Что такое теплоотдача металла

Обновлено: 05.10.2024

В тех случаях, когда необходимо обеспечить интенсивный отвод теплоты от поверхности нагрева или когда при низком давлении требуется иметь высокую температуру рабочего тела, в качестве теплоносителя применяются расплавленные металлы.

По своим физическим свойствам большинство расплавленных металлов отличаются от обычных теплоносителей — воды, масел и др. Главной особенностью металлических теплоносителей является высокая теплопроводность и соответственно низкие значения числа Прандтля: .

В последнее время как в нашей стране, так и за рубежом, было проведено большое число измерений по теплоотдаче жидких металлов в различных условиях. В опытах применялись такие теплоносители, как нятрий, калий, литий, цезий, ртуть, висмут, сплавы висмута со свинцом и др. Первые широкие и систематические исследования теплоотдачи и гидравлического сопротивления были выполнены в Энергетическом институте им. Г. М. Кржижановского [72, 89].

Исследования показали, что закономерности для теплоотдачи расплавленных металлов характеризуются рядом особенностей.

При свободном движении таких теплоносителей для расчета теплоотдачи получена следующая зависимость [62, 91]:

В качестве определяющей здесь принята средняя температура пограничного слоя Определяющий размер: диаметр — для горизонтальных труб, высота — для вертикальных пластин.

При вынужденном движении расплавленных металлов в трубах при чистой поверхности нагрева расчет теплоотдачи может проводиться по формуле [87]

В качестве определяющей температуры здесь принята температура расплавленного металла , определяющий размер — диаметр трубы. Уравнение (10-20) применимо при значениях чисел Пекле . Оно охватывает как ламинарный, так и турбулентный режимы течения металлического теплоносителя. Из-за высокой теплопроводности расплавленных металлов переход к турбулентному режиму не сопровождается резким изменением интенсивности теплоотдачи; зависимость Nu от носит плавный характер. Соотношение (10-20) применимо при относительной длине трубы . Если меньше, то значение коэффициента теплоотдачи будет выше. В этом случае значение коэффициента теплоотдачи вычисленное по этой формуле, надо умножить на поправочный коэффициент .

От соприкосновения с воздухом расплавленные металлы сильно окисляются. Поэтому их циркуляционные контуры должны быть герметичными и заполнены нейтральным газом. В противном случае на поверхности нагрева осаждается слой окислов и теплоотдача ухудшается. Для расчета средних коэффициентов теплоотдачи при вынужденном турбулентном движении в окисленных трубах получена формула [72]

Что касается гидравлического сопротивления, то опыты показывают, что для расплавленных металлов оно подчиняется общим закономерностям [41].

При поперечном обтекании шахматных и коридорных пучков труб потоком расплавленного металла для расчета теплоотдачи применима зависимость [82, 88]

в которой определяющим размером служит диаметр трубы, а скорость рассчитывается в узком сечении пучка. Эта формула справедлива в диапазоне чисел от 100 до 4000.

Приведенные соотношения показывают, что в условиях вынужденного течения металлического теплоносителя для процесса теплообмена определяющим является число Пекле ; влияние вязкости на теплоотдачу отсутствует. От распределения температур и направления теплового потока теплоотдача расплавленных металлов практически не зависит.

Процесс кипения щелочных металлов, как показывают опытные данные, также характеризуется некоторыми особенностями. При низких давлениях насыщенных паров (ниже ) обычно наблюдается неустойчивый режим кипения: парообразование происходит нерегулярно, отдельными всплесками, в промежутке между которыми жидкость перегревается. При высоких тепловых потоках перегрев жидкости около поверхности нагрева может быть значительным, достигая десятков и сотен градусов. При вскипании перегрев быстро снижается: это вызывает интенсивные колебания температур во всей системе. Неустойчивое кипение металла часто сопровождается также звуковыми эффектами: стуком, щелчками, треском и т. д. В целом интенсивность теплообмена при неустойчивом кипении оказывается несколько более высокой, чем при свободной конвекции без кипения [57].

При давлениях, близких к атмосферному, процесс кипения металла приобретает устойчивый характер; интенсивность теплообмена растет. Зависимость а от q при развитом пузырьковом кипении металлов в большом объеме имеет такой же характер, как и при кипении обычных жидкостей:

При этом в опытах было обнаружено, что если кипящий металл находится под давлением инертного газа, то теплоотдача обычно оказывается более высокой (примерно в 1,5 раза), чем тогда, когда металл находится под давлением своего насыщенного пара. По-видимому, это объясняется тем, что газ, частично растворяясь в жидкости, облегчает вскипание и увеличивает число действующих центров парообразования. Инертный газ также способствует более раннему переходу от неустойчивого к развитому режиму кипения. Теплоотдача при кипении металлов зависит также от физико-химических свойств и материала поверхности нагрева, ее однородности.

Все это приводит к тому, что опытные данные, полученные разными исследователями, значительно отличаются.

Ориентировочные значения коэффициента с в уравнении (10-23) для натрия, калия, цезия, а также амальгам ртути при давлениях около атмосферного близки между собой и составляют: . Первая критическая плотность теплового потока в этих условиях характеризуется следующими величинами: для натрия , для калия , для цезия . При увеличении давления теплоотдача и критические тепловые нагрузки при кипении щелочных металлов несколько увеличиваются [85].

Конденсация паров щелочных металлов обычно носит пленочный характер. Из-за высокой теплопроводности жидкометаллической пленки ее термическое сопротивление (определяемое по теории пленочной конденсации Нуссельта, см. § 4-2) оказывается чрезвычайно низким. Поэтому интенсивность конденсации паров металлов определяется обычно не столько термическим сопротивлением конденсатной пленки, сколько скоростью поступления молекул пара к поверхности пленки и эффективностью их осаждения (конденсации) на этой поверхности. Последний процесс определяется молекулярно-кинетическими закономерностями. В этом состоит основная особенность конденсации паров металлических теплоносителей.

Согласно молекулярно-кинетической теории [55, 70] скорость конденсации насыщенного пара при не очень больших разрежениях определяется соотношением

где — количество пара, которое конденсируется на единице поверхности пленки в единицу времени, ; р и Т — давление и температура насыщенного пара в объеме; р — давление на линии насыщения при температуре поверхности пленки — индивидуальная газовая постоянная, Дж/(кг•К).

Безразмерный коэффициент р, входящий в это уравнение, определяет эффективность процесса захвата поверхностью жидкости падающих молекул пара; он называется коэффициентом конденсации. Когда все молекулы пара, достигающие поверхности пленки, захватываются ею (конденсируются), . Если поверхность захватывает только часть падающих молекул, ; остальные молекулы в количестве отражаются от поверхности и уходят обратно в паровой объем.

Плотность теплового потока, отводимая от поверхности пленки к стенке,

Таким образом, соотношения (10-24) и (10-25) при известной температуре поверхности конденсатной пленки Т' определяют тепловой поток в процессе конденсации пара.

Для жидкометаллических теплоносителей термическое сопротивление конденсатной пленки во многих случаях оказывается настолько малым, что приближенно можно считать, что температурный перепад в пленке отсутствует и температура свободной поверхности пленки V равна температуре стенки . Тогда приведенные соотношения позволяют рассчитать теплообмен.

Исследования [86] показывают, что при низких давлениях паров щелочных металлов бар) коэффициент конденсации . При увеличении давления значения р уменьшаются. Поданным [100, 111] в этой области давлений для калия и натрия зависимость Р от давления описывается следующей эмпирической формулой:

которая подтверждается опытными данными до давлений бар.

При наличии в паре примесей инертного газа, а также при загрязнении поверхности пленки конденсата интенсивность конденсации паров металлов резко снижается [86].

Теплопроводность металлов

Все изделия, используемые человеком, способны передавать и сохранять температуру прикасаемого к ним предмета или окружающей среды. Способность отдачи тепла одного тела другому зависит от вида материала, через который проходит процесс. Свойства металлов позволяют передавать тепло от одного предмета другому, с определенными изменениями, в зависимости от структуры и размера металлической конструкции. Теплопроводность металлов - один из параметров, определяющих их эксплуатационные возможности.

Что такое теплопроводность и для чего нужна

Процесс переноса энергии атомов и молекул от горячих предметов к изделиям с холодной температурой, осуществляется при хаотическом перемещении движущихся частиц. Такой обмен тепла зависит от агрегатного состояния металла, через который проходит передача. В зависимости от химического состава материала, теплопроводность будет иметь различные характеристики. Данный процесс называют теплопроводностью, он заключается в передаче атомами и молекулами кинетической энергии, определяющей нагрев металлического изделия при взаимодействии этих частиц, или передается от более теплой части – к той, которая меньше нагрета.

Способность передавать или сохранять тепловую энергию, позволяет использовать свойства металлов для достижения необходимых технических целей в работе различных узлов и агрегатов оборудования, используемого в народном хозяйстве. Примером такого применения может быть паяльник, нагревающийся в средней части и передающий тепло на край рабочего стержня, которым выполняют пайку необходимых элементов. Зная свойства теплопроводности, металлы применяют во всех отраслях промышленности, используя необходимый параметр по назначению.

Понятие термического сопротивления и коэффициента теплопроводности

Если теплопроводность характеризует способность металлов передавать температуру тел от одной поверхности к иной, то термическое сопротивление показывает обратную зависимость, т.е. возможность металлов препятствовать такой передаче, иначе выражаясь, – сопротивляться. Высоким термическим сопротивлением обладает воздух. Именно он, больше всего, препятствует передаче тепла между телами.

Количественную характеристику изменения температуры единицы площади за единицу времени на один градус (К), называют коэффициентом теплопроводности. Международной системой единиц принято измерять этот параметр в Вт/м*град. Эта характеристика очень важна при выборе металлических изделий, которые должны передавать тепло от одного тела к другому.

Коэффициент теплопроводности металлов при температура, °С

От чего зависит показатель теплопроводности

Изучая способность передачи тепла металлическими изделиями выявлено, что теплопроводность зависит от:

  • вида металла;
  • химического состава;
  • пористости;
  • размеров.

Металлы имеют различное строение кристаллической решетки, а это может изменить теплопроводность материала. Так, например, у стали и алюминия, особенности строения микрочастиц влияют по-разному на скорость передачи тепловой энергии через них.

Коэффициент теплопроводности может иметь различные значения для одного и того же металла при изменении температуры воздействия. Это связано с тем, что у разных металлов градус плавления отличается, а значит, при других параметрах окружающей среды, свойства материалов также будут отличаться, а это отразится на теплопроводности.

Методы измерения

Для измерения теплопроводности металлов используют два метода: стационарный и нестационарный. Первый характеризуется достижением постоянной величины изменившейся температуры на контролируемой поверхности, а второй – при частичном изменении таковой.

Стационарное измерение проводится опытным путем, требует большого количества времени, а также применения исследуемого металла в виде заготовок правильной формы, с плоскими поверхностями. Образец располагают между нагретой и охлажденной поверхностью, а после прикосновения плоскостей, измеряют время, за которое заготовка может увеличить температуру прохладной опоры на один градус по Кельвину. Когда рассчитывают теплопроводность, обязательно учитывают размеры исследуемого образца.

Нестационарную методику исследований используют в редких случаях из-за того, что результат, зачастую, бывает необъективным. В наши дни никто, кроме ученых, не занимается измерением коэффициента, все используют, давно выведенные опытным путем, значения для различных материалов. Это обусловлено постоянством данного параметра при сохранении химического состава изделия.

Теплопроводность стали, меди, алюминия, никеля и их сплавов

Обычное железо и цветные металлы имеют разное строение молекул и атомов. Это позволяет им отличаться друг от друга не только механическими, но и свойствами теплопроводности, что, в свою очередь, влияет на применение тех или иных металлов в различных отраслях хозяйства.

таблица теплопроводности металлов

Сталь имеет коэффициент теплопроводности, при температуре окружающей среды 0 град. (С), равный 63, а при увеличении градуса до 600, он снижается до 21 Вт/м*град. Алюминий, в таких же условиях, наоборот – увеличит значение от 202 до 422 Вт/м*град. Сплавы из алюминия, будут также повышать теплопроводность, по мере увеличения температуры. Только величина коэффициента будет на порядок ниже, в зависимости от количества примесей, и колебаться в пределах от 100 до 180 единиц.

Медь, при изменении температуры в тех же пределах, будет уменьшать теплопроводность от 393 до 354 Вт/м*град. При этом, медь содержащие сплавы латуни будут иметь такие же свойства, как и алюминиевые, а значение теплопроводности будет изменяться от 100 до 200 единиц, в зависимости от количества цинка и других примесей в составе сплава латуни.

теплопроводность стали и меди

Коэффициент теплопроводности чистого никеля считается низким, он будет менять свое значение от 67 до 57 Вт/м*град. Сплавы с содержанием никеля, будут также иметь коэффициент с пониженным значением, который, благодаря содержанию железа и цинка, колеблется от 20 до 50 Вт/м*град. А наличие хрома, позволит понизить теплопроводность в металлах до 12 единиц, с небольшим увеличением этой величины, при нагреве.

Применение

Агрегатное состояние материалов имеет отличительную структуру строения молекул и атомов. Именно это оказывает большое влияние на металлические изделия и их свойства, в зависимости от назначения.

Отличающийся химический состав узлов и деталей из железа, позволяет обладать различной теплопроводностью. Это связано со структурой таких металлов как чугун, сталь, медь и алюминий. Пористость чугунных изделий способствует медленному нагреванию, а плотность медной структуры – наоборот, ускоряет процесс теплоотдачи. Эти свойства используют для быстрого отвода тепла или постепенного нагревания продукции инертного назначения. Примером использования свойств металлических изделий является:

  • кухонная посуда с различными свойствами;
  • оборудование для пайки труб;
  • утюги;
  • подшипники качения и скольжения;
  • сантехническое оборудование для подогрева воды;
  • приборы отопления.

Медные трубки широко используют в радиаторах автомобильных систем охлаждения и кондиционеров, применяемых в быту. Чугунные батареи сохраняют тепло в квартире, даже при непостоянной подаче теплоносителя требуемой температуры. А радиаторы из алюминия, способствуют быстрой передаче тепла отапливаемому помещению.

радиатор отопления и алюминия

При возникновении высокой температуры, в результате трения металлических поверхностей, также важно учитывать теплопроводность изделия. В любом редукторе или другом механическом оборудовании, способность отводить тепло, позволит деталям механизма сохранить прочность и не быть подвергнутыми разрушению, в процессе эксплуатации. Знание свойств теплопередачи различных материалов, позволит грамотно применить те или иные сплавы из цветных или черных металлов.

Что такое теплопроводность и теплопередача. Теплопроводность металлов и других материалов.


Тепло - это одна из форм энергии, которая заключена в движении атомов в веществе. Энергию этого движения мы и измеряем термометром, хоть и не напрямую.
Как и все другие виды энергии, теплота может передаваться от тела к телу. Происходит это всегда, когда есть тела разной температуры. При этом им необязательно даже находиться в соприкосновении, так существует несколько способов передачи тепла. А именно:

Теплопроводность. Это передача тепла при непосредственном контакте двух тел. (Тело может быть и одно, если его части разной температуры.) При этом чем больше разность температур тел и чем больше площадь их контакта - тем больше тепла передаётся каждую секунду. Помимо этого, количество передаваемого тепла зависит от материала - например, большинство металлов хорошо проводят тепло, а дерево и пластик - гораздо хуже. Величину, характеризующую эту способность передавать тепло, тоже называют теплопроводностью (более корректно – коэффициент теплопроводности), что может приводить к некоторой путанице.

Если необходимо измерить теплопроводность какого-либо материала, то обычно это проводят в следующем эксперименте: изготовляется стержень из интересующего материала и один его конец поддерживается при одной температуре, а другой - при отличной, например более низкой, температуре. Пусть, например, холодный конец будет помещён в воду со льдом - таким образом будет поддерживаться постоянная температура, а измеряя скорость таяния льда можно судить о количестве полученного тепла. Деля количество тепла (а вернее - мощность) на разность температур и поперечное сечение стержня и умножая на его длину, получаем коэффициент теплопроводности, измеряющийся, как следует из вышенаписанного, в Дж*м/К*м 2 *с, то есть в Вт/К*м. Ниже вы видите таблицу теплопроводности некоторых материалов.

Материал Теплопроводность, Вт/(м·K)
Алмаз 1001—2600
Серебро 430
Медь 401
Оксид бериллия 370
Золото 320
Алюминий 202—236
Кремний 150
Латунь 97—111
Хром 107
Железо 92
Платина 70
Олово 67
Оксид цинка 54
Сталь 47
Оксид алюминия 40
Кварц 8
Гранит 2,4
Бетон сплошной 1,75
Базальт 1,3
Стекло 1-1,15
Термопаста КПТ-8 0,7
Вода при нормальных условиях 0,6
Кирпич строительный 0,2—0,7
Древесина 0,15
Нефтяные масла 0,12
Свежий снег 0,10—0,15
Стекловата 0,032-0,041
Каменная вата 0,034-0,039
Воздух (300 K, 100 кПа) 0,022

Как видно, теплопроводность различается на много порядков. Удивительно хорошо проводят тепло алмаз и оксиды некоторых металлов (по сравнению с другими диэлектриками), плохо проводят тепло воздух, снег и термопаста КПТ-8.

Но мы привыкли считать, что воздух хорошо проводит тепло, а вата - нет, хотя она может на 99% состоять из воздуха. Дело в конвекции. Горячий воздух легче холодного, и "всплывает" наверх, порождая постоянную циркуляцию воздуха вокруг нагретого или сильно охлаждённого тела. Конвекция на порядок улучшает теплопередачу: при её отсутствии было бы очень затруднительно вскипятить кастрюлю воды, не перемешивая её постоянно. А в диапазоне от 0°С до 4°С вода при нагревании сжимается, что приводит к конвекции в противоположном от привычного направлении. Это приводит к тому, что независимо от температуры воздуха, на дне глубоких озёр температура всегда устанавливается равной 4°C

Для уменьшения теплоотдачи из пространства между стенками термосов откачивают воздух. Но надо отметить, что теплопроводность воздуха мало зависит от давления вплоть до 0,01мм рт.ст, то есть границы глубокого вакуума. Этот феномен объясняется теорией газов.

Ещё один способ теплопередачи - это излучение. Все тела излучают энергию в виде электромагнитных волн, но только достаточно сильно нагретые (~600°С) излучают в видимом нами диапазоне. Мощность излучения даже при комнатной температуре достаточно большая - порядка 40мВт с 1см 2 . В пересчёте на площадь поверхности человеческого тела (~1м 2 ) это составит 400Вт. Спасает лишь то, что в привычном нам окружении все тела вокруг также излучают с примерно той же мощностью. Мощность излучения, кстати, сильно зависит от температуры (как T 4 ) , согласно закону Стефана-Больцмана. Расчёты показывают, что, например, при 0°С мощность теплового излучения примерно в полтора раза слабее, чем при 27°С.

В отличие от теплопроводности, излучение может распространяться в полном вакууме - именно благодаря нему живые организмы на Земле получают энергию Солнца. Если теплопередача излучением нежелательна, то её минимизируют, ставя непрозрачные перегородки между холодным и горячим объектами, либо уменьшают поглощение излучения (и испускание, кстати, в ровно той же степени), покрывая поверхность тонким зеркальным слоем металла, например, серебра.

Среди большого количества параметров, характеризующие металлы существует и такое понятие как теплопроводность. Ее значение сложно переоценить. Этот параметр применяют при расчете деталей и узлов. Например, шестеренчатых передач. Вообще теплопроводностью занимается целый раздел науки под названием термодинамика.

Теплопроводность металлов

Что такое теплопроводность и термическое сопротивление

Теплопроводность металлов можно охарактеризовать так – это способность материалов (газ, жидкость и пр.) переносить излишнюю тепловую энергию от разогретых участков тела к холодным. Перенос осуществляется свободно движущимися элементарными частицами, в число которых входят атомы электроны и пр.

Сам процесс теплообмена происходит в любых телах, но способ переноса энергии во многом зависит от агрегатного состояния тела.

Кроме этого теплопроводности можно дать еще одно определение – это количественный параметр возможности тела проводить тепловую энергию. Если сравнивать тепловые и электрические сети, то это понятие аналогично электрической проводимости.

Тепловое сопротивление

Способность физического тела не допускать распространение теплового колебания молекул называют тепловым сопротивлением. Кстати, некоторые, искренне заблуждаются, путая это понятие с теплопроводностью.

Понятие коэффициента теплопроводности

Коэффициентом теплопроводности называют величину, которая равна количеству теплоты, переносимого через единицу поверхности за одну секунду.
Теплопроводность металла была установлена еще в 1863 году. Именно тогда было доказано то, что за передачу теплоты отвечают свободные электроны, которых в металле великое множество. Именно поэтому коэффициент теплопроводности металлов значительно выше, чем у диэлектрических материалов.

Теплопроводность – это физическая величина и по большей части зависит от параметров температуры, давления и типа вещества. Большая часть коэффициентов определяется опытным путем. Для этого разработано множество методов. Результаты сводятся в справочные таблицы, которые потом используются при проведении различных научных и инженерных расчетов.
Тела обладают разной температурой и при тепловом обмене она (температура) будет распределяться неравномерно. Другими словами необходимо знать, как зависит коэффициент теплопроводности от температуры.

Многочисленные опыты показывают то, что у многих материалов связь между коэффициентом и самой теплопроводностью является линейной.

Коэффициент теплопроводности

Теплопроводность металлов обусловлена формой его кристаллической решетки.

Во многом коэффициент теплопроводности зависит от строения материала, размеров его пор и влажности.

Когда учитывается коэффициент теплопроводности

Параметры теплопроводности в обязательном порядке учитывают во время выбора материалов для ограждающих конструкций – стен, перекрытий и пр. В помещениях, где стены выполнены из материалов с высокой теплопроводностью в холодное время года будет довольно прохладно. Не поможет и отделка помещения. Для того, чтобы этого избежать стены необходимо делать довольно толстыми. Это непременно повлечет повышение затрат на материалы и оплату труда.

Схема утепления деревянного дома

Схема утепления деревянного дома

Именно поэтому в конструкции стен предусмотрено использование материалов с низкой теплопроводностью (минеральная вата, пенопласт и пр.).

Показатели для стали

  • В справочных материалах по теплопроводности различных материалов особое место занимают данные, представленные о сталях разных марок.
    Так, в справочных материалах собраны экспериментальные и расчетные данные следующих типов стальных сплавов:
    стойких к воздействию коррозии, повышенной температуры;
  • предназначенных для производства пружин, режущего инструмента;
  • насыщенных легирующими добавками.

В таблицах сведены показатели, которые были собраны для сталей в температурном диапазоне от -263 до 1200 градусов.
Усредненные показатели составляют для:

  • углеродистых сталей 50 – 90 Вт/(м×град);
  • коррозионностойких, жаро- и теплостойких сплавов, относящимся к мартенситным — от 30 до 45 Вт/(м×град);
  • сплавов, относящимся к аустенитным от 12 до 22 Вт/(м×град).

В этих справочных материалах размещена информация и свойствах чугунов.

Коэффициенты теплопроводности алюминиевых, медных и никелевых сплавов

Во время проведения расчетов связанных с цветными металлами и сплавами проектировщики применяют справочные материалы, размещенные в специальных таблицах.

Таблица теплопроводности алюминиевых сплавов

Таблица теплопроводности алюминиевых сплавов

В них представлены материалы о теплопроводности цветных металлов и сплавов, кроме этих данных указана информация о химическом составе сплавов. Исследования проводили при температурах от 0 до 600 °С.

По информации собранной в этих табличных материалах видно то, что к цветным металлам, обладающим высокой теплопроводностью сплавы на основе магния и никель. К металлам, у которых низкая теплопроводность относят нихром, инвар и некоторые другие.

У большинства металлов хорошая теплопроводность, у одних она больше, у других меньше. К металлам с хорошей теплопроводностью относят золото, медь и некоторые другие. К материалам с низкой теплопроводностью относят олово, алюминий и пр.

Таблица теплопроводности сплавов никеля

Таблица теплопроводности сплавов никеля

Высокая теплопроводность может быть и достоинством, и недостатком. Все зависит от сферы применения. К, примеру, высокая теплопроводность хороша для кухонной посуды. Материалы с низкой теплопроводностью применяют для создания неразъемных соединений металлических деталей. Существуют целые семейства сплавов, выполненных на основе олова.

Недостатки высокой теплопроводности меди и ее сплавов

Медь имеет гораздо большую стоимость, чем алюминий или латунь. Но между тем этот материал имеет ряд недостатков, которые связаны с его положительными сторонами.
Высокая теплопроводность этого металла вынуждает к созданию специальных условий для его обработки. То есть медные заготовки необходимо нагревать более точно, нежели сталь. Кроме этого часто, перед началом обработки предварительный или сопутствующий нагрев.
Нельзя забывать о том, что трубы, изготовленные из меди, подразумевают то, что будет проведена тщательная теплоизоляция. Особенно это актуально для тех случаев, когда из этих труб собрана система подачи отопления. Это значительно удорожает стоимость выполнения монтажных работ.
Определенные сложности возникают и при использовании газовой сварки. Для выполнения работе требуется более мощный инструмент. Иногда, для обработки меди толщиной в 8 – 10 мм может потребоваться использование двух, а то и трех горелок. При этом одной из них выполняют сварку медной трубы, а остальные заняты ее подогревом. Ко всему прочему работа с медью требует большего количества расходных материалов.

Работа с медью требует использования и специализированного инструмента. Например, при резке деталей, выполненных из бронзы или латуни толщиной в 150 мм потребуется резак, который может работать с сталью с большим количеством хром. Если его использовать для обработки меди, то предельная толщина не будет превышать 50 мм.

Можно ли повысить теплопроводность меди

Не так давно, группа западных ученых провела ряд исследований по повышению теплопроводности меди и ее сплавов. Для работы они применяли пленки, выполненные из меди, с нанесенным на ее поверхность тонким слоем графена. Для его нанесения использовали технологию его осаждения из газа. При проведении исследований применялось множество приборов, которые были призваны подтвердить объективность полученных результатов.
Результаты исследований показали то, что графен обладает одним из самых высоких показателей теплопроводности. После того, как его нанесли на медную подложку, теплопроводность несколько упала. Но, при проведении этого процесса происходит нагревание меди и в ней происходит увеличение зерен, и в результате повышается проходимость электронов.

Графен с медной фольгой

Графен с медной фольгой

При нагревании меди, но без нанесения этого материала, зерна сохранили свой размер.
Одно из назначений меди это отведение лишнего тепла из электронных и электрических схем. Использование графенового напыления эта задача будет решаться значительно эффективнее.

Влияние концентрации углерода

Стали с малым содержанием углерода обладают высокими показателями теплопроводности. Именно поэтому материалы этого класса применяют для изготовления труб и арматуры для нее. Теплопроводность сталей этого типа лежит в диапазоне 47-54 Вт/(м× К).

Значение в быту и производстве

Применение теплопроводности при строительстве

У каждого материала имеется свой показатель теплопроводности. Чем ее значение ниже, тем, соответственно ниже уровень теплообмена между внешней и внутренней средой. Это означает то, что в здании, сооруженном из материала с низкой теплопроводностью, зимой будет тепло, а летом прохладно.

Тепловые потери по швам панельного дома

Тепловые потери по швам панельного дома

При сооружении различных зданий, в том числе и жилые здания, без знаний о теплопроводности стройматериалов не обойтись. При проектировании строительных сооружений необходимо учитывать данные о свойствах таких материалов как – бетон, стекло, минеральная вата и многих других. Среди них предельная теплопроводность принадлежит бетону, между тем, у древесины она в 6 раз меньше.

Системы отопления

Ключевая задача любой отопительной системы – это перенос тепловой энергии от теплоносителя в помещения. Для такого обогрева применяют батареи или радиаторы отопления. Они необходимы для передачи тепловой энергии в помещения.

  • Радиатор отопления – это конструкция внутри, которой перемещается теплоноситель. К основным характеристикам этого изделия относят:
    материал, из которого оно изготовлено;
  • вид конструкции;
  • размеры, в том числе и количество секций;
  • показатели теплоотдачи.

Именно теплоотдача и есть ключевой параметр. Все дело в том, что определяет объем энергии, которое передается от радиатора в помещение. Чем больше этот показатель, тем ниже будут потери тепла.
Существуют справочные таблицы, определяющие материалы, оптимальные для использования в отопительных системах. Из данных, которые в них размещены, становится ясно, что самым эффективным материалом считается медь. Но, вследствие ее высокой цены и определенных технологических сложностей, связанных с обработкой меди их применяемость не так высока.

Биметаллический радиатор

Именно поэтому все чаще применяют модели, изготовленные из стальных или алюминиевых сплавов. Нередко применяют и сочетание различных материалов, например, стали и алюминия.
Каждый изготовитель радиаторов, при маркировке готовых изделий должен указывать такую характеристику, как мощность тепловой отдачи.
На рынке отопительных систем можно приобрести радиаторы, изготовленные из чугуна, стали, алюминия и биметалла.

Методы изучения параметров теплопроводности

При проведении изучения параметров теплопроводности надо помнить о том, что характеристики конкретного металла или его сплавов от метода его выработки. Например, параметры металла полученного с помощью литья могут существенно отличаться от характеристик материала изготовленного по методам порошковой металлургии. Свойства сырого металла коренным образом отличаются от того, который прошел через термическую обработку.

Термическая нестабильность, то есть преобразование отдельных свойств металла после воздействия высоких температур является общим для практически всех материалов. Как пример можно привести то, что металлы после длительного воздействия разных температур способны достичь разных уровней рекристаллизации, а это отражается на параметрах теплопроводности.

Структура стали после термической обработки

Структура стали после термической обработки

Можно сказать следующее – при проведении исследований параметров теплопроводности необходимо использовать образцы металлов и их сплавов в стандартном и определенном технологическом состоянии, например, после термической обработки.

Например, существуют требования по измельчению металла для проведения его исследований с применением способов термического анализа. Действительно, такое требование существует при проведении ряда исследований. Бывает и такое требование – как изготовление специальных пластин и многие другие.

Нетермостабильность металлов ставит ряд ограничений использование теплофизических способов исследования. Дело в том, что этот способ проведения исследований требует нагревать образцы не менее двух раз, в определенном температурном интервале.

Один из методов называют релакционно-динамическим. Он предназначен для выполнения массовых измерений теплоемкости у металлов. В этом методе фиксируется переходная кривая температуры образца между его двумя стационарными состояниями. Этот процесс является следствием скачка тепловой мощности вводимой в испытуемый образец.

Такой метод можно назвать относительным. В нем используются испытуемый и сравнительный образцы. Главное заключается в том, что бы у образцов была одинаковая излучающая поверхность. При проведении исследований температура, воздействующая на образцы должна изменяться ступенчато, при этом по достижении заданных параметров необходимо выдержать определенное количество времени. Направление изменения температуры и ее шаг должен быть подобран таким образом, что бы образец, предназначенный для испытаний, прогревался равномерно.

В эти моменты тепловые потоки сравняются и отношение теплопередачи будет определяться как разность скоростей колебаний температуры.
Иногда в процессе этих исследований источник косвенного подогрева исследуемого и сравнительного образца.
На один из образцов могут быть созданы дополнительные тепловые нагрузки в сравнении со вторым образцом.

Какой метод измерения теплопроводности лучше всего подходит для вашего материала?

Существуют методы измерения тепловодности, такие как LFA, GHP, HFM и TCT. Они отличаются друг от друга размерами и геометрическими параметрами образцов, применяемых для проверки теплопроводности металлов.

Эти сокращения можно расшифровать как:

  • GHP (метод горячей охранной зоны);
  • HFM (метод теплового потока);
  • TCT (метод горячей проволоки).

Вышеуказанные способы применяют для определения коэффициентов различных металлов и их сплавов. Вместе с тем с использованием этих методов, занимаются исследованием других материалов, например, минералокерамики или огнеупорных материалов.

Образцы металлов, на которых проводят исследования, имеют габаритные размеры 12,7×12,7×2.

Глава 4. Теплопередача в химической аппаратуре, основные зависимости и расчетные формулы (стр. 3 )

Испарительный теплообменник оконного кондиционера сделан из алюминия, с применением медных трубок.


Испарительный теплообменник оконного кондиционера сделан из алюминия, с применением медных трубок.

Коэффициент теплоотдачи для разных материалов

Что такое теплопроводность

Данный термин означает способность различных материалов к обмену энергией, которая в этом случае представлена теплом. При этом передача энергии проходит от более нагретой части к холодной и происходит за счет:

  1. Молекул.
  2. Атомов.
  3. Электронов и других частиц структуры металла.

Теплопроводность нержавеющей стали будет существенно отличаться от аналогичного показателя другого металла — например, коэффициент теплопроводности меди будет иным, нежели у стали.

Для обозначения этого показателя используется специальная величина, именуемая коэффициентом теплопроводности. Она характеризуется количеством теплоты, которое может пройти через материал за определенную единицу времени.

Показатели для стали

Теплопроводность может существенно отличаться в зависимости от химического состава металла. Коэффициент данной величины у стали и меди будет разным. Кроме этого, при повышении или уменьшении концентрации углерода изменяется и рассматриваемый показатель.

Существуют и другие особенности теплопроводности:

  1. Для стали, которая не имеет примесей, значение составляет 70 Вт/(м* К).
  2. У углеродистых и высоколегированных сталей проводимость намного ниже. За счет увеличения концентрации примесей она существенно снижается.
  3. Само термическое воздействие также может оказывать воздействие на структуру металла. Как правило, после нагрева структура меняет значение проводимости, что связано с изменением кристаллической решетки.

Коэффициент теплопроводности алюминия значительно выше, что связано с более низкой плотностью этого материала. Теплопроводность латуни также отличается от соответствующего показателя стали.

База знаний по трехмерному проектированию в Pro/Engineer, Creo, Solidworks, электронике на STM32

Обучение САПР. Важные параметры некоторых материалов, используемые при тепловых расчетах

В этой таблице представлены такие важные параметры как Коэффициент теплопроводности λ
и
Удельная теплоемкость ср
, которые необходимы для проведения тепловых расчетов по статьям Creo 3. Расчет радиатора охлаждения с принудительной вентиляцией и Solidworks 2013. Тепловой расчет радиатора охлаждения с принудительной вентиляцией в Solidworks Simulation.

В следующей таблице представлены Коэффициенты конвекции h или α

(другое название
Коэффициенты конвективной теплоотдачи
и
Коэффициенты конвективной теплопередачи
), необходимые для оценочных расчетов

Концентрация углерода в стали влияет на величину теплопередачи:

  1. Низкоуглеродистые стали имеют высокий показатель проводимости. Именно поэтому они используются при изготовлении труб, которые затем применяются при создании трубопровода системы отопления. Значение коэффициента варьирует в пределе от 54 до 47 Вт/(м* К).
  2. Средним коэффициентом для распространенных углеродистых сталей является значение от 50 до 90 Вт/(м* К). Именно поэтому подобный материал используется при изготовлении деталей различных механизмов.
  3. У металлов, которые не содержат различных примесей, коэффициент составляет 64 Вт/(м* К). Это значение несущественно изменяется при термическом воздействии.

Таким образом, рассматриваемый показатель у легированных сплавов может меняться в зависимости от температуры эксплуатации.

Коэффициент теплоотдачи поверхность — воздух

В статье рассмотрен расчет мощности теплового потока от горизонтальных и вертикальных плоских поверхностей тела, помещенного в «безразмерное» воздушное пространство при принудительной и естественной конвекции с учетом радиационной составляющей теплоотдачи.
Зная коэффициент теплоотдачи на поверхности (α), разделяющей твердое тело и окружающее это тело воздушное пространство, очень просто определить мощность теплового потока (Q) по известной разности температур (Δt).

Q=α*A*Δt, Вт – мощность теплового потока от или к поверхности тела.

  • α=αк+αр, Вт/(м 2 *К) – суммарный коэффициент теплоотдачи на границе воздух – поверхность тела αк=?, Вт/(м 2 *К) – коэффициент конвективной теплоотдачи
  • αр=ε*5,67*10 -8 *((tп+273,15) 4 — (tв+273,15) 4 )/(tп-tв)), Вт/(м 2 *К) – коэффициент радиационной теплоотдачи (теплоотдачи излучением), ε – степень черноты поверхности
    tп, °C – температура поверхности

Основная сложность расчета заключается в определении коэффициента конвективной теплоотдачи (αк)! Автоматизировать в первую очередь решение этой трудоемкой задачи поможет Excel.

Нестабильность процесса естественной конвекции у поверхностей различной формы и расположения в пространстве породила большое разнообразие эмпирических формул для вычисления коэффициента конвективной теплоотдачи (αк). Неизбежные погрешности экспериментальных данных привели к тому, что результаты вычислений для одних и тех же поверхностей и условий по формулам разных авторов отличаются друг от друга на 20% и более.

После тщательного детального ознакомления с материалами современных западных изданий по теплообмену (список литературы – в конце статьи) были выбраны формулы, рекомендованные к применению большинством авторов, для использования в представленной далее программе в Excel.

Схемы теплообмена:

На представленных ниже рисунках показаны 8 вариантов схем, для которых программа может выполнить вычисления.

Розовый цвет пластин свидетельствует о том, что они горячее окружающего воздуха. Голубой цвет – пластины холоднее воздуха.

На схемах 1а и 1б воздух принудительно движется (вентилятор, ветер) вдоль поверхности пластины независимо от её ориентации в пространстве. На всех остальных схемах окружающий воздух находится в спокойном состоянии (помещение, полный штиль), а положение пластин сориентировано в пространстве.

Расчет в Excel:


Формулы алгоритма программы:

t=(tв+tп)/2

l=L – для схем 1а и 1б

l=(B*L)/(2*(B+L)) – для схем 2а, 2б, 3а, 3б, 4а, 4б

Для определения теплофизических параметров воздуха при определяющей температуре (t) в диапазоне -70°C … +1200°C использованы формулы из предыдущей статьи на сайте.

Re=w*l/ν

Gr=g*β*|tп— tв|*l 3 /ν 2

Ra=Gr*Pr


αк=Nu*λ/l

αр=ε*0,00000005670367*((tп+273,15) 4 — (tв+273,15) 4 )/(tп-tв)) – при tв *) αр= – при tв>tп

α=αк+αр

q=α*(tп-tв)

*) Нагрев поверхностей Солнцем или иными источниками теплового излучения программой игнорируется.

Вычисление теплофизических параметров воздуха и числа Нуссельта, как видно из вышеприведенных формул, являются ключевыми и самыми трудоемкими при определении конвективного коэффициента теплоотдачи.

Тестирование программы проводилось на примерах из книг, представленных в конце статьи. Отклонения результатов в основном не выходили за пределы ±5%.

Замечание:

В отечественной теплотехнической литературе для решения рассмотренных задач широко используются формулы второй половины прошлого века М.А. Михеева и В.П. Исаченко, которые в современной западной литературе не упоминаются. Беглый сравнительный анализ результатов расчетов по формулам разных авторов дал противоречивые и неоднозначные ответы. Если при принудительной конвекции результаты фактически идентичны, то при естественной конвекции отличаются порой на 30% и более, но иногда почти совпадают…

Литература:

Прошу уважающих труд автора скачать файл с программой после подписки на анонсы статей!

Почему важно учитывать коэффициент теплопроводности? Подобное значение указывается в различных таблицах для каждого металла и учитывается в нижеприведенных случаях:

  1. При изготовлении различных теплообменников. Тепло является одним из важных носителей энергии. Его используют для обеспечения комфортных условий проживания в жилых и иных помещениях. При создании отопительных радиаторов и бойлеров важно обеспечить быструю и полную передачу тепла от теплоносителя к конечному потребителю.
  2. При изготовлении отводящих элементов. Часто можно встретить ситуацию, когда нужно провести не подачу тепла, а отвод. Примером назовем случай отвода тепла от режущей кромки инструмента или зубьев шестерни. Для того чтобы металл не терял свои основные эксплуатационные качества, обеспечивается быстрый отвод тепловой энергии.
  3. При создании изоляционных прослоек. В некоторых случаях материал не должен проводить передачу тепловой энергии. Для подобных условий эксплуатации выбирается металл, который обладает низким коэффициентом проводимости тепла.

Определяется рассматриваемый показатель при проведении испытаний в различных условиях. Как ранее было отмечено, коэффициент проводимости тепла может зависеть от температуры эксплуатации. Поэтому в таблицах указывается несколько его значений.

P. S. (01.11.2020)

Дополнение по естественной конвекции у вертикальной поверхности:

Если построить графики по вышеприведенным формулам Черчилля и Чу для числа Нуссельта при естественной конвекции у вертикальной изотермической поверхности (схемы 2а и 2б), то можно увидеть, что при Ra=10 9 кривые не совпадают!


По этому поводу авторы формул Черчилль и Чу дают примерно следующее пояснение: «уравнение, основанное на исследованиях Черчилля и Усаги Nu=(0,825+0,387*Ra 1/6 /(1+(0,492/Pr) 9/16 ) 8/27 ) 2 дает хорошие результаты для средней теплопередачи при свободной конвекции у изотермической вертикальной пластины во всем диапазоне значений Ra и Pr от до ∞, даже если оно не работает для обозначения дискретного перехода от ламинарного к турбулентному потоку». Линхарды в [1] отмечают, что рассматриваемое уравнение чуть менее точно для ламинарных условий при Ra 9 и рекомендуют в этом диапазоне использовать первое уравнение тех же авторов Nu=0,68+0,67*Ra ¼ /(1+(0,492/Pr) 9/16 ) 4/9 . Хотя, судя по графикам, в диапазоне Ra 7 для воздуха обе функции чрезвычайно близки друг к другу.

Еще один нюанс, который встретился только у Линхардов в [1]: «свойства флюида следует оценивать при t=(tв+tп)/2 за одним исключением, если флюид – газ, то коэффициент объемного расширения β следует определять при t=tв». Но сами авторы зависимостей Черчилль и Чу о таком условии ничего не пишут. По этому поводу в их статье [7], говорится, что «для больших температурных перепадов, когда физические свойства существенно различаются, Ид рекомендует оценивать физические свойства как средние значения температуры поверхности и объема, а Уайли дает более подробные теоретические указания для режима ламинарного пограничного слоя».

Максимальная относительная ошибка для Nu=(0,825+0,387*Ra 1/6 /(1+(0,492/Pr) 9/16 ) 8/27 ) 2 , если β=1/tв вместо β=2/( tв+tп), составляет в процентах:

ε=(((tв+tп)/(2*tв)) 1/3 -1)*100%, или

ε=((|(tп— tв)|/(2*tв)+1) 1/3 -1)*100%


Как видно из графика при температуре среды — воздуха tв=20°C=293,15K и при перепаде температур поверхности и воздуха Δt=|tп— tв| 90 °C расхождение результатов быстро нарастает.

Правы Линхарды или множество других авторов, рассчитывающих все свойства флюидов при одном значении определяющей температуры t=(tв+tп)/2? Однозначного ответа у меня нет.

(По материалам Обри Джаффера [8].)

Что представляет собой биметаллический радиатор

По сути, биметаллический обогреватель представляет собой смешанную конструкцию, воплотившую преимущества стальных и алюминиевых систем отопления. Устройство радиатора основывается на следующих элементах:

  • Обогреватель состоит из двух корпусов – внутреннего стального и наружного алюминиевого;
  • За счет внутренней оболочки из стали биметаллический корпус не боится агрессивной горячей воды, выдерживает высокое давление и обеспечивает высокую прочность соединения отдельных секций радиатора в одну батарею;
  • Алюминиевый корпус лучше всего передает и рассеивает поток тепла в воздухе, не боится коррозии наружной поверхности.

В качестве подтверждения высокой теплоотдачи биметаллического корпуса можно использовать сравнительную таблицу. Среди ближайших конкурентов – радиаторов из чугуна ЧГ, стали ТС, алюминия АА и АЛ, биметаллический радиатор БМ обладает одним из наилучших показателей теплоотдачи, высоким рабочим давлением и коррозионной стойкостью.

Теплоотдача стали и алюминия

В реальности дела обстоят еще хуже, большинство производителей указывает величину теплоотдачи в виде значения тепловой мощности в час для одной секции. То есть, на упаковке может быть указано, что теплоотдача биметаллической секции радиатора составляет 200 Вт.

Делается это вынужденно, данные приводят не к единице площади или перепаду температур в один градус, для того чтобы упростить восприятие покупателем конкретных технических характеристик теплоотдачи радиатора, одновременно сделав маленькую рекламу.

Как улучшить теплоотдачу

Указанный коэффициент мощности конвектора в его техпаспорте, имеет место быть, практически при идеальных условиях. На деле, величина теплового потока несколько снижена,и это обусловлено большими теплопотерями.

В первую очередь, для повышения коэффициента необходимо уменьшить потерю тепла – провести работы по утеплению дома, особое внимание, уделив крыше, так как через нее уходит около 70% теплого воздуха и оконным и дверным проемам.

Сравнение показателей: анализ и таблица

Помимо материала, из которого изготовлен прибор, на коэффициент мощности влияет межосевое расстояние – высота между осями верхнего и нижнего выходов. Также существенное влияние на КПД оказывает величина теплопроводности.

Читайте также: