат. Предусмотрена прогонка через специальные фильтры для отделения механических примесей, нагреванием устраняются остатки газов. Первый и заключительный этапы – ректификация в вакууме и кристаллизация (по несколько раз).

Получение металла чистоты выше 99% (четыре либо пять девяток) – одна из технологически сложнейших проблем металлургии металлов редкого сегмента.

Кристаллы цезия

Кристаллы цезия

Где используется

Химические особенности ограничивают применение цезия. При использовании он рассеивается, что исключает повторные циклы. Несмотря на эти недостатки, материал идет нарасхват.

Достоинствами металла обусловлена его востребованность ядерной энергетикой, радиоэлектроникой, электро- и рентгенотехникой, химпромом, медициной.

Цезий как металл либо его соединения содержит разная продукция:

  • Фотоэлементы.
  • Детекторы ионизированных частиц.
  • Энергоемкие аккумуляторы.
  • Катализаторы в органическом и неорганическом синтезе (часто – в сплаве с рубидием).
  • Оптика специального назначения – оптические прицелы, аппаратура для обнаружения объектов с земной орбиты, очки, другие гаджеты ночного видения.
  • Медицинские препараты для лечения нервных патологий (шизофрения, депрессия, шок), язвы ЖКТ, дифтерии. Радиотерапию задействуют при онкологии.

Цезием-137 стерилизуют продукты питания (консервы, мясо), медицинский инструментарий, аптечный ассортимент.

Спектрометром на основе цезия исследовалась структура поверхности Марса.

«Сердце» атомных часов – атом цезия-9193. Эта частота – «цезиевый стандарт» – эталон времени для определения секунды в Сети, инфраструктуре сотовой связи, GPS.

В России продают металл и соединения. Цена цезия чистоты 99,9% – 4,3-4,5 тыс. руб. за грамм.

Значение для человека

Микродозы цезия обнаружены в большинстве организмов. В химических соединениях токсичность металла минимальна.

Жизненные процессы

Солями металла лечат гипотонию. Их свойство стабилизировать давление и работу сосудов открыл светило мировой науки русский врач Сергей Боткин в 1888 году.

Значение цезия как биологического компонента еще выясняется:

  • Вероятно, он поддерживает гомеостаз организма.
  • Оптимизирует процесс кроветворения, повышает уровень гемоглобина.

Установлено, что вещество:

  • Помогает укреплять иммунитет.
  • Восстанавливает тонус ЦНС.
  • Задействован в газовом обмене, повышая сопротивляемость организма кислородному голоданию.
  • Повышает уровень адреналина.

Суточная потребность человека в цезии не определена.

Попавшее в организм вещество всасывается кровью, усваивается ЖКТ. Выводится естественным путем.

4/5 цезия аккумулируется мышцами, остальное делят скелет, сердце, печень, кровь.

Питание

Цезием насыщенны пресноводная растительность, полярная флора и фауна (лишайники, оленина, мясо гагар, других птиц).

Среди продуктов питания это листья салата, грибы (маслята, опята, моховики).

Симптомы дефицита

О нехватке вещества у детей сигнализирует плохой аппетит, задержка физического и умственного развития.

Предупреждение

Угрозу представляет цезий-137, продукт ядерного синтеза. Даже микродозы вызывают лучевую болезнь.

Как примесь металл присутствует в морганите, амазоните, пеццоттаите (цезиевом берилле), лепидолите, других самоцветах. Это нужно учитывать собирателям минералогических коллекций. То есть хранить экспонаты в соответствующих условиях.

Читайте также: