Деформация металла при пожаре

Обновлено: 05.10.2024

Аннотация научной статьи по строительству и архитектуре, автор научной работы — Пучков Павел Владимирович, Киселев Вячеслав Валерьевич, Топоров Алексей Валерьевич

В данной статье рассматривается поведение металлоконструкций в условиях пожара. Рассмотрены причины потери механических свойств и способы огнезащиты металлоконструкций.

Похожие темы научных работ по строительству и архитектуре , автор научной работы — Пучков Павел Владимирович, Киселев Вячеслав Валерьевич, Топоров Алексей Валерьевич

DESTRUCTION OF THE BUILDING STEEL-WORKS IN THE FIRE

The article views the behavior of steel-works in the fire, the reasons of mechanical properties losses and fire-protection methods.

Текст научной работы на тему «Разрушение строительных металлоконструкций в условиях пожара»

П.В. Пучков, В.В. Киселев, А.В. Топоров

РАЗРУШЕНИЕ СТРОИТЕЛЬНЫХ МЕТАЛЛОКОНСТРУКЦИЙ В УСЛОВИЯХ ПОЖАРА

Ключевые слова: перегрев стали, пережог стали, охрупчивание, огнестойкость, огнезащита.

P. Puchkov, V. Kiselyov, A. Toporov DESTRUCTION OF THE BUILDING STEEL-WORKS IN THE FIRE

Keywords: steel overheating, steels bursting, embrittlement, fire resistance, fire protection.

В настоящее время в строительстве всё более возрастающим спросом пользуются металлоконструкции, изготовленные из качественных конструкционных сталей. Известно, что конструкционные стали - это сплавы на основе железа и углерода, с содержанием углерода от 0,3 до 0,7 %, которые применяются для изготовления различных деталей, механизмов и конструкций в машиностроении и строительстве и обладают определёнными механическими, физическими и химическими свойствами. Широкое применение металлоконструкций в строительстве обусловлено множеством существенных преимуществ по сравнению с другими способами возведения зданий: 1 -меньшей массой (если сравнить с бетонными и железобетонными изделиями); 2 - простотой и серийностью изготовления; 3 - лёгкостью монтажа и демонтажа; 4 - удобством и быстротой возведения; 5 - возможностью осуществления монтажа крупными блоками; 6 - транспортабельностью; 7 - прочностью и долговечностью; 8 - надёжностью в эксплуатации.

Следует отметить, что для сооружений сельскохозяйственного и промышленного назначения строительные металлоконструкции совершенно незаменимы. Ангары, фермы, навесы, павильоны, склады и быстровозводимые здания из металлоконструкций - это высокая скорость возведения, долговечность, мобильность и надёжность построек. Кроме того, строительные металлоконструкции открывают эпоху самого экономичного способа возведения построек различного назначения. Металлоконструкции весьма легки, но при этом крайне надёжны, а монтаж металлоконструкций не требует применения дорогостоящего оборудования или тяжёлой грузоподъёмной строительной техники. Сроки возведения сооружений и зданий из металлоконструкций чрезвычайно малы, при этом сами работы по строительству и монтажу металлоконструкций на объекте могут выполняться всесезонно, практически независимо от капризов погоды.

Несмотря на ряд достоинств металлоконструкций перед другими строительными конструкциями (кирпичными, бетонными, железобетонными и т. д.), у них есть существенный недостаток. Хотя сталь и является негорючим материалом, она, как и все материалы, используемые в строительстве, не может в течение длительного времени выдерживать воздействие высоких температур, возникающих внутри здания при пожаре. Конструкционные стали обладают высокой чувстви-

тельностью к высоким температурам и к действию огня. Они быстро нагреваются, что заметно снижает их прочностные свойства.

Огонь представляет собой химический процесс. В зависимости от горючего материала, огонь может быть углеводородным и целлюлозным. Целлюлозный огонь возникает там, где есть целлюлозные составляющие: напольные покрытия, мебель и облицовка стен. Углеводородный огонь вызван возгоранием нефти и нефтепродуктов, которые при горении дают высокие температуры. При воздействии огня на стальные элементы сооружения увеличение температуры на поверхности стального профиля зависит от тепловой инерции, площади нагреваемой поверхности и защитного покрытия. По мере возрастания скорости и величины теплового потока, температура, а с ней и риск разрушения стального элемента, также возрастает. Поскольку сталь обладает очень высокой теплопроводностью, открытая поверхность элемента за небольшое время легко передает тепловой поток от источника огня по всей конструкции сооружения. Также хорошо известно, что тепло переносится между элементами с разной температурой и представляет собой форму термической энергии, передаваемой через поверхность материала, от сред с высокой температурой в среды с низкой температурой, за счёт теплопроводности, излучения или конвекции. Стали обладают очень высокой теплопроводностью. Данное свойство обусловлено особенностями строения металлов. Согласно теории металлического состояния, металл представляет собой вещество, состоящее из положительных ядер, вокруг которых по орбиталям вращаются электроны. На последнем энергетическом уровне находится небольшое число электронов, и они слабо связаны с ядром, благодаря чему эти электроны имеют возможность перемещаться по всему объёму металла, т. е. принадлежать целой совокупности атомов.

Таким образом, высокая теплопроводность обеспечивается наличием «электронного газа».

Критическая температура, при которой происходит потеря несущей способности стальных конструкций при нормативной нагрузке, принимается равной 500 °С. Металлоконструкции без огнезащиты деформируются и разрушаются под воздействием напряжений, возникающих в структуре стали, а также от внешних нагрузок и температуры.

При возникновении пожара внутри здания или сооружения, температура в зоне горения может достигать порядка 1000 °С, при такой температуре структура стали необратимо изменяется. Это явление называется пережогом стали.

Пережог имеет место, когда температура нагрева приближается к температуре плавления и металл в течение длительного времени находился при высокой температуре в окислительной атмосфере кислорода воздуха. Известно, что стали - это поликристаллические тела, состоящие из множества кристаллов (зёрен), сцепленных между собой. Механические свойства стали во многом зависят от силы сцепления зёрен друг с другом. При значительном перегреве стали наблюдается окисление и частичное оплавление границ зёрен, что резко снижает прочность материала. Образовавшиеся окислённые зёрна стали обладают малым взаимным сцеплением из-за наличия на их границах плёнки окислов. При этом излом такой стали будет камневидным (рис. 1б). Пережог стали очень опасен, потому что при этом сталь становится очень хрупкой, а механические свойства стали резко снижаются, именно поэтому металлическая конструкция теряет свою несущую способность. Пережог стали дефект неисправимый, устранить который можно только переплавкой стали. Металлическую конструкцию, подверженную воздействию высоких температур при пожаре, впоследствии эксплуатировать нельзя.

При интенсивном нагреве стальной поверхности наблюдается окалинообразование, обезуглероживание поверхностного слоя (выгорание углерода в поверхностном слое металла, способст-

Научные и образовательные проблемы гражданской защиты - 2010'3

вующего возникновению растягивающих напряжений в поверхностном слое, снижающих усталостную прочность стали) и рост аустенитного зерна. Величина образовавшегося зерна аустенита в дальнейшем оказывает влияние на свойства стали. Чем выше величина зерна аустенита, тем ниже механические свойства стали.

Так же очень опасен перепад температур по сечению металлического каркаса сооружения, что приводит к возникновению термических напряжений. Резкие перепады температур по сечению металлоконструкции возникают при тушении пожара, когда на раскалённую стальную поверхность попадает огнетушащее средство - вода. Так, если при резком перепаде температур растягивающие напряжения в материале превысят предел прочности ав или предел текучести ат, то возможно коробление металлоконструкции или образование в ней трещин.

80 70 60 50 40 30 20 10

Рис. 1. Микроструктура углеродистой стали 35 в зависимости от температуры нагрева (*100): а - микроструктура стали без перегрева;

б - микроструктура стали после длительного воздействия высоких температур (пережог)

0 100 200 300 400 500 ¡°С

Рис. 2. Зависимость механических свойств малоуглеродистой стали от температуры

Следует отметить, что при нагревании стали выше 300 °С её предел прочности снижается. На рис. 2 показана зависимость от температуры модуля упругости Е, предела текучести Отр, предела прочности овр и удлинения при разрыве 5 для малоуглеродистой стали (например, из Ст3 изготавливают швеллеры, из Ст1, Ст2, Ст3 изготавливают катанку для арматуры, уголки, проволоку, гвозди, заклёпки, а из Ст10, 15, 20 трубы) в интервале 0 - 500 °С. Как видно из приведенных кривых, модуль упругости в пределах изменения температуры до 300 °С практически не меняется. Более существенные изменения претерпевают величина овр и, особенно, 5, причём имеет место, как говорят, «охрупчивание» стали - удлинение при разрыве уменьшается. При дальнейшем увеличении температуры пластичные свойства стали восстанавливаются, а прочностные показатели быстро падают.

Фактический предел огнестойкости стальных конструкций в зависимости от толщины элементов сечения и действующих напряжений составляет от 0,1 до 0,4 часа. В то время как минимальные значения требуемых пределов огнестойкости основных строительных конструкций, в том числе металлических, составляют от 0,25 до 2,5 ч в зависимости от степени огнестойкости зданий

и типа конструкций. Для обеспечения данных требований необходимо проведение мероприятий по огнезащите металлических поверхностей.

Выполнить огнезащиту металлического каркаса сооружения от негативного влияния высоких температур, возникающих при пожаре, можно по-разному. Огнезащита, блокируя тепловой поток от огня к поверхности конструкций, предохраняет её от быстрого прогревания и позволяет сохранить несущую способность в течение заданного времени.

Для защиты металлической конструкции можно создать на поверхности конструкций теплоизолирующие экраны, выдерживающие высокие температуры и непосредственное действие огня. Это позволяет замедлить прогревание металла и обеспечить сохранение конструкцией своих функций при пожаре в течение заданного периода времени.

Наиболее доступны традиционные методы (обетонирование, оштукатуривание цементно-песчаными растворами, облицовка кирпичной кладкой, окрашивание вспучивающейся краской). Также можно применить новые современные методы, основанные на механизированном нанесении облегчённых материалов и лёгких заполнителей (асбеста, вспученного перлита и вермикулита, минерального волокна, обладающих высокими теплоизоляционными свойствами) или на использовании плитных и листовых теплоизоляционных материалов (гипсокартонных и гипсово-локнистых листов, асбестоцементных плит и др.).

Эффективность современных методов огнезащиты металлических конструкций достаточна велика.

В зависимости от толщины слоя штукатурного состава, конструктивных огнезащитных листов и плит обеспечивается предел огнестойкости стальных конструкций от 0, 25 до 2,5 часов. Действие огнезащитных красок основано на вспучивании нанесённого состава при температурах 170 -200 °С и образовании пористого теплоизолирующего слоя, толщина которого составляет несколько сантиметров. Вспучивающиеся краски обеспечивают защиту стальных конструкций от огня в течение 1 часа.

Параметры оптимальной огнезащиты металлоконструкций определяются для каждой конкретной конструкции. Такой выбор должен проводиться на основе технико-экономического анализа с учётом: величин заданного предела огнестойкости для конструкций; их типа, геометрических размеров защищаемых конструкций и состояния поверхности; вида и величины нагрузки на конструкции; температурно-влажностных условий эксплуатации и производства строительно-монтажных работ; степени агрессивности окружающей среды по отношению к огнезащите и материалу конструкции; увеличения нагрузки на конструкцию за счёт массы огнезащиты; трудоёмкости нанесения (монтажа) огнезащиты; эстетических требований; долговечности; технико-экономических показателей.

1. Страхов В.Л., Кругов А.М., Давыдкин Н.Ф. Огнезащита строительных конструкций. - М.: ТИМР, 2000, 436 с.

2. Романенков И.Г., Зигерн-Корн В.Н. Огнестойкость строительных конструкций из эффективных материалов. - М.: Стройиздат, 1984, 28 с.

3. Гуляев А.П. Металловедение. - М.: Металлургия, 1986, 542 с.: ил.

4. Лахтин Ю.М. Металловедение и термическая обработка металлов: Учебник для вузов. - М.: Металлургия, 1984, 360 с.

Разрушение строительных металлоконструкций в условиях пожара

В настоящее время в строительстве всѐ более возрастающим спросом пользуются металлоконструкции, изготовленные из качественных конструкционных сталей. Известно, что конструкционные стали – это сплавы на основе железа и углерода, с содержанием углерода от 0,3 до 0,7 %, которые применяются для изготовления различных деталей, механизмов и конструкций в машиностроении и строительстве и обладают определѐнными механическими, физическими и химическими свойствами. Широкое применение металлоконструкций в строительстве обусловлено множеством существенных преимуществ по сравнению с другими способами возведения зданий: 1 – меньшей массой (если сравнить с бетонными и железобетонными изделиями); 2 – простотой и серийностью изготовления; 3 – лѐгкостью монтажа и демонтажа; 4 – удобством и быстротой возведения; 5 – возможностью осуществления монтажа крупными блоками; 6 – транспортабельностью; 7 – прочностью и долговечностью; 8 – надѐжностью в эксплуатации.

Следует отметить, что для сооружений сельскохозяйственного и промышленного назначения строительные металлоконструкции совершенно незаменимы. Ангары, фермы, навесы, павильоны, склады и быстровозводимые здания из металлоконструкций – это высокая скорость возведения, долговечность, мобильность и надѐжность построек. Кроме того, строительные металлоконструкции открывают эпоху самого экономичного способа возведения построек различного назначения. Металлоконструкции весьма легки, но при этом крайне надѐжны, а монтаж металлоконструкций не требует применения дорогостоящего оборудования или тяжѐлой грузоподъѐмной строительной техники. Сроки возведения сооружений и зданий из металлоконструкций чрезвычайно малы, при этом сами работы по строительству и монтажу металлоконструкций на объекте могут выполняться всесезонно, практически независимо от капризов погоды.

Несмотря на ряд достоинств металлоконструкций перед другими строительными конструкциями (кирпичными, бетонными, железобетонными и т. д.), у них есть существенный недостаток. Хотя сталь и является негорючим материалом, она, как и все материалы, используемые в строительстве, не может в течение длительного времени выдерживать воздействие высоких температур, возникающих внутри здания при пожаре. Конструкционные стали обладают высокой чувстви30 Научные и образовательные проблемы гражданской защиты – 2010’3 тельностью к высоким температурам и к действию огня. Они быстро нагреваются, что заметно снижает их прочностные свойства.

Огонь представляет собой химический процесс. В зависимости от горючего материала, огонь может быть углеводородным и целлюлозным. Целлюлозный огонь возникает там, где есть целлюлозные составляющие: напольные покрытия, мебель и облицовка стен. Углеводородный огонь вызван возгоранием нефти и нефтепродуктов, которые при горении дают высокие температуры. При воздействии огня на стальные элементы сооружения увеличение температуры на поверхности стального профиля зависит от тепловой инерции, площади нагреваемой поверхности и защитного покрытия. По мере возрастания скорости и величины теплового потока, температура, а с ней и риск разрушения стального элемента, также возрастает. Поскольку сталь обладает очень высокой теплопроводностью, открытая поверхность элемента за небольшое время легко передает тепловой поток от источника огня по всей конструкции сооружения. Также хорошо известно, что тепло переносится между элементами с разной температурой и представляет собой форму термической энергии, передаваемой через поверхность материала, от сред с высокой температурой в среды с низкой температурой, за счѐт теплопроводности, излучения или конвекции. Стали обладают очень высокой теплопроводностью. Данное свойство обусловлено особенностями строения металлов. Согласно теории металлического состояния, металл представляет собой вещество, состоящее из положительных ядер, вокруг которых по орбиталям вращаются электроны. На последнем энергетическом уровне находится небольшое число электронов, и они слабо связаны с ядром, благодаря чему эти электроны имеют возможность перемещаться по всему объѐму металла, т. е. принадлежать целой совокупности атомов.

Критическая температура, при которой происходит потеря несущей способности стальных конструкций при нормативной нагрузке, принимается равной 500 °С. Металлоконструкции без огнезащиты деформируются и разрушаются под воздействием напряжений, возникающих в структуре стали, а также от внешних нагрузок и температуры. При возникновении пожара внутри здания или сооружения, температура в зоне горения может достигать порядка 1000 °С, при такой температуре структура стали необратимо изменяется. Это явление называется пережогом стали. Пережог имеет место, когда температура нагрева приближается к температуре плавления и металл в течение длительного времени находился при высокой температуре в окислительной атмосфере кислорода воздуха. Известно, что стали – это поликристаллические тела, состоящие из множества кристаллов (зѐрен), сцепленных между собой. Механические свойства стали во многом зависят от силы сцепления зѐрен друг с другом. При значительном перегреве стали наблюдается окисление и частичное оплавление границ зѐрен, что резко снижает прочность материала. Образовавшиеся окислѐнные зѐрна стали обладают малым взаимным сцеплением из-за наличия на их границах плѐнки окислов. При этом излом такой стали будет камневидным (рис. 1б). Пережог стали очень опасен, потому что при этом сталь становится очень хрупкой, а механические свойства стали резко снижаются, именно поэтому металлическая конструкция теряет свою несущую способность. Пережог стали дефект неисправимый, устранить который можно только переплавкой стали. Металлическую конструкцию, подверженную воздействию высоких температур при пожаре, впоследствии эксплуатировать нельзя. При интенсивном нагреве стальной поверхности наблюдается окалинообразование, обезуглероживание поверхностного слоя (выгорание углерода в поверхностном слое металла, способстНаучные и образовательные проблемы гражданской защиты – 2010’3 31 вующего возникновению растягивающих напряжений в поверхностном слое, снижающих усталостную прочность стали) и рост аустенитного зерна. Величина образовавшегося зерна аустенита в дальнейшем оказывает влияние на свойства стали. Чем выше величина зерна аустенита, тем ниже механические свойства стали.

Так же очень опасен перепад температур по сечению металлического каркаса сооружения, что приводит к возникновению термических напряжений. Резкие перепады температур по сечению металлоконструкции возникают при тушении пожара, когда на раскалѐнную стальную поверхность попадает огнетушащее средство – вода. Так, если при резком перепаде температур растягивающие напряжения в материале превысят предел прочности σв или предел текучести σт, то возможно коробление металлоконструкции или образование в ней трещин.

0 100 200 300 400 t°С

10 20 30 40 50 60 70 80

σ, кГ/мм2 Е 15 25 35 45

σВР σТР δ% Е, кГ/мм2 δ, %

1,4*104 1,8*104 2,2*104 500

Рис. 1. Микроструктура углеродистой стали 35 в зависимости от температуры нагрева (×100): а – микроструктура стали без перегрева; б – микроструктура стали после длительного воздействия высоких температур (пережог)

Следует отметить, что при нагревании стали выше 300 °С еѐ предел прочности снижается.

На рис. 2 показана зависимость от температуры модуля упругости Е, предела текучести σтр, предела прочности σвр и удлинения при разрыве δ для малоуглеродистой стали (например, из Ст3 изготавливают швеллеры, из Ст1, Ст2, Ст3 изготавливают катанку для арматуры, уголки, проволоку, гвозди, заклѐпки, а из Ст10, 15, 20 трубы) в интервале 0 – 500 °С. Как видно из приведенных кривых, модуль упругости в пределах изменения температуры до 300 °С практически не меняется. Более существенные изменения претерпевают величина σвр и, особенно, δ, причѐм имеет место, как говорят, «охрупчивание» стали – удлинение при разрыве уменьшается. При дальнейшем увеличении температуры пластичные свойства стали восстанавливаются, а прочностные показатели быстро падают.

Фактический предел огнестойкости стальных конструкций в зависимости от толщины элементов сечения и действующих напряжений составляет от 0,1 до 0,4 часа. В то время как минимальные значения требуемых пределов огнестойкости основных строительных конструкций, в том числе металлических, составляют от 0,25 до 2,5 ч в зависимости от степени огнестойкости зданий32 Научные и образовательные проблемы гражданской защиты – 2010’3 и типа конструкций. Для обеспечения данных требований необходимо проведение мероприятий по огнезащите металлических поверхностей.

Выполнить огнезащиту металлического каркаса сооружения от негативного влияния высоких температур, возникающих при пожаре, можно по-разному. Огнезащита, блокируя тепловой поток от огня к поверхности конструкций, предохраняет еѐ от быстрого прогревания и позволяет сохранить несущую способность в течение заданного времени.

Наиболее доступны традиционные методы (обетонирование, оштукатуривание цементнопесчаными растворами, облицовка кирпичной кладкой, окрашивание вспучивающейся краской). Также можно применить новые современные методы, основанные на механизированном нанесении облегчѐнных материалов и лѐгких заполнителей (асбеста, вспученного перлита и вермикулита, минерального волокна, обладающих высокими теплоизоляционными свойствами) или на использовании плитных и листовых теплоизоляционных материалов (гипсокартонных и гипсоволокнистых листов, асбестоцементных плит и др.). Эффективность современных методов огнезащиты металлических конструкций достаточна велика.

В зависимости от толщины слоя штукатурного состава, конструктивных огнезащитных листов и плит обеспечивается предел огнестойкости стальных конструкций от 0, 25 до 2,5 часов. Действие огнезащитных красок основано на вспучивании нанесѐнного состава при температурах 170 – 200 °С и образовании пористого теплоизолирующего слоя, толщина которого составляет несколько сантиметров. Вспучивающиеся краски обеспечивают защиту стальных конструкций от огня в течение 1 часа.

Параметры оптимальной огнезащиты металлоконструкций определяются для каждой конкретной конструкции. Такой выбор должен проводиться на основе технико-экономического анализа с учѐтом: величин заданного предела огнестойкости для конструкций; их типа, геометрических размеров защищаемых конструкций и состояния поверхности; вида и величины нагрузки на конструкции; температурно-влажностных условий эксплуатации и производства строительномонтажных работ; степени агрессивности окружающей среды по отношению к огнезащите и материалу конструкции; увеличения нагрузки на конструкцию за счѐт массы огнезащиты; трудоѐмкости нанесения (монтажа) огнезащиты; эстетических требований; долговечности; техникоэкономических показателей.

1. Страхов В.Л., Кругов А.М., Давыдкин Н.Ф. Огнезащита строительных конструкций. – М.: ТИМР, 2000, 436 с.

2. Романенков И.Г., Зигерн-Корн В.Н. Огнестойкость строительных конструкций из эффективных материалов. – М.: Стройиздат, 1984, 28 с.

3. Гуляев А.П. Металловедение. – М.: Металлургия, 1986, 542 с.: ил.

4. Лахтин Ю.М. Металловедение и термическая обработка металлов: Учебник для вузов. – М.: Металлургия, 1984, 360 с.

Статья на тему: "ПОВЕДЕНИЕ МЕТАЛЛОВ И ИХ СПЛАВОВ В УСЛОВИИ ПОЖАРА. СПОСОБЫ ПОВЫШЕНИЯ ИХ ОГНЕСТОЙКОСТИ"

В современном строительстве чистые металлы используются редко, чаще всего применяют сплавы. Наиболее распространёнными сплавами являются стали- сплавы железа с углеродом (содержание углерода менее 2,14%, в противном случае сплав называется чугуном) и различные алюминиевые сплавы.

Стали применяемые в строительстве

Строительные стали производят следующим образом: расплавленный чугун продувается кислородом в конвертерной или мартеновской печи, в результате этого происходит окисление различных добавок и части углерода, содержащейся в чугуне. После плавки сталь разливают в изложницы, где происходит её остывание. В процессе кристаллизации выделяется большое количество газов и неметаллических включений, такую сталь называют кипящей, её качество невысокое. При остывании стали можно ввести специальные раскислители- кремний, марганец, которые связывают газы и делают процесс остывания более спокойным, такую сталь называют спокойной. Её качество на порядок выше. Если раскисление произошло неполностью, то полученная сталь называется полуспокойной.

По содержанию углерода стали делятся на три типа:

  • малоуглеродистые- содержание углерода находится в пределе от 0,09% до 0,22%;
  • среднеуглеродистые- с содержание углерода от 0,25 до 0,5%;
  • высокоуглеродистые- они содержат углерода от 0,6 до 1,2%.

Строительные стали являются малоуглеродистыми, среднеуглеродистые применяются в машиностроении, а высокоуглеродистые в производстве инструментов.

Стали, в которых помимо нормальных примесей находятся легирующие добавки, называются легированными. Легированные стали классифицируют следующим образом:

  • По количеству легирующих добавок: низколегированные- количество добавок до 2,5%, среднелегорованные- количество добавок до 10% и высоколегированные- количество добавок свыше 10%.

По экономическим соображениям в строительстве используют низколегированные стали.

Используют сталь в строительстве для производства несущих конструкций: колонн, балок, ферм.

Основным способом получения стальных изделий является горячая прокатка. Этим способом получают различные профили: листы, стержни, трубы. Изделия в этом случае называются горячекатаными.

Важной особенностью сталей является способность улучшать свои физико- механические свойства и, в частности, прочность после термической и механической обработки.

Алюминиевые сплавы в строительстве

Из- за низкой прочности чистый алюминий редко используют в строительстве. Все чаще используются сплавы на его основе, которые делятся на литейные и обрабатываемые под давлением.

Литейные сплавы используются только для изготовления фасонных отливок. Самым распространённым сплавом такого вида является силумин- сплав алюминия с кремнием.

Сплавы, обрабатываемые под давлением, делят на две группы:

  • Деформируемые без последующей тепловой обработки: сплавы алюминия с магнием и сплавы алюминия с марганцем;
  • Деформируемые с последующей термообработкой: сплавы алюминия с медью, магнием, кремнием и марганцем, высокородные сплавы алюминия цинком, магнием, кремнием и марганцем.

Неоспоримым достоинством сплавов на основе алюминия является высокий предел прочности, про малой плотности. Большинство сплавов имеют повышенную стойкость к коррозии и высокую декоративность. Они сохраняют прочность при высоких температурах и не образуют искр при ударе.

Но, как любой строительный материал, алюминий имеет свои недостатки. К ним относятся низкий модуль упругости и высокий коэффициент температурного расширения.

Строение металлов

Металлы имеют кристаллическую структуру. В расплавленном состоянии атомы металлов находятся в беспорядочном движении, а при переходе в твёрдое состояние они ориентируются в пространстве определённым образом, образуя кристаллическую решетку. Строение решётки и расположение в ней атомов зависят от вида металла. У железа она кубическая (рисунок 1), а у алюминия гексагональная (рисунок 2).

https://sibac.info/files/2016_06_28_studtech/Sabenina.files/image002.png

Рисунок 1. Кубический тип Рисунок 2. Гексагональный тип

кристаллической решётки кристаллической решётки.

Рассмотренные типы кристаллических решёток характерны для идеальных кристаллов. Для реальных металлов и сплавов характерно наличие различных дефектов- точечных, линейных и поверхностных. К точечным дефектам относятся вакансии и межузельные атомы.

Факторы, влияющие на поведение сплавов в условии пожара

Чтобы понять как ведут себя металлы при пожаре нужно определить основные факторы действующие на сплавы:

факторы пожара: температура, время, тушение, агрессивность среды;

эксплуатационные: область применения, нагрузка;

негативные процессы: физические, теплоперенос, тепловое деформирование;

отрицательные последствия: ухудшение механических свойств, необратимые деформации, разрушение материала;

технология изготовления: химический состав, физико- механические свойства, структура.

Общие закономерности поведения металлов в условиях пожара

При нагреве металла подвижность атомов повышается, это приводит к увеличению межатомных расстояний и ослаблению связи между ними. Термическое расширение нагретых тел- характерный признак увеличения расстояния между атомами. Большое влияние на улучшение механических свойств металлов оказывают дефекты, число которых возрастает с увеличением температуры. При достижении температуры плавления количество дефектов, увеличение межатомных расстояний и ослабление связей достигает такой степени, что металл переходит в жидкое состояние.

В интервале температур от абсолютного нуля, до температуры плавления изменение объема практически всех металлов находится в пределе от 6 до 7,5%. Следовательно увеличение подвижности атомов и расстояниям между ними свойственно всем металлам практически в одинаковой степени.

Повышение температуры окружающей среды приводит к уменьшению прочности и упругости металла и к увеличению его пластичности.

Стоит заметить, что чем ниже температура металла или сплава, тем при более низких температурах происходит снижение прочности материала, например у алюминия эта температура ниже, чем у стали.

Размягчение металла приводит к деформации и разрушению строительной конструкции (чаще всего несущей), а следовательно и всего здания в целом.

Способы повышения огнестойкости металлических конструкций

Для обеспечения некоторого увеличения времени сохранения свойств сплавов и металлов при высоких температурах используются скудеющие методы:

  • Выбирают изделия из металлов, более стойких к воздействию нагрева, предпочтение отдаётся сталям вместо алюминиевых сплавов;
  • Используют низколегированные стали вместо обычных;
  • Изготавливают изделия, более устойчивые к нагреву;
  • Защищают внешнюю поверхность металлических изделий путём нанесения антипиренов, либо обмазывают конструкцию слоем бетона.

Металлы, составляющие огромную часть всех строительных материалов, служащие в качестве сырья для несущих конструкций особенно нуждаются в изучении свойств огнестойкости, для последующего регулирования поведения металлов при нагревании, а также для изобретения свойств огнезащиты.

Список литературы:

1. Демёхин В. Н., Мосалков И. Л., Плюсика Г. Ф., Серков Б. Б., Фролов А. Ю., Шурин Е. Т. - Здания, сооружения и их устойчивость при пожаре. Учебник.- М.: Академия ГПС МЧС России. 2003.- 653 с, ил.

Повреждения строительных конструкций при пожарах Текст научной статьи по специальности «Строительство и архитектура»

Аннотация научной статьи по строительству и архитектуре, автор научной работы — Хаматов Р.Р., Ситор Р.С., Иванов Ю.П.

В статье рассматриваются основные виды повреждений строительных конструкций , выполненных из различных материалов, из-за воздействия высоких температур при пожарах .

Похожие темы научных работ по строительству и архитектуре , автор научной работы — Хаматов Р.Р., Ситор Р.С., Иванов Ю.П.

Текст научной работы на тему «Повреждения строительных конструкций при пожарах»

международный научный журнал «инновационная наука» УДК 699.81

начальник отдела ООО «Корпорация Альтон», г.Ижевск, РФ

руководитель группы ООО «Корпорация Альтон», г.Ижевск, РФ

инженер-эксперт ООО «Корпорация Альтон», г.Ижевск, РФ ПОВРЕЖДЕНИЯ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ ПРИ ПОЖАРАХ

В статье рассматриваются основные виды повреждений строительных конструкций, выполненных из различных материалов, из-за воздействия высоких температур при пожарах.

Строительные конструкции, высокие температуры, разрушение, пожар.

При пожарах строительные конструкции повреждаются от разрушения материала конструкции или изменения его механических характеристик, а также из-за значительных деформаций, вызванных перегревом конструкций, разрушением конструкций и соединений от продольных деформаций при нагреве.

Величина повреждений зависит от вида конструкции, ее материала, температуры нагрева конструкции и длительности пожара.

При пожарах большой интенсивности и длительности деревянные и металлические конструкции, как правило, приходят в негодность, в то время как железобетонные и каменные конструкции частично сохраняют эксплуатационные качества.

Рассмотрим воздействие пожара на конструкции, выполненные из различных материалов.

Бетон является несгораемым и достаточно огнестойким материалом. Однако, под воздействием высоких температур снижаются его прочность и защитные свойства по отношению к заключенной в нем арматуре. Кроме того, при продолжительном пожаре сильно нагревается сама арматура, в которой появляются значительные пластические деформации. В результате этого изгибаемые элементы получают недопустимые прогибы и чрезмерно раскрытые трещины, а внецентренно сжатые элементы теряют устойчивость.

Фото 1 - Производственный корпус с железобетонным каркасом после пожара

Приведем последовательность разрушения конструкций на примере железобетонных колонн здания:

МЕЖДУНАРОДНЫЙ НАУЧНЫЙ ЖУРНАЛ «ИННОВАЦИОННАЯ НАУКА» №10/2015 ISSN 2410-6070

S в течение 25-45 минут от начала пожара в колонне образуются продольные трещины.

S наблюдаются выгибы, равные нескольким сантиметрам без потери несущей

способности под нагрузкой.

S появление заметных трещин, перпендикулярных действию нагрузки, возникающих за несколько минут до потери несущей способности в растянутой зоне. Бетон в сжатой зоне разрушается вследствие расслоения и выкрашивания.

S разрушение колонны происходит в пределах 1 секунды, при этом температура арматуры достигает 500^700°С.

Повреждение железобетонных конструкций при пожарах

Степень повреждения Состояние поверхности конструкций после пожара Деформации конструкции Снижение прочности конструкции, %

Слабая (повреждения, не снижающие несущей способности конструкций) Наличие следов сажи и копоти ■S Шелушение отдельных слоев поверхности бетона. ■S Незначительные сколы бетона на 5

Средняя (повреждения, снижающие несущую способность конструкций) Изменение серого цвета до розового и бурожелтого, элементы полностью покрыты сажей и копотью ■S Наличие сколов бетона по углам. ■S Обнажение арматурной сетки на плоских элементах площадью около 10%. ■S Обнажение угловой арматуры в элементах прямоугольной формы. ■S Отделение наружных слоев бетона без их обрушения, трещины шириной раскрытия до 0,5мм на 15

Сильная (повреждения, значительно снижающие несущую способность конструкции) Цвет бетона желтый ■S Сколы бетона конструкций до 30% сечения элемента. ■S Обнажение арматурной сетки в плоских элементах на площади до 10%, обнажено до 50% рабочей арматуры прямоугольных элементов. ■S Выпучен один стержень арматуры элемента. ■S Отвалились поверхностные слои бетона, звук оставшихся слоев глухой. ■S Трещины с шириной раскрытия до 1мм на 30

Полная (повреждения, свидетельству-ющие о критическом состоянии конструкций) Цвет бетона темножелтый ■S Сколы бетона от 30 до 50% площади сечения элемента. ■S Обнажено до 90% арматуры. ■S Выпучилось более одного стержня арматуры. ■S Нарушена анкеровка сцепления арматуры с бетоном. ■S Отрыв закладных и опорных деталей. ■S Зыбкость конструкции. ■S Прогибы свыше 1/50 пролета. ■S Трещины шириной раскрытия более 1мм на 65 и более

Каменная кладка из применяемых в строительстве материалов (глиняный кирпич, силикатный кирпич, блоки из легкого бетона) является огнестойкой.

Воздействие огня и воды при тушении пожара приводит к отслаиванию поверхностного слоя кладки и разрушению раствора.

Под воздействием огня, как правило, прочность строительного кирпича не уменьшается, но происходит разрыхление и разрушение раствора между кирпичами. Если раствор разрушен на глубину более 3 см, каменная кладка считается не способной воспринимать нагрузку и подлежит разборке.

Также при пожаре происходят повреждения каменных конструкций от деформаций, вызванных температурными перепадами и линейными удлинениями строительных конструкций, что приводит к образованию в каменных конструкциях трещин и разрушений.

Металлические конструкции обладают массой преимуществ - это удобство и скорость монтажа, индустриальность, значительная несущая способность при нормальных условиях эксплуатации, они в 4 раза легче железобетонных и каменных конструкций при той же несущей способности.

Наряду с этим они имеют два серьезных недостатка, а именно быстрый прогрев до критической температуры потери несущей способности в условиях пожара и низкую коррозионную стойкость.

Металлы обладают высокой чувствительностью к высоким температурам и к действию огня. Они быстро нагреваются и снижают свои прочностные свойства. При температуре до 250°С прочность мягкой малоуглеродистой стали увеличивается, затем этот предел постепенно снижается. Критическая температура, которая характеризует потерю несущей способности стальных конструкций при нормативной нагрузке, принимается равной 500°С.

Предел огнестойкости незащищенных металлоконструкций составляет максимум 15 минут в зависимости от приведенной толщины металла.

Например, стандартный двутавр №20 с приведенной толщиной 3,4 мм, на котором в условиях специальных испытаний проводится оценка соответствия Федеральному закону №123-ФЗ «Технический регламент о требованиях пожарной безопасности», по данным ФГУ ВНИИПО МЧС России, за 6 минут прогревается до критической температуры в 500°С и соответственно не обеспечивает даже минимального предела огнестойкости R15.

Фото 2 - Обрушение покрытия (стальные фермы) производственного здания от действия пожара

Приведем последовательность разрушения металлических (стальных) конструкций при пожарах:

S до температуры 400°С разрушается лакокрасочное покрытие поверхности металла, что приводит к снижению прочности конструкции на 5% (стальные конструкции могут эксплуатироваться без ограничений);

S при непродолжительном воздействии температуры 400-600°С на стали образуется светлая окалина и имеется небольшое коробление, прочность конструкции снижается на 15% (предел текучести и предел прочности стали при нагреве 400-600°С падают, возрастают удлинения, а после ее охлаждения восстанавливаются прежние значения);

S при непродолжительном воздействии температуры 700-900°С на поверхности стали образуется тонкий слой трудноочищаемой окалины, имеется сильное коробление, прочность конструкции снижается на 30% (эксплуатация конструкций возможна с ограничением нагрузок);

S при длительном воздействии температуры 900-1400°С отслаивается местами слой окалины, происходит образование твердой и хрупкой пленки серовато-синего или черного цвета и язв губчатого строения на поверхности металла. Ненагруженные элементы конструкции провисают под собственным весом, нагруженные элементы сильно деформированы, появляются участки

конструкций с изломами, прочность конструкций снижается на 65% и более (конструкции к использованию непригодны).

Приведем последовательность разрушения при пожарах деревянных конструкций:

S до температуры 100°С свойства древесины практически не меняются;

Деревянные перекрытия старой конструкции, состоящие из деревянного пола, балок, наката, глинистой обмазки и песчаной засыпки, а также нижней обшивки и штукатурки теряют несущую способность через 40 минут с начала возгорания.

Несущая способность поврежденных пожаром деревянных конструкций оценивается в зависимости от площади сечения неповрежденной древесины конструкции.

Таким образом, все здания и сооружения представляют собой объекты, которые имеют ту или иную степень пожарной опасности и нуждаются в системе противопожарной защиты.

Результаты воздействия высоких температур на элементы строительных конструкций вследствие когда-либо произошедшего там пожара в обязательном порядке должны рассматриваться и оцениваться при проведении экспертизы промышленной безопасности зданий и сооружений на опасных производственных объектах, при проведении планового технического обследования зданий и сооружений. Степень поврежденности конструкций, изменение физико-механических свойств материалов, вызванные пожаром, непременно должны учитываться при разработке рекомендаций по приведению зданий и сооружений в работоспособное состояние для обеспечения их дальнейшей безопасной эксплуатации.

Список использованной литературы:

1. Федеральный закон от 22.07.2008 №123-ФЗ «Технический регламент о требованиях пожарной безопасности» (ред. от 13.07.2015г.).

2. Ройтман В.М. Инженерные решения по оценке огнестойкости проектируемых и реконструируемых зданий / Ассоциация «Пожарная безопасность и наука» - М., 2001.

3. Рекомендации по обследованию зданий и сооружений, поврежденных пожаром / НИИЖБ. - М.: Стройиздат, 1987.

4. Добромыслов А.Н. Диагностика повреждений зданий и инженерных сооружений / МГСУ, Издательство Ассоциации строительных вузов, Москва, 2006.

© Р.Р. Хаматов, Р.С. Ситор, Ю.П. Иванов, 2015

магистрант 2 курса факультета «Академия кино и телевидения»

Университет «Туран» Научный руководитель: Т. Б. Ли к.т.н., доцент кафедры «Компьютерная и программная инженерия» Университет «Туран», г. Алматы, Республика Казахстан

«СЕРЬЕЗНЫЕ ИГРЫ» В ОБУЧЕНИИ

При обучении человека, будь то школьник или студент, появляются множество вопросов. Например,

ПОВЕДЕНИЕ МЕТАЛЛА ПРИ ПОЖАРЕ И СПОСОБЫ ЕГО ОГНЕЗАЩИТЫ Текст научной статьи по специальности «Технологии материалов»

основным предметом при разработке статьи выбрали различные металлы и их поведение при пожаре и воздействии высоких температур. В статье рассмотрены основные физические характеристики металлов при воздействии пожара . Рассмотрены и изучены основные способы и средства повышения стойкости металлов при воздействии высоких температур при пожаре .

Похожие темы научных работ по технологиям материалов , автор научной работы — Якупов И.Ф.

BEHAVIOR OF METAL IN CASE OF FIRE AND METHODS OF ITS FIRE PROTECTION

the main subject in the development of the article was various metals and their behavior in the event of fire and exposure to high temperatures. The article considers the main physical characteristics of metals under the influence of fire. The main methods and means of increasing the resistance of metals under the influence of high temperatures during a fire are considered and studied.

Текст научной работы на тему «ПОВЕДЕНИЕ МЕТАЛЛА ПРИ ПОЖАРЕ И СПОСОБЫ ЕГО ОГНЕЗАЩИТЫ»

6. Лукутин Б.В., Киушкина В.Р. Характеристики энергетической безопасности децентрализованного района и автономного объекта электрификации // Вестник ИрГТУ, 2021. № 1 (156). С. 7.

7. Фрей Д.А., Шупта Б.В. Процессно-ориентированная бизнес-модель энергоснабжения объектов Единой системы газоснабжения // Экономика и бизнес: теория и практика, 2018. № 10-2. С. 23.

8. Алдашева Н.Т., Кабатаев Д., Арзалиев Б. Исследование эффективного варианта управления энергетическими ресурсами промышленных предприятий. // Бюллетень науки и практики, 2021. № 10. С. 280.

ПОВЕДЕНИЕ МЕТАЛЛА ПРИ ПОЖАРЕ И СПОСОБЫ ЕГО

Якупов Ильдар Флоридович - старший сержант внутренней службы, студент, Институт безопасности жизнедеятельности, институт заочного и дистанционного обучения Санкт-Петербургский университет Государственной противопожарной службы Министерства Российской Федерации по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий, г. Санкт-Петербург

Аннотация: основным предметом при разработке статьи выбрали различные металлы и их поведение при пожаре и воздействии высоких температур. В статье рассмотрены основные физические характеристики металлов при воздействии пожара. Рассмотрены и изучены основные способы и средства повышения стойкости металлов при воздействии высоких температур при пожаре. Ключевые слова: пожар, средства, сталь, составы, воздействие температуры, характеристика.

BEHAVIOR OF METAL IN CASE OF FIRE AND METHODS OF ITS

FIRE PROTECTION Yakupov I.F.

Yakupov Ildar Floridovich - Senior Sergeant of internal service, Student, INSTITUTE FOR LIFE SAFETY, INSTITUTE OF CORRESPONDENCE AND DISTANCE LEARNING ST. PETERSBURG UNIVERSITY OF THE STATE FIRE SERVICE OF THE MINISTRY OF THE RUSSIAN FEDERATION FOR CIVIL DEFENSE, EMERGENCIES AND DISASTER MANAGEMENT, ST. PETERSBURG

Abstract: the main subject in the development of the article was various metals and their behavior in the event of fire and exposure to high temperatures. The article considers the main physical characteristics of metals under the influence of fire. The main methods and means of increasing the resistance of metals under the influence of high temperatures during a fire are considered and studied.

Keywords: fire, means, steel, compositions, effect of temperature, characteristic.

При нагреве металла подвижность атомов повышается, увеличиваются расстояния между атомами и связи между ними ослабевают. Термическое расширение

нагреваемых тел - признак увеличения межатомных расстояний. Большое влияние на ухудшение механических свойств металла оказывают дефекты, число которых возрастает с увеличением температуры. При температуре плавления количество дефектов, увеличение межатомных расстояний и ослабление связей достигает такой степени, что первоначальная кристаллическая решетка разрушается. Металл переходит в жидкое состояние [1].

В интервале температур от абсолютного нуля до точки плавления изменения объема всех типичных металлов приблизительно одинаково - 6-7,5%. Судя поэтому, можно считать, что увеличение подвижности атомов и расстояний между ними, а соответственно, и ослабление межатомных связей, свойственно всем металлам почти в одинаковой степени, если они нагреты до одной и той же гомологической температуры. Гомологическая температура - это относительная температура, выражается в долях температуры плавления (Тпл) по абсолютной шкале Кельвина. Так, например, железо и алюминий при 0,3Тпл обладают одинаковой прочностью межатомных связей, а следовательно, и одинаковой механической прочностью. По стоградусной шкале это будет: для железа 331 оС, для алюминия 38 оС, т.е. ув железа при 331 оС равно ув алюминия при 38 оС.

Повышение температуры приводит к уменьшению прочности, упругости и увеличению пластичности металлов. Чем ниже температура плавления металла или сплава, тем при более низких температурах происходит снижение прочности, например у алюминиевых сплавов - при более низких температурах, чем у сталей [2].

При высоких температурах также происходит увеличение деформаций ползучести, которые являются следствием увеличения пластичности металлов.

Чем выше величина нагружения образцов, тем при более низких температурах начинается развитие деформации ползучести и происходит разрыв образца, причем при меньших величинах относительной деформации.

При повышении температуры изменяются и теплофизические свойства металлов и сплавов. Характер этих сложный и трудно поддается объяснению.

Наряду с общими закономерностями, характерными для поведения металлов при нагреве, поведение сталей в условиях пожара имеет особенности, которые зависят от ряда факторов. Так, на характер поведения оказывает влияние прежде всего химический состав стали: углеродистая или низколегированная, затем способ изготовления или упрочнение арматурных профилей: горячая прокатка, термическое упрочнение, холодная протяжка и т.п. При нагревании образцов горячекатанной арматуры из углеродистой стали происходит уменьшение ее прочности и увеличение пластичности, что приводит к снижению пределов прочности, текучести, возрастанию относительного удлинения и сужения. При остывании такой стали ее первоначальные свойства восстанавливаются [3].

Несколько иной характер поведения при нагревании низколегированных сталей. При нагревании до 300 оС происходит некоторое увеличение прочности ряда низколегированных сталей (25Г2с, 30ХГ2С и др.), которая сохраняется и после остывания. Следовательно, низколегированные стали при невысоких температурах даже повышают прочность и менее интенсивно теряют ее с увеличением температуры благодаря легирующим добавкам. Особенности поведения термически упрочненной арматуры в условиях пожара является необратимая потеря упрочнения, которая вызывается отпуском стали. При нагревании до 400 оС может происходить некоторое улучшение механических свойств термически упрочненной стали, выражаемое в повышении условного предела текучести при сохранении предела прочности. При температуре выше 400 оС происходит необратимое снижение как предела текучести, так и предела прочности (временного сопротивления).

Арматурная проволока, упрочненная наклепом, при нагреве также необратимо теряет упрочнение. Чем выше степень упрочнения (наклепа), теа при более низкой температуре начинается ее потеря. Причиной этого является термодинамически

неустойчивое состояние кристаллической решетки, упрочненной наклепом стали. При повышении температуры до 300-350 оС начинается процесс рекристаллизации, в ходе которого деформированная в результате наклепа кристаллическая решетка перестраивается в сторону нормализации [4].

Главной особенностью алюминиевых сплавов является низкая, по сравнению со сталями, устойчивость к нагреву. Важной особенностью некоторых алюминиевых сплавов является способность восстанавливать прочность после нагревания и охлаждения, если температура нагревания не превысила 400 оС.

Наибольшей устойчивостью к действию высокой температуры обладают низколегированные стали. Несколько хуже ведут себя углеродистые стали без дополнительного упрочнения. Еще хуже - стали, упрочненные термическим способом. Самой низкой стойкостью к действию высокой температуры обладают стали, упрочненные наклепом, а еще ниже - алюминиевые сплавы.

Обеспечить некоторое продление времени сохранения свойств металлов в условиях пожара можно следующими способами [5]:

- выбор изделий из металлов, более стойких к воздействию пожара. В этом плане предпочтение отдается сталям вместо алюминиевых сплавов, причем низколегированным сталям вместо углеродистых. При выборе арматурных изделий следует предпочесть арматуру, не упрочненную наклепом и термообработкой.

- специальное изготовление металлических изделий, более стойких к нагреву (тугоплавкие стали (никель, кобальт)).

- огнезащита металлоизделий (конструкций) посредством нанесения внешних теплоизоляционных слоев.

Традиционным способом огнезащиты стальных конструкций является их обшивка негорючими материалами: кирпичом, теплоизоляционными плитами и штукатуркой (рис). При защите стальных колонн кирпичом кладку армируют с помощью стальных анкеров, приваренных к защищаемой конструкции, а для избежания разрушения кладки из-за неодинакового теплового расширения между колонной и кладкой устраивают небольшой зазор. В качестве теплоизоляционных плит используют гипсовые, асбестоперлитоцементные и перлитовермикулитоцементные плиты, которые крепят к колоннам и балкам анкерами, приваренными к защищаемым конструкциям и выпускам арматуры, введенной в плиты при их изготовлении. Огнезащитную шгукатурку (цементная или перлитовермикулитоцементная) наносят на металлические колонны и балки по объемной сетке (сетка рабитца) и арматурному каркасу.

Рис. 1. Защита металлических конструкций малотеплопроводными материалами а - кирпичом; б - гипсовыми плитами; в - штукатуркой; 1 - стальная колонна; 2 - стальная балка; 3 - кирпич; 4 - гипсовая плита; 5 - штукатурка; 6 - анкер; 7 - арматурный каркас;

8 - объемная сетка

Эффективным способом увеличения огнестойкости металлических конструкций является охлаждение их водой, которая может подаваться как непосредственно на поверхность конструкции от спринклерных или дренчерных систем, так и внутрь ее. Во втором случае защищаемая конструкция изготавливается пустотелой и герметичной из стойких к коррозии сталей, либо к воде добавляются антикоррозионные добавки.

Современная база данных, которую ведет ВНИИПО МЧС России, насчитывает более 300 наименований различных средств огнезащиты. Каждый способ огнезащиты имеет свои преимущества и недостатки, они приведены в таблице [5].

Таблица 1. Преимущества и недостатки применяемых способов огнезащиты строительных

Способ огнезащиты Преимущества способа огнезащиты Недостатки способа огнезащиты

Обетонирование, оштукатуривание, обкладка кирпичом 1. Относительно низкая стоимость материалов. 2. Долговечность. 3. Доступность. 1. Большая масса. 2. Необходимость применения стальной сетки и (или) анкеровки. 3. Сложность проведения работ на высоте. 4. Высокая трудоемкость. 5. Невозможность защиты труднодоступных мест

Установка плит из пористых или волокнистых материалов 1. Низкий уровень массы. 2. Повышенная вибростойкость и долговечность за счет механического крепления к 1. Большой уровень требуемых толщин огнезащиты. 2. Высокий уровень паропроницаемости.

конструкции. 3. Технологичность и относительно низкая трудоемкость. 4. Возможно возникновения очагов коррозии под укрывным слоем. 3. Невозможность защиты труднодоступных мест конструкции. 4. Сложность проведения работ на высоте

Применение составов на основе жидкого стекла 1. Относительно низкая трудоемкость 1. Низкая вибростойкость покрытия при больших количествах слоев. 2. Трудность обеспечения и контроля заданных толщин покрытия. 3. Большая по времени продолжительность нанесения и сушки покрытия. 4. Невозможность параллельного проведения других работ. 5. Большие технологические потери при нанесении.

Применение огнезащитных красок вспучивающегося типа (тонкослойные покрытия) 1. Относительно низкая трудоемкость. 2. Малая толщина покрытия. 3. Возможность нанесения валиком, кистью, распылением. 4. Возможность защиты труднодоступных мест металлические конструкции. 5. Возможность минимизировать технологические потери. 6. Не требует специальной подготовки персонала. 7. Имеет не только огнезащитные, но и декоративные свойства 1. Ограничение области применения согласно требованиям нормативной документации по пожарной безопасности. 2. Требуется постоянный контроль толщины покрытия

Основными компонентами средств огнезащиты являются [6]:

а) термостойкие заполнители:

— вермикулит вспученный и невспученный (сырье);

— перлит вспученный и невспученный (сырье);

—минеральные волокна из базальта, а также каолиновые, кремнеземистые и кварцевые волокна;

б) неорганические вяжущие вещества (воздушные, гидравлические и кислотоупорные):

— жидкое стекло натриевое;

— природный двуводный гипс и природный ангидрит;

— фосфатные вяжущие (растворы фосфатов и фосфорных кислот); в) органические (полимерные) связующие:

— эпоксидные смолы в смеси с аминосмолами и др.;

— латексы сополимеров хлористого винила с винилиденхлоридом, бутадиена со стиролом и др.;

Основное преимущество металлических конструкций в том, что они отлично справляются с различными видами нагрузок (сжатие, растяжение и др.). Однако основным минусом является то, что в условиях пожара из-за значительной теплопроводности и малой теплоемкости быстро прогреваются до критических температур, что вызывает их обрушение. Именно поэтому применяются различные средства для защиты металлических элементов конструкции: отделка малотеплопроводными материалами, нанесение вспучивающихся огнезащитных покрытий, охлаждение и т. д.

Список литературы /References

1. Акальченко И.Е. Анализ объективности оценки огнестойкости и эффективности огнезащиты конструкций объектов инфраструктуры различного назначения / И.Е. Акальченко // Теоретические и прикладные аспекты современной науки: сборник научных трудов по материалам III Междунар. научно-практ. конф.: в 5 ч. / под общ. ред. М.Г. Петровой. Белгород, 2016. Ч. I. 72 с.

2. Барышников А.А. Анализ перспективных огнезащитных покрытий металлических конструкций / А.А. Барышников, С.А. Горелов, Н.Ш. Мустафин // Традиции и инновации в строительстве и архитектуре. Строительство. Самара, 2016. № 2 (14). 286 с.

3. Боровик С.И. Анализ методик оценки влияния эксплуатационных факторов на огнезащитные покрытия для металлических конструкций / С.И. Боровик, Л.А.Трофимова // Научные исследования: теория, методика и практика: материалы III Междунар. научно-практ. конф. Чебоксары, 2017. 21 с.

4. Боровик С.И. Исследование влияния эксплуатационных факторов на эффективность огнезащитных покрытий по металлу/ С.И. Боровик, Л.А. Трофимова, А.С. Бухмастова // Современные направления развития технологии, организации и экономики строительства: сборник науч. трудов участников межвуз. конф. Санкт-Петербург, 2018. 305 с.

5. Способы и средства огнезащиты древесины. Руководство. М.: ВНИИПО, 2016. 33 с.

Читайте также: