Что такое изотопы металлов

Обновлено: 16.05.2024

В мире множество самых разнообразных металлов. Стоимость металла напрямую зависит от его количеств на планете. Металлы делятся на природные и искусственно получаемые в лабораторных условиях. И безусловно, как можно предположить, искусственно созданные будут дороже.

В Топ-10 не попадает серебро, которое остаётся на 12 месте, немного опережая 13 место — индий и уступая 11 месту — рутению.

10 место СКАНДИЙ

Природный редкоземельный металл. Легкий и высокопрочный, серебристого цвета с желтым отливом. Впервые элемент был обнаружен в 1879 году шведским химиком Ларсом Нильсоном, который назвал его в честь Скандинавии. Скандий применяется в мире высоких и инновационных технологий. Его используют при конструировании роботов, ракет, самолетов, спутников и лазерной техники. Сплавы данного металла служат в спортивной сфере — для изготовления высококлассного инвентаря. Самые крупные месторождения богатых скандием минералов находятся в Норвегии и на Мадагаскаре.

10 самых дорогих металлов в мире, фото № 1

Стоимость грамма скандия зависит от чистоты металла, но усреднённая стоимость 3-4 доллара. На биржах драгметаллов не продаётся. В ювелирной промышленности используют оксид скандия для производства фианитов.

9 место РЕНИЙ

Существование металла было предсказано Д.И.Менделеевым в 1871 году, но впервые его открыли в 1925 году немецкие химики и назвали в честь реки Рейн. Относительно чистый рений удалось получить только в 1928 году. Для получения 1 грамма рения требовалось переработать более 600 кг норвежского молибденита.

Рений — серебристо-белый металл, очень плотный, занимает третье место по температуре плавления среди металлов. Используется в электронной и химической промышленности. Имеет стратегическое значение, т.к. используется в космических и военных целях.

По природным запасам рения на первом месте в мире стоит Чили, на втором США, а на третьем Россия. Рений получают при переработке сырья с очень низким содержанием целевого компонента. Его запасы в России не более 15 тонн.

10 самых дорогих металлов в мире, фото № 2

Цена на грамм рения в среднем 5 долларов.

В ювелирной промышленности не используется.

На международных биржах металл не продаётся.

8 место ОСМИЙ

Был открыт в 1803 году двумя британскими химиками. Название металл получил от греческого слова osme, что означает «запах». Осмию присущ довольно резкий и неприятный запах, напоминающий смесь чеснока и хлорки.

Осмий — голубовато-серебристый металл платиновой группы, характеризующийся высокой плотностью, тяжёлый, хрупкий. В чистом виде не существует, встречается только в связках с другим металлом из платиновой группы — иридием.

Добывают данный металл на Урале, в Сибири, Южной Африке, Канаде, США и Колумбии. Используется в сплавах в химической промышленности и фармакологии.

10 самых дорогих металлов в мире, фото № 3

Цена одного грамма осмия на мировом рынке составляет 12-17 долларов.

На биржах металл не продаётся.

7 место ПЛАТИНА

Цивилизации Анд доколумбовой Южной Америки добывала и использовала её с незапамятных времён. Первыми европейцами, познакомившимися с платиной в середине 16 века, были испанские конкистадоры, которые и дали ему пренебрежительное название, что означало в переводе «маленькое серебро», «серебришко». Отношение объясняется тугоплавкостью платины, которая не поддавалась переплавке и долгое время не находила применения, она ценилась вдвое ниже серебра.

Примечательно, что испанский король в 1735 году повелел платину в Испанию не ввозить, чтобы мошенники не могли расплачиваться ей вместо ценного серебра. При разработке россыпей в Колумбии повелевалось отделять её от золота и топить под надзором королевских чиновников в глубокой речке, которую стали именовать Платино-дель-Пинто. Королевское распоряжение было отменено через 40 лет, когда мадридские власти приказали доставлять платину в Испанию, чтобы самим фальсифицировать золотые и серебряные монеты. С нею познакомились алхимики, считавшие самым тяжёлым металлом золото, а оказавшаяся более тяжёлой платина была наделена адскими чертами.

В 1790 году во Франции из платины был изготовлен эталон метра, а позже эталон килограмма.

В России платину впервые обнаружили на Урале близ Екатеринбурга 1819 году, а в 1824 году были открыты платиновые россыпи в Нижнетагильском округе. Разведанные запасы платины были столь велики, что Россия на долгие годы заняла первое место в мире по добыче этого металла. В настоящее время лидером является ЮАР.

В природе платина встречается только как сплав с другими металлами.

Металл отличается особым блеском и пластичностью. Активно используют в ювелирной, оружейной, медицинской промышленности. В России и СССР платина применялась при изготовлении монет и знаков отличия за выдающиеся заслуги.

Российский спрос на ювелирную платину в настоящее время составляет 0,1 % от мирового уровня.

10 самых дорогих металлов в мире, фото № 4

Платина торгуется на международной бирже драгметаллов.

6 место ИРИДИЙ

Мир впервые узнал о нем в 1803 году благодаря британскому химику С. Теннанту, который его открыл одновременно с осмием.

Иридий- металл платиновой группы, тяжелый, твердый и одновременно хрупкий, серебристо-белого цвета. Имеет высокую коррозийную стойкость даже при температуре 2000 °C.

В чистом виде в земных породах не встречается, поэтому высокая концентрация иридия в образцах породы является индикатором космического метеоритного происхождения последних.

Самостоятельно иридий практически нигде не применяется и используется для создания сплавов. Ювелиры добавляют его к платине, поскольку он делает её твёрже, а украшение из такого сплава становится практически вечным. Также он востребован при изготовлении хирургических инструментов, электроконтактов, точных лабораторных весов. Из него делают кончики для дорогих авторучек. Иридий применяется в аэрокосмической технике, биомедицине, стоматологии, химической промышленности.

10 самых дорогих металлов в мире, фото № 5

В течение года мировая металлургия расходует приблизительно одну тонну данного металла. Основное месторождение иридия находится в ЮАР.

Его стоимость равняется около 47-50 долларам за грамм.

Иридий продаётся на биржах драгметаллов.

5 место ЗОЛОТО

Люди добывают золото с незапамятных времён, археологи находят его в обиходе человека с 5 тысяч лет до н.э. в эпоху неолита в самородках. Начало системной добычи было положено на Ближнем Востоке, откуда поставлялись золотые украшения, в т.ч. в Египет.

В России до Елизаветы золото не добывалось. Оно ввозилось из-за границы в обмен на товары и взималось в виде ввозных пошлин. Первое открытие запасов золота было сделано в 1732 году в Архангельской губернии, где вблизи одной деревни была обнаружена золотая жила.

Латинское aurum означает «жёлтое».

Золото — один из немногих металлов, встречающихся исключительно в чистом виде. Чистое золото — металл жёлтого цвета, тяжёлый плотный металл, мягкий, высокопластичный.

Традиционным и самым крупным потребителем золота является ювелирная промышленность. Все ювелирные изделия изготавливают не из чистого золота, а из его сплавов с другими металлами, значительно превосходящими золото по механической прочности и стойкости.

Запасы золота в мире распределено так: около 10 % — в промышленных изделиях, остальное делится приблизительно поровну между централизованными запасами (в основном, в виде стандартных слитков химически чистого золота), собственностью частных лиц в виде слитков и ювелирными изделиями.

10 самых дорогих металлов в мире, фото № 6

США, Китай и Австралия — лидеры по золотодобыче.

Стоимость грамма золота на мировом рынке около 45-50 долларов. Золото и иридий постоянно соперничают в цене, меняясь местами в рейтинге самых дорогих металлов.

4 место ПАЛЛАДИЙ

Назван в честь астероида Паллада, открыт во время изучения платиновых руд в 1803 году.

Палладий — легкий, пластичный серебристо-белый металл из платиновой группы. Он очень легкоплавкий, хорошо полируется, не тускнеет и довольно стоек к коррозии.

Главное направление использования палладия — ювелирная промышленность. Мастера ценят его гибкость и легковесность, что позволяет создавать из него самые удивительные произведения ювелирного искусства.

Металл широко применяется в химической промышленности, медицине, для создания электроники и пр.

Крупнейшее месторождение палладия находится в России.

10 самых дорогих металлов в мире, фото № 7

Стоимость палладия за последние несколько лет сильно возросла и составляет около 60 долларов за грамм.

Палладий торгуется на международной бирже драгметаллов.

3 место РОДИЙ

Открыт в Англии в 1803 году (плодородный год на открытие металлов. ) в ходе работ с самородной платиной. Назван в честь розы (греч.), т.к. типичные соединения родия имеют глубокий тёмно-красный цвет.

Родий — это твердый благородный металл, обладающий мощнейшими отражающими свойствами, стойкостью к окислению и коррозии. За год во всем мире добывается всего лишь 30 тонн родия.

Применяют для изготовления зеркал и фар, в автомобильной и химической промышленности.

Ювелиры используют электролиты родия для получения износостойких и коррозионно-устойчивых покрытий. В дорогой и высококачественной бижутерии можно встретить родированное покрытие.

Монеты из родия выпускает США, но не как платёжное средство, а в качестве объекта инвестирования средств.

Руанда выпускает монету из чистого родия как платёжное средство.

10 самых дорогих металлов в мире, фото № 8

Самые крупные месторождения находятся в России, Канаде и ЮАР.

Стоимость родия сильно выросла за последнее время, колеблется в пределах 185 -190 долларов за грамм.

Родий торгуется на международной бирже драгметаллов.

2 место ОСМИЙ-187

Металл осмий-187 изотоп, является результатом распада изотопа рения с огромнейшем периодом полураспада. Соотношение изотопного состава осмия и рения позволяет определять возраст горных пород и метеоритов.

Изотопов осмия множество и их разделение представляет собой сложную задачу. Именно поэтому некоторые изотопы довольно дороги.

Самый редкий среди них осмий-187, процесс добычи которого отличается особой сложностью и занимает около девяти месяцев. В результате его получают в виде черного мелкокристаллического порошка с фиолетовым оттенком. Его считают самым плотным на планете. При этом он очень хрупок, его можно растолочь в обычной ступе на мелкие частички. Он имеет важное научно-исследовательское значение, его используют как катализатор химических реакций, для изготовления измерительных приборов высокой точности и в медицинской отрасли.

10 самых дорогих металлов в мире, фото № 9

Казахстан — первое и единственное государство, продающее чистый Осмий-187 на мировом рынке.

Стоимость Осмия-187 оценивается в 200 тысяч долларов за 1 грамм.

Этот изотоп не торгуется на бирже драгметаллов и более того, его международная торговля строго контролируется, пресекается любая контрабандная продажа.

Лидер рейтинга! 1 место КАЛИФОРНИЙ-252

На земле сегодня нет металла, который стоил бы дороже. Рекорд стоимости зафиксирован в Книге Гиннеса. Он является одним из изотопов калифорния.

Баснословная цена составляет 10 миллионов долларов за грамм.

Мировой запас — 8 граммов, а ежегодная добыча –30-40 микрограмм. Получают редкий металл путем сложнейшей и долговременной работы в лабораторных условиях. В чистом природном виде не встречается, полностью искусственного происхождения. Впервые был получен учёными в 1950 году в США.

10 самых дорогих металлов в мире, фото № 10

Главная ценность калифорния-252 состоит в его невероятной энергии, сравнимой с энергией среднего атомного реактора. Применяется в ядерной физике и в медицине в качестве лучевой терапии раковых новообразований. С его помощью научились определять месторождения золота и серебра. Используют для выявления дефектов в реакторах и самолетах, которые невозможно выявить даже при помощи рентгена.

В мировом рейтинге самых дорогих веществ калифорний-252 занимает 2 место, уступая по цене лишь Антиматерии.

Описание изотопов: определение, состав, превращения

В постиндустриальную эпоху развития человечества все больше стало отдавать предпочтение новым технология получения энергии. Изотопы являются субстратом в энергетическом производстве (топливный компонент ядерного реактора). Также данные видоизменные химические атомы используются и других областях человеческой деятельности: медицина, патологическая физиология, отрасль изготовление ядерного оружия.

  • Что такое изотоп?
  • Обозначения изотопов
  • Изотопы водорода
  • Изотопы урана
  • Нуклиды
  • Изотопы галлия
  • Превращения изотопов
  • Применение радиоактивных изотопов

Что такое изотоп?

Изотопами называют видоизменные элементы периодической таблицы Менделеева, которые имеют один и тот же порядковый номер, но различную атомную массу. Название характеризует нахождение подобных структур в одной клеточке периодической таблицы с нормальными элементами (изо – равное, топ – положение, место – в переводе с английского). Состав изотопов представляет собой совокупность протонов, электронов и нейтронов (количество нейтронов обычно больше, чем в обычных элементах периодической таблицы).

Обозначения изотопов

Видоизмененные элементы периодической таблицы Менделеева обозначаются следующим образом: к символу химического элемента, к которому принадлежит изотоп, подписывается верхний левый индекс с обозначением массового числа. Так, например, изотоп кислорода, обладающий массовым числом равным восемнадцати атомных единиц, будет обозначаться следующим образом: 18 O. Имеется также другое обозначение подобных атомов (например, кислород – 18).

изотопы химических элементов

Изотопы водорода

Выделяют три видоизменённых атома водорода, обладающих разными массовыми числами:

протий (Н) – одна атомная единица массы;

дейтерий (D) – две атомные единицы массы;

тритий (Т) – три атомные единицы массы.

В природе чаще всего встречается протий (в 99,98 процентах случаев), именно поэтому среднее массовое число водорода будет равняться приблизительно 1 а.е.м. Стоит, отметить, что бета-распад трития составляет порядка 12 лет, после чего он переходит в форму Гелий - 3.

Отдельно необходимо выделить, видоизменённые атомы водорода, массовое число которого может колебаться в районе 4 – 7 а.е.м.

изотоп нейтрона

Изотопы урана

Изотопный ряд урана включает в себя изотопы, имеющие массу от 219 а.е.м. до 243 а.е.м. Элементы, обладающие наибольшей изотопной распространенностью – это уран – 235 и уран – 238.

Изотопные атомные урана с массовыми числами 235 и 238 представляют собой основной компонент для производства плутония – 239 (основного компонента ядерного оружия и ядерного топлива для реакторов нового поколения).

Нуклиды

Нуклиды подразделяются на две больших категории:

Химический элемент периодической таблицы ртуть (гидраргирум) обладает наибольшей изотопной распространенностью стабильных нуклидов. Так, стабильные нуклиды ртути – это вещества изотопного ряда гидраргиума, обладающие атомной массой от 170 а.е.м. до 219 а.е.м.

Термин нуклид (в понятии радионуклид) был предложен в двадцатом веке американцем Трумэном Команом. Радионуклиды отличаются длительным периодом полураспада, который в большинстве случаев имеет значение порядка 5*10 8 лет. Таким образом, радионуклиды населяют Землю с момента ее зарождения как планеты. В зависимости от массового числа нуклиды могут подвергать различным видам превращения, обозначим некоторые из них:

альфа-распад (для большинства радионуклидов подобный вид распада не наблюдается и из-за большого периода полураспада);

нейтронный и двухнейтронный распады.

Изотопы галлия

Изотопный ряд галлия представлен элементами, обладающими промежутком массовых числен от 49 а.е.м. до 71 а.е.м. Наиболее часто в природе встречаются следующие изотопные атомы: галлий – 69, галлий -71. Природный галлий обычно представлен смесью двух данных видоизмененных атомов, имеющих малый период полураспада (порядка 68 минут). Для представителей изотопного ряда галлия характерные следующие виды ядерных превращений:

электронный захват (наблюдается в 13% случаев);

позитронный распад (наблюдается в 87% случаев).

Превращения изотопов

Превращения изотопов могут протекать двумя способами:

при участии технологий, созданных человеком (используется в промышленности);

самопроизвольно (протекает в природе).

Выделяют следующие виды ядерных превращений, связанных со изменением атомной массы химических элементов: распад (альфа, бета, двойной бета, нейтронный, позитронный), электронный захват (происходит присоединение электрона, вследствие чего изменяется заряд и состав нуклида).

состав изотопа

Применение радиоактивных изотопов

Изотопы химических элементов представляют собой элементы периодической таблицы Менделеева, обладающие нестабильными ядрами и свойством подвергаться различного ядерному распаду. В научной терминологии подобные атомы называют также радионуклидами. Радиоактивные изотопы применяются в различных сферах человеческой деятельности.

В сельском хозяйстве использования радиоизотопов необходимо для изучения особенностей роста, развития и функционирования корневых систем растений (такой способ изучения получил название – метод меченных атомов).

В авиастроительстве радионуклиды применяют для испытания авиационных конструкций на предмет износостойкости.

В сфере градостроительстве радиоактивные изотопы нашли свое применение как универсальные измерители плотности почвы.

В области коммунального хозяйства видоизмененные химические элементы, обладающие радиоактивной способностью, применяют в целях стерилизации постельного белья.

В текстильной промышленности радионуклиды используются для удаления электрических зарядов с поверхности одежды.

В машиностроительной отрасли радионуклиды используются для определения толщины металлического покрытия.

Особое место в этом списке занимает использование радиоактивных изотопов в химической промышленности и в сфере медицинских услуг. Так, получение различных полимерных соединений, которые составляют основу большинства современных предметов обихода, письменных принадлежностей, резиновых изделий того или иногда вида использования происходит при помощи взаимодействия y-излучения с различными химическими соединениями органической природы. В медицине радиоизотопы применяются в лечебных целях в рамках радиационной терапии (процедура, при которой под воздействием радионуклидов происходит разрушение любого типа живой ткани). Радиотерапия нашла свое применения в области лечения онкологических заболеваний (на данный момент, по эффективности радиотерапия уступает только химиотерапии, но зачастую данные способы лечения составляют две стадии одного процесса).

В заключении, стоит отметить, что научный прогресс в области получения новых видов изотопов тех или иных химических элементов не стоит на месте, поэтому возможно в будущем при помощи грамотного и целесообразного использования видоизмененных атомов можно будет лечить неизлечимые на данный момент заболеваний и строить космические корабли для покорения других планет и галактик.

Урок 2. Изотопы элементов

В уроке 2 «Изотопы элементов» из курса «Химия для чайников» рассмотрим что такое изотопы элементов и как правильно их обозначают; кроме того мы научимся определять массовое число, дефект массы и энергию связи ядра. Данный урок полностью опирается на основы химии, изложенные в первом уроке, в котором мы рассмотрели строение атома и атомного ядра, поэтому настоятельно вам рекомендую его изучить от корки до корки.


Хотя все атомы одного элемента имеют одинаковое число протонов, эти атомы могут отличаться числом имеющихся у них нейтронов. Такие различные атомы одного и того же элемента называются изотопами. Количество протонов, а также количество электронов у изотопа и исходного элемента совпадает. По этой причине в природе существует гораздо больше химических элементов, чем указано в таблице Менделеева, которая систематизирует элементы по числу протонов (порядковый номер).

Обозначение изотопа

Например, все атомы Li имеют 3 протона, но в природе существуют изотопы, содержащие от 3 до 5 нейтронов. Для обозначения изотопа, слева от символа элемента подписывают нижним индексом его порядковый номер, а верхним — массовое число. Массовое число — это суммарное число нуклонов (протонов и нейтронов) в атомном ядре, численно близкое к атомной массе элемента. Нижний индекс, обозначающий порядковый номер элемента, указывать не обязательно, так как все атомы лития имеют в своем ядре по 3 протона. Также, обсуждая эти изотопы, можно пользоваться записью «литий-6» и «литий-8».

Что такое изотоп

На рисунке выше изображен состав четырех изотопов гелия (Не). Все атомы гелия содержат два протона (и, следовательно, два электрона), но число нейтронов у них может быть разным. В природе большинство атомов гелия имеет два нейтрона (гелий-4) и реже одного раза на миллион встречаются атомы гелия с одним нейтроном (гелий-3). Другие изотопы гелия — гелий-5 , гелий-6 и гелий-8 (не показанный на рисунке) — неустойчивы и обнаруживаются лишь на очень непродолжительное время в ядерных реакциях (подробнее об этом будем говорить еще не скоро). Размеры ядер на рисунке очень сильно увеличены. Если бы они были такими, как это показано на рисунке, диаметр атома должен был достигать примерно 0,5 км.

Пример 1. Сколько протонов, нейтронов и электронов содержится в атоме урана-238? Запишите символ этого изотопа.

Решение: Порядковый номер урана (см. таблицу Менделеева) равен 92, а массовое число изотопа равно 238 (по условию). Следовательно, он содержит 92 протона, 92 электрона и 238 — 92 = 146 нейтронов. Его символ 238 U.

Дефект массы и энергия связи ядра

Затронув тему изотопов, нельзя пройти мимо феномена дефект массы ядра. Когда из отдельных нуклонов образуется атомное ядро, часть их массы превращается в энергию. Другими словами, вот взяли вы щепотку протонов и нейтронов, хорошенько их смяли вместе, и получили ядро, но его масса будет меньше массы исходных компонентов. Это и есть дефект масс. Формула для расчета дефекта массы ядра:

где Mя – масса ядра, Z – число протонов в ядре, N – число нейтронов в ядре, mp – масса протона, mn – масса нейтрона.

Если к атому подвести энергию (которая эквивалентна дефекту масс), то можно разделить его ядро обратно на нуклоны. Эта энергия носит название энергия связи ядра. Формула для расчета энергии связи ядра:

где с — скорость света, ∆m — дефект массы ядра

Проверьте себя, как вы усвоили понятия дефект массы и энергия связи ядра, самостоятельно решив задачу пользуясь формулами выше.

Пример 2. Если образовать атом углерода-12 из субатомных частиц, какое значение будет иметь дефект масс?

Ответ: 0,0990 а.е.м.

Теперь нам известно, что каждый изотоп элемента характеризуется порядковым номером (суммарным числом протонов), массовым числом (суммарным числом протонов и нейтронов) и атомной массой (массой атома, выраженной в атомных единицах массы). Поскольку дефект массы при образовании атома очень мал, массовое число обычно совпадает с атомной массой изотопа, округленной до ближайшего целого числа. (Например, атомная масса хлора-37 равна 36,966, что после округления дает 37.) Если в природе встречается несколько изотопов одного элемента, то экспериментально наблюдаемая атомная масса (естественная атомная масса) равна средневзвешенному значению атомных масс отдельных изотопов. Это средневзвешенное значение определяется соответственно относительному содержанию изотопов в природе. Хлор существует в природе в виде смеси из 75,53% хлора-35 (атомная масса 34,97 а.е.м.) и 24,47% хлора-37 (36,97 а.е.м.), поэтому средневзвешенное значение масс этих изотопов равно

Атомные массы, указанные в таблице Менделеева представляют собой во всех случаях средневзвешенные значения атомных масс изотопов, встречающихся в природе, и именно этими значениями мы будем пользоваться в дальнейшем, за исключением тех случаев, когда будет обсуждаться какой-нибудь конкретный изотоп. Все изотопы одного элемента в химическом отношении ведут себя практически одинаково. На рисунке ниже изображены состав и свойства некоторые атомов, ионов и изотопов элементов.

Состав и свойства некоторые атомов, ионов и изотопов элементов

Пример 3. Магний (Mg) в основном состоит из трех естественных изотопов: 78,70% всех атомов магния имеют атомную массу 23,985 а.е.м., 10,13% — 24,986 а.е.м. и 11,17% — 25,983 а.е.м. Сколько протонов и нейтронов содержится в каждом из этих трех изотопов? Чему равно средневзвешенное значение их атомных масс?

Решение: Все изотопы магния содержат по 12 протонов. Изотоп с атомной массой 23,985 а.е.м. имеет массовое число 24 (суммарное число протонов и нейтронов), следовательно, он имеет 24 — 12 = 12 нейтронов. Символ этого изотопа 24 Mg. Аналогично находим, что изотоп с атомным весом 24,986 а.е.м. имеет массовое число 25, содержит 13 нейтронов и имеет символ 25 Mg. Третий изотоп (25,983 а.е.м.) имеет массовое число 26, содержит 14 нейтронов и имеет символ 26 Mg. Средняя атомная масса магния находится следующим образом:

  • (0,7870·23,985 а.е.м.) + (0,1013·24,986 а.е.м.) + (0,1117·25,983 а.е.м.) = 24,31 а.е.м.

Надеюсь урок 2 «Изотопы элементов» помог вам понять что из себя представляют изотопы. Если у вас возникли вопросы, пишите их в комментарии.

ИЗОТОПЫ

ИЗОТОПЫ – разновидности одного и того же химического элемента, близкие по своим физико-химическим свойствам, но имеющие разную атомную массу. Название «изотопы» было предложено в 1912 английским радиохимиком Фредериком Содди, который образовал его из двух греческих слов: isos – одинаковый и topos – место. Изотопы занимают одно и то же место в клетке периодической системы элементов Менделеева.

Атом любого химического элемента состоит из положительно заряженного ядра и окружающего его облака отрицательно заряженных электронов. Положение химического элемента в периодической системе Менделеева (его порядковый номер) определяется зарядом ядра его атомов. Изотопами называются поэтому разновидности одного и того же химического элемента, атомы которых имеют одинаковый заряд ядра (и, следовательно, практически одинаковые электронные оболочки), но отличаются значениями массы ядра. По образному выражению Ф.Содди, атомы изотопов одинаковы «снаружи», но различны «внутри».

В 1932 был открыт нейтрон частица, не имеющая заряда, с массой, близкой к массе ядра атома водорода – протона, и создана протонно-нейтронная модель ядра. В результате в науке установилось окончательное современное определение понятия изотопов: изотопы – это вещества, ядра атомов которых состоят из одинакового числа протонов и отличаются лишь числом нейтронов в ядре. Каждый изотоп принято обозначать набором символов , где X – символ химического элемента, Z – заряд ядра атома (число протонов), А – массовое число изотопа (общее число нуклонов – протонов и нейтронов в ядре, A = Z + N). Поскольку заряд ядра оказывается однозначно связанным с символом химического элемента, часто для сокращения используется просто обозначение A X.

Из всех известных нам изотопов только изотопы водорода имеют собственные названия. Так, изотопы 2 H и 3 H носят названия дейтерия и трития и получили обозначения соответственно D и T (изотоп 1 H называют иногда протием).

В природе встречаются как стабильные изотопы, так и нестабильные – радиоактивные, ядра атомов которых подвержены самопроизвольному превращению в другие ядра с испусканием различных частиц (или процессам так называемого радиоактивного распада). Сейчас известно около 270 стабильных изотопов, причем стабильные изотопы встречаются только у элементов с атомным номером Z Ј 83. Число нестабильных изотопов превышает 2000, подавляющее большинство их получено искусственным путем в результате осуществления различных ядерных реакций. Число радиоактивных изотопов у многих элементов очень велико и может превышать два десятка. Число стабильных изотопов существенно меньше, Некоторые химические элементы состоят лишь из одного стабильного изотопа (бериллий, фтор, натрий, алюминий, фосфор, марганец, золото и ряд других элементов). Наибольшее число стабильных изотопов – 10 обнаружено у олова, у железа, например, их – 4, у ртути – 7.

Открытие изотопов, историческая справка.

В 1808 английский ученый натуралист Джон Дальтон впервые ввел определение химического элемента как вещества, состоящего из атомов одного вида. В 1869 химиком Д.И.Менделеевым была открыт периодический закон химических элементов. Одна из трудностей в обосновании понятия элемента как вещества, занимающего определенное место в клетке периодической системы, заключалась в наблюдаемой на опыте нецелочисленности атомных весов элементов. В 1866 английский физик и химик – сэр Вильям Крукс выдвинул гипотезу, что каждый природный химический элемент представляет собой некоторую смесь веществ, одинаковых по своим свойствам, но имеющих разные атомные масс, однако в то время такое предположение не имело еще экспериментального подтверждения и поэтому прошло мало замеченным.

Важным шагом на пути к открытию изотопов стало обнаружение явления радиоактивности и сформулированная Эрнстом Резерфордом и Фредериком Содди гипотеза радиоактивного распада: радиоактивность есть не что иное, как распад атома на заряженную частицу и атом другого элемента, по своим химическим свойствам отличающийся от исходного. В результате возникло представление о радиоактивных рядах или радиоактивных семействах, в начале которых есть первый материнский элемент, являющийся радиоактивным, и в конце – последний стабильный элемент. Анализ цепочек превращений показал, что в их ходе в одной клеточке периодической системы могут оказываться одни и те же радиоактивные элементы, отличающиеся лишь атомными массами. Фактически это и означало введение понятия изотопов.

Независимое подтверждение существования стабильных изотопов химических элементов было затем получено в экспериментах Дж. Дж. Томсона и Астона в 1912–1920 с пучками положительно заряженных частиц (или так называемых каналовых лучей), выходящих из разрядной трубки.

В 1919 Астон сконструировал прибор, названный масс-спектрографом (или масс-спектрометром). В качестве источника ионов по-прежнему использовалась разрядная трубка, однако Астон нашел способ, при котором последовательное отклонение пучка частиц в электрическом и магнитном полях приводило к фокусировке частиц с одинаковым значением отношения заряда к массе (независимо от их скорости) в одной и той же точке на экране. Наряду с Астоном масс-спектрометр несколько другой конструкции в те же годы был создан американцем Демпстером. В результате последующего использования и усовершенствования масс-спектрометров усилиями многих исследователей к 1935 году была составлена почти полная таблица изотопных составов всех известных к тому времени химических элементов.

Методы разделения изотопов.

Для изучения свойств изотопов и особенно для их применения в научных и прикладных целях требуется их получение в более или менее заметных количествах. В обычных масс-спектрометрах достигается практически полное разделение изотопов, однако количество их ничтожно мало. Поэтому усилия ученых и инженеров были направлены на поиски других возможных методов разделения изотопов. В первую очередь были освоены физико-химические методы разделения, основанные на различиях в таких свойствах изотопов одного итого же элемента, как скорости испарения, константы равновесия, скорости химических реакций и т.п. Наиболее эффективными среди них оказались методы ректификации и изотопного обмена, которые нашли широкое применение в промышленном производстве изотопов легких элементов: водорода, лития, бора, углерода, кислорода и азота.

Другую группу методов образуют так называемые молекулярно-кинетические методы: газовая диффузия, термодиффузия, масс-диффузия (диффузия в потоке пара), центрифугирование. Методы газовой диффузии, основанные на различной скорости диффузии изотопных компонентов в высокодисперсных пористых средах, были использованы в годы второй мировой войны при организации промышленного производства разделения изотопов урана в США в рамках так называемого Манхэттенского проекта по созданию атомной бомбы. Для получения необходимых количеств урана, обогащенного до 90% легким изотопом 235 U – главной «горючей» составляющей атомной бомбы, были построены заводы, занимавшие площади около четырех тысяч гектар. На создание атомного центра с заводами для получения обогащенного урана было ассигновано более 2-х млрд. долл. После войны в СССР были разработать и построены заводы по производству обогащенного урана для военных целей, также основанные на диффузионном методе разделения. В последние годы этот метод уступил место более эффективному и менее затратному методу центрифугирования. В этом методе эффект разделения изотопной смеси достигается за счет различного действия центробежных сил на компоненты изотопной смеси, заполняющей ротор центрифуги, который представляет собой тонкостенный и ограниченный сверху и снизу цилиндр, вращающийся с очень высокой скоростью в вакуумной камере. Сотни тысяч соединенных в каскады центрифуг, ротор каждой из которых совершает более тысячи оборотов в секунду, используются в настоящее время на современных разделительных производствах как в России, так и в других развитых странах мира. Центрифуги используются не только для получения обогащенного урана, необходимого для обеспечения работы ядерных реакторов атомных электростанций, но и для производства изотопов примерно тридцати химических элементов средней части периодической системы. Для разделения различных изотопов используются также установки электромагнитного разделения с мощными источниками ионов, в последние годы получили распространение также лазерные методы разделения.

Применение изотопов.

В научных исследованиях стабильные и радиоактивные изотопы широко применяются в качестве изотопных индикаторов (меток) при изучении самых различных процессов, происходящих в природе.

В сельском хозяйстве изотопы («меченые» атомы) применяются, например, для изучения процессов фотосинтеза, усвояемости удобрений и для определения эффективности использования растениями азота, фосфора, калия, микроэлементов и др. веществ.

Изотопные технологии находят широкое применение в медицине. Так в США, согласно статистическим данным, проводится более 36 тыс. медицинских процедур в день и около 100 млн. лабораторных тестов с использованием изотопов. Наиболее распространены процедуры, связанные с компьютерной томографией. Изотоп углерода C 13 , обогащенный до 99% (природное содержание около 1%), активно используется в так называемом «диагностическом контроле дыхания». Суть теста очень проста. Обогащенный изотоп вводится в пищу пациента и после участия в процессе обмена веществ в различных органах тела выделяется в виде выдыхаемого пациентом углекислого газа СО2, который собирается и анализируется с помощью спектрометра. Различие в скоростях процессов, связанных с выделением различных количеств углекислого газа, помеченных изотопом С 13 , позволяют судить о состоянии различных органов пациента. В США число пациентов, которые будут проходить этот тест, оценивается в 5 млн. человек в год. Сейчас для производства высоко обогащенного изотопа С 13 в промышленных масштабах используются лазерные методы разделения.

Радиоактивный металл и его свойства. Какой самый радиоактивный металл

Среди всех элементов периодической системы значительная часть принадлежит таким, о которых большинство людей говорят со страхом. А как же иначе? Ведь они являются радиоактивными, а это означает прямую угрозу здоровью людей.

Попробуем разобраться, какие же именно элементы являются опасными, и что они собой представляют, а также выясним, в чем заключается их вредоносное действие на организм человека.

радиоактивный металл

Общее понятие о группе радиоактивных элементов

В данную группу входят металлы. Их достаточно много, располагаются они в периодической системе сразу после свинца и до самой последней ячейки. Главный критерий, по которому принято относить тот или иной элемент к группе радиоактивных, - это его способность обладать определенным периодом полураспада.

Другими словами, радиоактивный распад - это преобразование ядра металла в другое, дочернее, которое сопровождается испусканием излучения определенного вида. При этом происходят превращения одних элементов в другие.

Радиоактивный металл - это тот, у которого хотя бы один изотоп является таковым. Даже если всего разновидностей будет шесть, и при этом лишь одна из них будет носителем данного свойства, весь элемент станет считаться радиоактивным.

Виды излучений

Основными вариантами излучения, которое испускается металлами при распадах, являются:

  • альфа-частицы;
  • бета-частицы или нейтринный распад;
  • изомерный переход (гамма-лучи).

Есть два варианта существования подобных элементов. Первый - это естественный, то есть когда радиоактивный металл встречается в природе и самым простым путем под влиянием внешних сил с течением времени преобразуется в иные формы (проявляет свою радиоактивность и распадается).

радий химический элемент

Вторая группа - это искусственно созданные учеными металлы, способные к быстрому распаду и мощному выделению большого количества радиационного излучения. Делается это для использования в определенных сферах деятельности. Установки, в которых производятся ядерные реакции по превращениям одних элементов в другие, называются синхрофазотронами.

Разница между двумя обозначенными способами полураспада очевидна: в обоих случаях он самопроизвольный, однако лишь искусственно полученные металлы дают именно ядерные реакции в процессе деструктуризации.

Основы обозначения подобных атомов

Так как у большей части элементов лишь один или два изотопа являются радиоактивными, принято указывать конкретный вид при обозначениях, а не весь элемент в целом. Например, свинец - это просто вещество. Если же принимать во внимание, что он - радиоактивный металл, то следует называть его, например, "свинец-207".

Периоды полураспада рассматриваемых частиц могут сильно варьироваться. Есть изотопы, которые существуют лишь 0,032 секунды. Но наравне с ними встречаются и те, что распадаются миллионы лет в земных недрах.

Радиоактивные металлы: список

Полный перечень всех принадлежащих к рассматриваемой группе элементов может быть достаточно внушительным, ведь всего к ней относятся около 80 металлов. В первую очередь это все, стоящие в периодической системе после свинца, включая группу лантаноидов и актиноидов. То есть висмут, полоний, астат, радон, франций, радий, резерфордий и так далее по порядковым номерам.

плутоний 239

Выше обозначенной границы располагается множество представителей, каждый из которых также имеет изотопы. При этом некоторые из них могут быть как раз радиоактивными. Поэтому важно, какие разновидности имеет химический элемент. Радиоактивный металл, точнее одна из его изотопных разновидностей, есть практически у каждого представителя таблицы. Например, их имеют:

  • кальций;
  • селен;
  • гафний;
  • вольфрам;
  • осмий;
  • висмут;
  • индий;
  • калий;
  • рубидий;
  • цирконий;
  • европий;
  • радий и другие.

Таким образом, очевидно, что элементов, проявляющих свойства радиоактивности, очень много - подавляющее большинство. Часть из них безопасна из-за слишком длинного периода полураспада и содержится в природе, другая же создана искусственно человеком для различных нужд в науке и технике и является крайне опасной для организма людей.

Характеристика радия

Название элементу дано его первооткрывателями - супругами Кюри, Пьером и Марией. Именно эти люди впервые обнаружили, что один из изотопов этого металла - радий-226 - это наиболее устойчивая форма, обладающая особыми свойствами радиоактивности. Это произошло в 1898 году, и о подобном явлении только стало известно. Подробным его изучением как раз и занялись супруги химики.

Этимология слова берет корни из французского языка, на котором оно звучит как radium. Всего известно 14 изотопных модификаций данного элемента. Но наиболее устойчивые формы с массовыми числами:

Ярко выраженной радиоактивностью обладает форма 226. Сам по себе радий - химический элемент под номером 88. Атомная масса [226]. Как простое вещество способен к существованию. Представляет собой серебристо-белый радиоактивный металл с температурой плавления около 670 0 С.

радиоактивный уран

С химической точки зрения проявляет достаточно высокую степень активности и способен реагировать с:

  • водой;
  • органическими кислотами, формируя устойчивые комплексы;
  • кислородом, образуя оксид.

Свойства и применение

Также радий - химический элемент, который формирует ряд солей. Известны его нитриды, хлориды, сульфаты, нитраты, карбонаты, фосфаты, хроматы. Также есть двойные соли с вольфрамом и бериллием.

То, что радий-226 может быть опасен для здоровья, его первооткрыватель Пьер Кюри узнал не сразу. Однако сумел убедиться в этом, когда провел эксперимент: сутки он ходил с привязанной к плечевой части руки пробиркой с металлом. На месте контакта с кожей появилась незаживающая язва, избавиться от которой ученый не мог больше двух месяцев. От своих экспериментов над явлением радиоактивности супруги не отказались, поэтому и умерли оба от большой дозы облучения.

Помимо отрицательного значения, существует и ряд областей, в которых радий-226 находит применение и приносит пользу:

Плутоний и его изотопы

Данный элемент был открыт в сороковых годах XX века американскими учеными. Впервые его выделили из урановой руды, в которой он сформировался из нептуния. Последний при этом - результат распада уранового ядра. То есть все они между собой тесно взаимосвязаны общими радиоактивными превращениями.

серебристо белый радиоактивный металл

Существует несколько устойчивых изотопов данного металла. Однако наиболее распространенной и важной практически разновидностью является плутоний-239. Известны химические реакции данного металла с:

  • кислородом,
  • кислотами;
  • водой;
  • щелочами;
  • галогенами.

По своим физическим свойствам плутоний-239 является хрупким металлом с температурой плавления 640 0 С. Основные способы воздействия на организм - это постепенное формирование онкологических заболеваний, накапливание в костях и вызывание их разрушения, заболевания легких.

Область использования - в основном ядерная промышленность. Известно, что при распаде одного грамма плутония-239 выделяется такое количество теплоты, которое сравнимо с 4-мя тоннами сгоревшего угля. Именно поэтому этот вид металла находит такое широкое применение в реакциях. Ядерный плутоний - источник энергии в атомных реакторах и термоядерных бомбах. Он же используется при изготовлении электрических аккумуляторов энергии, срок службы которых может достигать пяти лет.

Уран - источник радиации

Данный элемент был открыт в 1789 году химиком из Германии Клапротом. Однако исследовать его свойства и научиться применять их на практике люди сумели лишь в XX веке. Основная отличительная особенность в том, что радиоактивный уран способен при естественном распаде образовывать ядра:

  • свинца-206;
  • криптона;
  • плутония-239;
  • свинца-207;
  • ксенона.

В природе этот металл светло-серого цвета, обладает температурой плавления свыше 1100 0 С. Встречается в составе минералов:

  1. Урановые слюдки.
  2. Уранинит.
  3. Настуран.
  4. Отенит.
  5. Тюянмунит.

Известны три стабильных природных изотопа и 11 искусственно синтезированных, с массовыми числами от 227 до 240.

самый радиоактивный металл

В промышленности широко используется радиоактивный уран, способный быстро распадаться с высвобождением энергии. Так, его используют:

  • в геохимии;
  • горном деле;
  • ядерных реакторах;
  • при изготовлении ядерного оружия.

Влияние на организм человека ничем не отличается от предыдущих рассмотренных металлов - накопление приводит к повышенной дозе облучения и возникновению раковых опухолей.

Трансурановые элементы

Самыми главными из металлов, стоящих вслед за ураном в периодической системе, являются те, что были открыты совсем недавно. Буквально в 2004 году в свет вышли источники, подтверждающие рождение на свет 115 элемента периодической системы.

Им стал самый радиоактивный металл из всех известных на сегодняшний день - унунпентий (Uup). Его свойства остаются не изученными до сих пор, ведь период полураспада составляет 0,032 секунды! Рассмотреть и выявить подробности строения и проявляемые особенности при таких условиях просто невозможно.

Однако его радиоактивность во много раз превосходит показатели второго по данному свойству элемента - плутония. Тем не менее используется на практике не унунпентий, а более "медленные" его товарищи по таблице - уран, плутоний, нептуний, полоний и прочие.

Еще один элемент - унбибий - теоретически существует, однако доказать это практически ученые разных стран не могут с 1974 года. Последняя попытка была совершена в 2005 году, однако оказалась не подтвержденной общим советом ученых-химиков.

Торий

Был открыт еще в XIX веке Берцелиусом и назван в честь скандинавского бога Тора. Является слаборадиоактивным металлом. Такой особенностью обладают пять из его 11-ти изотопов.

Основное применение в ядерной энергетике основано не на способности испускать огромное количество тепловой энергии при распаде. Особенность в том, что ядра тория способны захватывать нейтроны и превращаться в уран-238 и плутоний-239, которые уже и вступают непосредственно в ядерные реакции. Поэтому и торий можно отнести к группе рассматриваемых нами металлов.

радиоактивные металлы список

Полоний

Серебристо-белый радиоактивный металл под номером 84 в периодической системе. Открыт был все теми же ярыми исследователями радиоактивности и всего, что с ней связано, супругами Марией и Пьером Кюри в 1898 году. Главная особенность этого вещества в том, что оно свободно существует около 138,5 дней. То есть таков период полураспада данного металла.

В природе встречается в составе урановых и других руд. Используется как источник энергии, причем достаточно мощной. Является стратегическим металлом, так как применяется для изготовления ядерного оружия. Количество строго ограничено и находится под контролем каждого государства.

Также используется для ионизации воздуха, устранения статического электричества в помещении, при изготовлении космических обогревателей и прочих схожих предметов.

Воздействие на организм человека

Все радиоактивные металлы обладают способностью проникать сквозь кожу человека и накапливаться внутри организма. Они очень плохо выводятся с продуктами жизнедеятельности, вообще не выводятся с потом.

Со временем начинают поражать дыхательную, кровеносную, нервную системы, вызывая в них необратимые изменения. Воздействуют на клетки, заставляя их функционировать неправильно. В результате происходит образование злокачественных опухолей, возникают онкологические заболевания.

Поэтому каждый радиоактивный металл - большая опасность для человека, особенно если говорить о них в чистом виде. Нельзя трогать их незащищенными руками и находиться в помещении вместе с ними без специальных защитных приспособлений.

Читайте также: