Добыча и обработка металлов

Обновлено: 18.05.2024

Производство цветных металлов – это целая отрасль металлургии, позволяющая получать качественные и чистые элементы в соответствии с потребностями промышленности. Поскольку в природе эта группа в чистом виде практически не встречается, то требуется применение химических или физических методов для их получения.

Производство в современных условиях

Цветные металлы образуют большую группу веществ. Сюда входят все металлы, за исключение только железа и его соединений, которое входит в число черных. Несмотря на большое количество элементов, в природе цветные разновидности встречаются намного реже, поэтому производство цветных металлов и сплавов является важной отраслью промышленности.

Разновидности сырья

Самое название «цветной» означает цвет металла. Некоторые виды, например, медь, имеют ярко выраженный цветовой оттенок. Подобные вещества важны из-за своих свойств и качеств, намного отличающихся от обычного железа.

Поэтому производство цветных металлов и сплавов необходимо для получения качественно новых соединений, применяемых во всех отраслях промышленности.

Основные виды сырья

Сплав – это смешанные металлы. При соединении двух или более металлов, находящихся в расплавленном состоянии, образуется новый материал, имеющий практически полный спектр свойств, которым обладают составляющие сплава.

Цветные металлы распределяются на несколько крупных групп:

  • Тяжелые – в эту группу входят медь, цинк, свинец, олово.
  • Легкие – эта группа представлена магнием, титаном, бериллием, кальцием, стронцием, алюминием, натрием, калием, цезием.
  • Благородные – находятся самые дорогие из цветных металлов, которых мало в природе: платина, золото, серебро, осмий, рутений, родий, палладий.
  • Малые – группа веществ, которых также немного в природе. Сюда относятся кобальт, кадмий, сурьма, висмут, ртуть.
  • Тугоплавкие: марганец, вольфрам, хром, ванадий, тантал.
  • Редкоземельные.
  • Рассеянные.
  • Радиоактивные.

Цветные металлы

Особенности процесса

В промышленности практически не применяются цветные металлы в чистом виде, а больше используются именно сплавы, что позволяет достигать требуемых свойств. При производстве цветных металлов происходит видоизменение их химических, физических и механических свойств, что очень важно для изготовления как бытовых, так и промышленных предметов.

Особенностью цветных металлов является простота обработки. Практически все они подвергаются шлифовке, ковке, штамповке, прессования, резке, сварке или пайке.

При производстве из этих веществ удается получать не только готовые изделия, но также разнообразные полуфабрикаты:

  • прутки;
  • проволока;
  • порошок;
  • фольга.

Разнообразные полуфабрикаты

Способы производства

Для производства цветных металлов и сплавов применяется разнообразные методы, основанные на химических свойствах основы, из которой будет получен металл или сплав и реагента.

Пирометаллургия – метод получения цветного металла путем проведения избирательной плавки, которая может быть окислительной или восстановительной. Источником тепла и главным реагентом чаще всего выступает присутствующая в руде сера.

Электролиз – метод, основанный на химической реакции электролиза. Применяется катод и анод. На катоде, которым выступает ванна из огнеупорного материала, происходит осаждение ионов металла в результате диссоциации. Реакция, в отличие от традиционной, описанной в учебниках химии, проводится не в водной среде, а в расплаве. Это обуславливается необходимостью избежать осаждения на катоде ионов водорода, что не позволяет выделять чистый металл.

Металлотермия – метод восстановления хлоридов или оксидов металла под воздействием другого вещества. Преимущественно технология применяется при производстве титана. Параллельно добывается магний, поскольку хлорид магния выступает побочным продуктом.

Сплавление – этот способ заключается в прямом смешивании двух металлов. Дополнительно в жидком состоянии поставляется шихта или легирующий материал. Этот способ относится к наиболее производительным, менее затратным и позволяет получать незагрязненные металлы., имеющие заданные физико-химические свойства.

Способы производства

Производство отдельных видов

Производство меди

Получение подобного цветного металла происходит из медных руд. Его содержание в составе этих соединении составляет от 1 до 6%. При составе меди менее 1% ее извлечение при современном уровне развития технологии не представляется рентабельным.

Получение меди осуществляется двумя способами:

  • гидрометаллургический;
  • пирометаллургический.

Первый способ является менее распространенным, поскольку при его использовании не удается извлекать из руды иные элементы.

Пирометаллургический метод добычи меди состоит из нескольких последовательных этапов:

  • Подготовка руды к плавке посредством обогащения и дальнейшего обжига. Это позволяет получить концентрат меди.
  • Последующий обжиг требуется для сокращения количества серы.
  • Плавка на штейн. Путем плавки концентратов меди удается получить штейн или сульфиды меди и железа.

А также проводится конвертирование штейна. Этот этап заключается путем продувки воздухом внутри специального медеплавильного конвертера полученного штейна, что позволяет выделить железо в шлак и получить черновую медь.

И в заключение – рафинирование. Черновая медь подвергается действию огневого плавления и электролитического рафинирования, что позволяет в итоге получить продукт, чистота которого составляет 99,97–99,99%.

Производство алюминия

Получение алюминия происходит методом электролиза глинозема. Процесс включает несколько этапов.

Получение чистого глинозема или оксида алюминия. Этот процесс заключается в обработке бокситов (руд, содержащих металл) щелочными растворами. Результатом является выпадение в виде осадка гидроксида алюминия.

Получение криолита – его производство заключается в обработке плавикового шпата для получения плавиковой кислоты и дальнейшего выделения фторалюминиевой кислоты. Посредством соды криолит выделяется в виде осадка.

Электролиз глинозема – результатом этого процесса является получения алюминия-сырца.

Рафинирование – посредством продувки расплавленного сырца хлором добывается чистый алюминий.

производство алюминия

Производство магния

Магний добывается посредством реакции электролиза. Сырьем служат расплавленные соли металла (карналлит, магнезит, доломит, бишофит). Основу электролита составляет хлористый магний. Дополнительно применяется хлористый натрий, кальций и калий.

После проведения реакции на аноде оседает черновой металл, имеющий до 5% примесей. Их удаление происходит посредство процесса рафинирования с использованием флюсов. Все неметаллические компоненты преобразуются в шлак, а чистый металл разливается в изложницы.

Производство магния

Производство титана

По своим качествам титан и его сплавы во многом превосходят легированные стали. Процесс производства титана затрудняется его повышенной активностью, особенно при повышении температуры.

Его особенностью является способность вступать в реакцию со множеством металлов, что требует соблюдения определенных условий для получения чистого титана.

Метод, применяемый для получения титана, называется магниетермия. Он состоит из следующих операций.

Выделение титанового концентрата путем обогащения руды, содержащей подобный металл.

Изготовление шлака – на этом этапе происходит отделение оксидов железа от оксидов титана.

Получение четыреххлористого титана – чтобы получить металлический титан, требуется применение хлорида титана, получаемый при хлорировании шлака.

Восстановление посредством магния – процесс восстановления протекает при очень высоких температурах – близких к 1 тыс. градусов. Реактор, где расплавляется магний, подается парообразный титан. При металлизации он оседает на стенках, а расплавленный магний удаляется через летку.

Производство диоксида титана

Сепарация массы в вакууме – полученный в результате предыдущего шага титан в виде губчатой массы требуется нагреть с использованием вакуума, что позволит выделить чистый металл.

Особенности сырья

Все цветные металлы обладают рядом особенностей, что должно учитываться при обработке или их использовании.

Ряд элементов имеют повышенную теплопроводность и удельную теплоемкость:

Особенности сырья

При сварке место соединения быстро охлаждается, что потребует использования мощных источников, особенно тепла при сварочных работах.

Некоторые элементы при резком нагреве изменяют свои механические свойства. Наблюдается их снижение. При этом сам металл становится легко разрушаемым от ударов или иного механического воздействия.

Все цветные металлы легко вступают во взаимодействие с газами, кроме инертных. Эта особенность характерна для тугоплавких цветных металлов.

Видео по теме: Производство цветных металлов и сплавов

Важность металлургии

Что такое металлургия, какую роль она играет в жизни человечества? Эта отрасль является фундаментом и основой всей промышленности. Большая часть всех сфер производства пользуются результатами металлургического производства. Каково значение металлургии?

Понятие металлургии

Металлургия играет большую роль во всех отраслях.


Под этим термином принято понимать отрасль в науке и технике, которая занимается получением, добычей металлов и руд. Без металлургии технический прогресс представить невозможно. Это мощнейшая промышленная отрасль, которая совершенствует каждый год способы добычи, изучает состав и свойства металлов, развивает границы их применения.

Что включает в себя металлургия:

  • производство металла;
  • обработка изделий из металла в горячем и холодном виде;
  • сварка;
  • нанесение металлических покрытий.

Кроме того, металлургия включает в себя некоторые аспекты:

  • науку, теоретическое изучение;
  • познание химических процессов;
  • исследование свойств металла.

Свойства металлов

Металлургический комплекс объединяет все предприятия, который занимаются добычей, переработкой металлов. Это предприятия, которые занимаются обогащением руды, прокатным производством, переработкой вторичного сырья.

Какая бывает металлургия? Отрасль разделяется на два основных вида. Виды металлургии:

От того, как в стране развивается металлургический комплекс, зависит уровень экономики и благосостояние населения.

Металлы и сплавы обладают рядом полезных свойств. К ним относится:

  • упругость;
  • способность к деформации;
  • высокая прочность;
  • теплопроводность.

За счет своих свойств металлы и сплавы относятся к важнейшим материалам, которые применяются в создании современных машин, техники. Центральное место занимает железо, его доля в металлургической продукции составляет более 90%.

Но железо в чистом виде применяется в небольших количествах. Основная масса используется в виде сплавов.

Сплавы железа

Чаще всего используется сталь и чугун, которые относятся к черным металлам. Сталь является основным видом металла в черной металлургии, она обладает высокой прочностью и износостойкостью. А сталь хорошо поддается сварке.

Черная металлургия

К черной металлургии относят отрасль тяжелой промышленности, включающая в свою технологию саму добычу материала, обработка сырья, наполнение производства вспомогательными материалами и топливом.

Кроме того, к черной металлургии относится окончательный выпуск продукции и его переработка. К этому виду отрасли относят:

  • получение основного сырья;
  • обогащение первичного материала (марганцевой и железной руды);
  • выплавка чугуна, а также высококачественной стали;
  • выполнение огнеупорных материалов;
  • наполнение производства вспомогательными материалами (известняк);
  • производство изделий из металла для собственного пользования.

Черная металлургия – это основа всей промышленности машиностроения. Черные металлы широко применяются в строительстве и для нужд человека.

Черная металлургия

По концентрации черного металла Россия занимает лидирующую позицию в мире по сравнению с другими промышленно развитыми странами.

В структуре черной металлургии важное место занимает этап производства чугуна и стали до момента проката. Кроме этого, производство основывается на подготовке самой руды к переплавке, а также проведению обогащения.

Для производства чугуна, кроме руды, требуется подготовка топлива, огнеупорных материалов, которые помогают добиться у металла его высокопрочных качеств. К технологическому топливу чаще всего относят кокс, для его производства используется коксующий уголь высокого качества.

Тонкости производства

Расположение предприятий, связанных с добычей и переработкой черных металлов, напрямую зависит от фактора сырья. Именно на него приходится 90% затратных средств при переплавке чугуна.

Кислородно-конверторный способ плавки чугуна

В состав металлургического комплекса России входят три основные базы:

  • центральная;
  • сибирская;
  • уральская.

В последние годы Центральная база наращивает темпы производства и перегоняет Уральскую. Она полностью обеспечивает коксующим углем и рудами всю Центральную часть России. Основную часть металла производят в Череповце и Липецке.

Центром сибирской базы является город Новокузнецк. Эта база имеет перспективное значение, так как полностью основана на своих ресурсах.

Уральская база располагается в непосредственно близости с богатыми топливом Сибирью и Казахстаном. Такое местонахождение обеспечивает низкую себестоимость продукции. Кроме того, большим преимуществом является расположение вблизи к Уральским горам. Они очень старые, и в настоящее время многие из них разрушаются. Поэтому добыча ведется практически на поверхности.

Большинство металлов и руды могут добываться открытым способом.

Добыча руды открытым способом

Но в этом месторасположении есть минус. Здесь отсутствует коксующий уголь, его приходится завозить из соседних регионов.

Большую значимость имеют в стране металлургические заводы с небольшой мощностью. Именно они могут обеспечить быструю выплавку металла в небольшом количестве. Небольшие заводы быстрее крупных предприятий реагируют на изменение рынка, способны быстро подстроиться под запросы потребителей.

Новым направлением в отрасли сегодня является бездоменная или бескоксовая металлургия. Такое предприятие построено в России, а, точнее, в г. Старый Оскол – Оскольский электрометаллургический комбинат.

Традиционный процесс, при котором руда плавится при температуре 1,6 тыс. градусов вместе с коксом, служащим химическим восстановителем, отличается от этой технологии.

Новый метод существенно экономит кокс, получается металл экологически чистый высокого качества. Процессы, связанные с коксующим углем, становятся с каждым годом все нерентабельнее.

Уголь дорожает, процесс коксования очень сложный, он требует дополнительных затрат, строительство дополнительных очистных сооружений.

Коксование угля

Новые установки практически безвредны для окружающей среды. Кроме того, сталь, произведенная по новой технологии, служит в пять раз дольше.

Цветная металлургия

Под цветной металлургией понимается добыча и обогащение металлов, а также их переработка, прокат и сплавы. Эта отрасль носит такую же важную роль в экономике страны, как и черная металлургия. Россия находится на первом месте по количеству месторождений цветных металлов.

Цветная металлургия подразделяется на две группы:

  • основная тяжелая – основана на добыче первичного сырья, переработка меди, качественного цинка, а также олова;
  • легкая – к ней относится алюминий, магний, титан.

Металлургию цветной отрасли подразделяют на несколько видов:

  • оловянную;
  • титано-магниевую;
  • золотодобывающую;
  • алюминиевую;
  • медную;
  • серебродобывающую.

Цветная металлургия

А также в отрасль цветной металлургии входят предприятия, занимающиеся добычей алмазов.

Расположение предприятий, занимающихся переработкой и добычей цветных металлов, зависит от ряда природных и экономических факторов. Основными из них считаются:

  • Сырьевой показатель – от этого фактора больше всего зависит отрасль тяжелой группы. Добыча цветных металлов напрямую связана с геологоразведочными работами.
  • Топливно-энергетический фактор влияет на расположение как тяжелой, так и легкой отрасли.

В регионах государства сосредоточенны различные группы цветной промышленности.

Цветная металлургия

Медная промышленность

Предприятия по добыче и переработке меди расположены на Урале, в Свердловской области, в Гае Оренбургской области. Продукция металлургии из меди обладает высокой электропроводностью, сам металл хорошо поддается ковке.

Широкое применение продукция находит в машиностроении, при установке линий электропередач. Используется в сплавах с другими металлами.

Предприятия медной промышленности сконцентрированы в регионах, отвечающих сырьевому фактору. Крупные предприятия по добыче и переработке находятся в Норильске и Мончегорске. На Урале функционируют предприятия по производству черной меди.

Никель-кобальтовая промышленность

Эта группа очень зависит от источника сырья. Основные металлургические заводы расположены:

  • Кольский полуостров – заложение сульфидно-никелевых руд.
  • Низовье Енисея – громоздится крупный завод, в Норильске. На нем занимаются производством платины, никеля, меди, кобальта.
  • Предприятия, расположенные на хребте Урала, занимаются прежде всего переработкой окисленных руд.

Никель-кобальтовая промышленность

Алюминиевая промышленность

Крупной отраслью в цветной металлургии считается алюминиевая промышленность. В России все центры производства алюминия расположены на небольшом расстоянии от гидроэлектростанций.

Алюминий обладает высокими конструктивными свойствами, он легкий и прочный. Благодаря этому он широко используется в машиностроении, строительстве. Сплавы из алюминия по своей прочности не уступают стали.

Алмазодобывающая и золотодобывающая промышленность

Добыча алмаза – это одна из важных статей доходов государства. Ежегодно Россия получает до 1,5 миллиардов долларов от продажи алмазов. Основные места добычи расположены в Якутии. Алмазы были найдены и в районах Восточной Сибири.

К одной из значительных отраслей металлургии для бюджета страны относится добыча золота.

Золотодобывающая промышленность

Россия занимает пятое место в мире по добыче этого металла. По разведанным запасам государство находится на второй позиции.

Акцент при поиске местонахождения делается на разработку коренных залежей. Основные места концентрации золота находятся в Сибири, на Дальнем Востоке и на Урале.

Основными приисками считаются:

  • Соловьевский – старый, но значительный прииск в Амурской области;
  • Невьяновский – был открыт еще в 1813 году;
  • Градской – здесь был найден первый в России алмаз;
  • самый молодой прииск Кондор был открыт в 60-х годах, здесь ведется добыча как золота, так и платины;
  • Алтайский.

Лидирующую позицию по добыче занимает компания «Полюс золото». У нее открыты прииски в Иркутской области, Амурской и Магаданской областях.

Государственный итог

В настоящее время Россия занимает лидирующие позиции по запасам железной руды и никеля. В стране производится более 70 разнообразных металлов и элементов. Металлургическое производство имеет большое хозяйственное значение.

Отрасли металлургии – это одни из самых динамично развивающихся отраслей. Несмотря на высокую конкуренцию со стороны крупных развивающихся стран, России удается сохранить лидерство за счет низкой себестоимости производства.

Чтобы сохранить позиции разрабатываются стратегические, антикризисные планы. Металлургия служит источником валютных поступлений в страну. Она обеспечивает стабильное нахождение России на мировом рынке.

В металлургическом комплексе есть и свои проблемы. Рост производства на большинстве предприятиях происходит только при создании новых производственных мощностей. Большинство из них созданы больше 50 лет назад, но они уже исчерпали свой резерв.

Европейская металлургия от костра до мартена


На протяжении всей истории человечества образ хозяйствования нашей цивилизации определяли металлы. Вообще говоря, все первые металлы, открытые человечеством, стоят правее водорода в электрохимическом ряду напряжений металлов. Это так просто потому, что все остальные по закону неумолимой термодинамики будут окислены во влажных и окислительных условиях атмосферы и литосферы. Точнее говоря, те, что правее водорода, тоже будут окислены – но сильно позже. А пока что встречайте: медь, серебро, золото, сурьма!



Справа все интересующие нас металлы, а заодно ртуть и платина. Не влезли палладий и висмут, но они встречаются реже метеоритов

Все эти элементы при определенной доле удачи могут быть встречены в самородном виде – неслыханное счастье для тех, кому до того предстояло пользоваться каменными орудиями труда. Металлу можно придавать почти любую форму, он не раскалывается, а деформируется при ударах, а еще его можно затачивать и делать качественно лучшие орудия труда. Золото, серебро и медь уже к позднему неолиту вовсю использовались для изготовления украшений, а в 6 тысячелетию человечество открыло для себя медные инструменты. Однако самым лучшим доступным металлом было, конечно, железо. Для того, чтобы найти его в чистом виде, нужно поистине дьявольское везение – оно встречается только в упавших метеоритах и является настоящей царской прерогативой (так, кинжал из гробницы Тутанхамона сделан именно из такого железа).

Новую веху в истории обработки металлов ознаменовала восстановительная металлургия. Люди открыли, что, если спекать некоторые минералы с углем, в камешках получившегося шлака заблестят кусочки меди. Это позволило человечеству перейти на небывало высокий по сравнению с неолитом уровень технологий. Новые медные инструменты и так были на порядок лучше каменных, но теперь они стали по-настоящему доступны. Вскоре появились первые печи для плавки меди, которые, например, можно найти в древних городах Анатолии. Так, первое найденное литое изделие датируется 5000 г. до н. э.



диаграмма Эллингема

Теперь сделаем небольшое отступление обратно к современности и обратим свои взоры на диаграмму Эллингема. Эта диаграмма показывает нам, насколько при разных температурах стабильны различные оксиды. Также она позволяет легко определить, восстановит ли углерод или угарный газ нужный оксид до металла при данной температуре – для этого всего лишь нужно посмотреть, в какой точке линия С и СО становится ниже линии соответствующего металла. Из нее можно понять, например, что даже при небольшом нагревании и углеродом, и угарным газом медь восстановится со свистом, а вот чтобы восстановить железо, придется хорошенько постараться (но все же меньше, чем для многих других металлов).

Проблема состоит не только в этом. Мало просто восстановить металл, необходимо его еще и расплавить, иначе вместо слитка, которому можно придать любую форму, получится просто серый (в случае железа) или красный (в случае меди) порошок. Поэтому для эффективного изготовления железных изделий нужна такая печь, которая сможет расплавить железо. Однако построить ее не так-то просто, первые железоделательные печи появились на территории той же Анатолии у хеттов примерно к 1200 г. до н. э. До этого человечество обходилось медью или бронзой – сплавом меди с мышьяком или оловом (бронза была попрочнее меди, дольше изнашивалась и плавилась при меньшей температуре).



Сыродутная печь

Такие требования сформировали облик европейской железной металлургии на многие века. Схема печи оставалась общей: высокая глиняная/земляная труба, в которой вперемежку уложены слои железной руды (как правило, болотной бурой слизи или каменной руды) и древесный уголь. Все это мероприятие было крайне малопрофитным в смысле целевого продукта, в железо превращалось около 30% руды в лучшем случае. Несмотря на это, железные орудия были на порядок выгоднее орудия из любого другого металла, доступного европейцам, из-за не в пример большего качества.

Описанный выше способ выплавки железа назывался сыродутным. Получившийся кусок железа содержал крайне большое количество шлаков, поэтому его проковывали большое количество раз. При этом получившееся железо обладало существенным недостатком. При получении оно было крайне твердым и незатачиваемым (так как содержало большое количество углерода), а при дальнейшем выгорании – очень мягким. Поэтому единственным способом получить нормальное, функциональное изделие было сваривание нескольких пакетов железа методом проковки сложенных слоев железа, просыпанных между собой бурой. Усовершенствовав технологи многократной проковки заготовки до предела и чередуя мягкие и твердые слои железа, человечество научилось изготавливать булатную сталь – один из лучших видов металлургической продукции своего времени.

Одним из основных шлаков в металлургическом производстве Средневековья был чугун. Он выплавлялся из руды раньше всех, потому что в нем больше углерода, а, чем больше в каком-либо твердом веществе примеси, тем ниже его температура плавления. Также чугун крайне хрупок и тяжел, что затрудняло его применение в металлургии. Довольно большая часть железа всегда уходила в шлаки в виде чугуна, откуда его было уже не выдернуть. В больших по размеру печах (штукофенах и блауофенах) с четырех-пятиметровыми «резервуарами» для руды и угля в чугун и шлак уходило просто огромное количество железа. Обычно из чугуна потом изготавливали низкотехнологические изделия типа кувалд, ядер и прочего. Забавный факт – и по сей день шлаки металлургического производства используются в дорожном строительстве как материал для брусчатки.



Схема современной доменной печи

Следующей вехой развития железного производства стали доменные печи. Человечество догадалось, что, если печь сделать достаточно большой, можно будет подбрасывать в нее уголь и руду прямо в процессе плавки, а железо, сталь, чугун и шлаки сливать из нее через отдельные летки. Этот процесс в 15-16 вв. стал очередным технологическим бумом для Европы – несмотря на то, что доменную печь нельзя было останавливать, а угля и руды она жрала абсолютно непомерное количество, она позволила европейцам превзойти весь мир по выплавке металла на душу населения, а, следовательно, по артиллерийской мощи.

С учетом роста населения и постоянно растущего спроса на железо его производство на душу населения в 11-13 вв. достигало порядка килограмма на человека в год. Для сравнения – современный небольшой ножик весит порядка 200 граммов, лезвие небольшого топора – около 700 граммов, а ведь еще нужно на чем-то готовить, чем-то строить, опять же всяческие метизы типа гвоздей, скоб, крюков и прочего. В итоге мы понимаем, что уровень сыродутной металлургии даже с учетом перекрытия некоторых потребностей другими металлами давал ужасающе мало.

Ситуация менялась, как ни парадоксально, с увеличением количества металлических изделий – можно было срубать больше деревьев, прокапывать более глубокие шахты, возводить более сложные конструкции. Производство росло в геометрической прогрессии – размер печей для выплавки железа все увеличивался, увеличивался от простой сыродутной печи к штукофену и блауофену и наконец-то вырос до настоящей домны с непрерывным циклом выплавки. И тут понеслась – положительная обратная связь сделала свое дело.

Всеевропейское внедрение в 15-16 веках доменной печи сразу, буквально за несколько десятилетий, увеличило количество производимого на душу населения железа втрое, а то и вчетверо. Нашей цивилизации впервые стали по-настоящему доступны каменные железные руды. Забегая вперед, скажу, что в Швеции, стране, которая на тот момент поставляла больше половины всего европейского железа, к 18 веку производство достигло невероятных 20 кг железа на человека. Впрочем, до обогащения и прочих технологических процессов мы пока еще не дошли – пока что это просто загрузка печи камнями руды, углем и флюсом – специальным веществом, чтобы снизить количество примесей в плаве и уменьшить температуру плавления.

Проблемой доменного производства была необходимость в огромном количестве качественного древесного угля – каменный уголь содержал много вредных для железа примесей, поэтому деревья приходилось вырубать в огромных масштабах. Об экологии тогда никто не заботился, но бескрайние леса были, очевидно, не во всех странах. Также откровенным минусом все еще был уход огромного количества железа в чугун, хрупкий и потому не годный для создания инструментов и метизов. Единственной масштабной отраслью применения чугуна было артиллерийское дело – на отливку пушек и ядер шли многие тонны чугуна. И вот тут человечество сделало пока чисто эмпирическое, но очень важное открытие – из чугуна при высокой температуре может выгорать углерод. Естественно, ни о каком углероде речь тогда не шла, но этот факт позволил железоделательному производству перейти еще на один технологический уровень выше.

Все помнят, как в морозилке замерзает соленая вода? Образуется большая ледышка, самого рассола становится меньше, концентрация соли в нем растет. Похожий процесс происходит и при плавлении чугуна на воздухе. Углерод из него частично выгорает, частично переходит в жидкую фазу, а на дне печи начинают образовываться кристаллы железа. Это явление заметил английский металлург Генри Корт, и вскоре практика пудлингования – перемешивания расплава чугуна вошла в Британии в крайне широкое распространение.



Печь для пудлингования. 1) Под 2) Труба с клапаном для регулирования силы тяги 3) Порог, отделяющий металл в рабочем объёме от топлива 4) Колосниковая решётка, на которой находится горящее топливо (уголь) 5) Боковое окно для пудлинговщика 6) Окно для заброса топлива

Как происходило пудлингование? Сначала в печи, обложенной огнеупорной футеровкой (отделка печи, позволяющая оградить тело печи от разрушительного влияния расплавов) без доступа открытого пламени расплавлялся чугун. По прошествии некоторого времени рабочие засовывали в расплав огромные железные штанги (около 40 килограммов весом) и начинали интенсивно перемешивать его. Вскоре на штангах выкристаллизовывалось чистое железо, температура плавления которого намного выше, чем у чугуна. Далее получившуюся крицу вынимали из расплава, проковывали и разделяли на слитки.

Естественно, процесс этот был далеко не из самых легких, однако он позволил высвободить для промышленности огромное количество чистого железа и разом решить проблему переизбытка чугуна. Процесс пудлингования доминировал в металлургии на протяжении практически ста лет, после чего был вытеснен сразу тремя способами – бессемеровским (открытым Генри Бессемером в 1856 году), томасовским (открытым в 1878 году Сидни Гилкристом Томасом) и мартеновским.



Принцип работы любого конвертера

Бессемеровский и томасовский процессы довольно схожи. В качестве основного реактора используется веретенообразная печь с огнеупорной футеровкой (в случае бессемеровского процесса – кислой, содержащей SiO2, в случае томасовского – основной, содержащей доломит CaCO3xMgCO3). В процессе плавки печь нагревается, опять же, без доступа открытого пламени, после чего продувается сжатым воздухом через сопла, расположенные в дне печи. Расплав поддерживается в горячем состоянии из-за процесса окисления примесей руды, проходящего с выделением температуры. Далее полученное железо подвергается дополнительному науглероживанию с образованием стали. Основное отличие двух способов состоит в химическом составе плава.

В томасовском процессе могут быть использованы загрязненные серой и фосфором руды – продукты окисления фосфора и серы связываются материалом футеровки, давая окисляющий железо углекислый газ. У этого способа есть недостаток – фосфор и сера удаляются из плава не в полном объеме, поэтому железо получается более ломким. В бессемеровском же процесса футеровка печи не позволяет использовать основные флюсы, что делает его более требовательным к качеству руды. Однако этот способ дает более качественное железо, что и определило его производственное преимущество в долгосрочной перспективе.


Настало время сказать несколько слов и про мартеновский процесс. Он был открыт в 1864 году французским инженером Пьером Мартеном. Основное его отличие от бессемеровского и томасовского способов состоит в том, что газообразное топливо (обычно природный газ или коксовый газ) подаются прямо в зону плавки, где расплавляют чугун и одновременно окисляют его. Мартеновский процесс получил особенно широкое распространение в качестве способа передельной металлургии, которая использует для выплавки новой стали железный лом.

Сейчас практически все процессы старины глубокой (кроме доменной выплавки, конечно) уже ушли в прошлое. Их заместили новые гиганты – конвертерно-кислородный (переиначенный бессемеровский) и электродуговой способы выплавки стали. Однако история их, как мне кажется, довольно увлекательна, чтобы помнить ее и интересоваться ей.



Божественно прекрасный томасовский конвертер

Автор: Павел Ильчук


VPS серверы от Маклауд быстрые и безопасные.

Зарегистрируйтесь по ссылке выше или кликнув на баннер и получите 10% скидку на первый месяц аренды сервера любой конфигурации!

Металлургия


Металлу́ргия и металлурги́я [1] — (от др.-греч. μεταλλουργέω — добываю руду, обрабатываю металлы) — область науки и техники, отрасль промышленности [2] . К металлургии относятся:

  • производство металлов из природного сырья и других металлсодержащих продуктов;
  • получение сплавов;
  • обработка металлов в горячем и холодном состоянии; ;
  • нанесение покрытий из металлов;
  • область материаловедения, изучающая физическое и химическое поведение металлов, интерметаллидов и сплавов.

К металлургии примыкает разработка, производство и эксплуатация машин, аппаратов, агрегатов, используемых в металлургической промышленности.

С металлургией тесно связаны коксохимия, производство огнеупорных материалов.

Содержание

Разновидности металлургии

Металлургия подразделяется на чёрную и цветную.

  • Чёрная металлургия включает добычу и обогащение руд чёрных металлов (к чёрным металлам относят железо, все остальные — цветные), производство чугуна, стали и ферросплавов. К чёрной металлургии относят также производство проката чёрных металлов, стальных, чугунных и других изделий из чёрных металлов.
  • К цветной металлургии относят добычу, обогащение руд цветных металлов, производство цветных металлов и их сплавов.

По основному технологическому процессу подразделяется на пирометаллургию (плавка) и гидрометаллургию (извлечение металлов в химических растворах). Разновидностью пирометаллургии является плазменная металлургия.

Металлы

Самыми распространенными металлами являются:

По физическим свойствам и назначению цветные металлы условно делят на тяжёлые (медь, свинец, цинк, олово, никель) и лёгкие (алюминий, титан, магний).

Металлы в целом обладают следующими физическими свойствами:

  • Твердость.
  • Звукопроводность.
  • Высокая температура плавления.
  • Высокая температура кипения.
  • При комнатной температуре металлы находятся в твёрдом состоянии (за исключением ртути, единственного металла, находящегося в жидком состоянии при комнатной температуре).
  • Отполированная поверхность металла блестит.
  • Металлы — хорошие проводники тепла и электричества.
  • Обладают высокой плотностью.
  • Медь обладает пластичностью и высокой электропроводностью. Именно поэтому она нашла свое широкое применение в электрических кабелях.
  • Золото и серебро очень тягучи, вязки и инертны, поэтому используются в ювелирном деле. Золото также используется для изготовления неокисляемых электрических соединений.
  • Железо и сталь обладают твердостью и прочностью. Благодаря этим их свойствам они широко используются в строительстве.
  • Алюминий ковок и хорошо проводит тепло. Он используется для изготовления кастрюль и фольги. Благодаря своей низкой плотности — при изготовлении частей самолётов.

Сплавы

Наиболее часто используются сплавы алюминия, хрома, меди, железа, магния, никеля, титана и цинка. Много усилий было уделено изучению сплавов железа и углерода. Обычная углеродистая сталь используется для создания дешёвых, высокопрочных изделий, когда вес и коррозия не критичны.

Нержавеющая или оцинкованная сталь используется, когда важно сопротивление коррозии. Алюминиевые и магниевые сплавы используются, когда требуются прочность и легкость.

Медно-никелевые сплавы (такие, как монель-металл) используются в коррозионно-агрессивных средах и для изготовления ненамагничиваемых изделий. Суперсплавы на основе никеля (например, инконель) используются при высоких температурах (турбонагнетатели, теплообменники и т. п.). При очень высоких температурах используются монокристаллические сплавы.

Добывающая металлургия

Добывающая металлургия заключается в извлечении ценных металлов из руды и переплавке извлечённого сырья в чистый металл. Для того, чтобы превратить оксид или сульфид металла в чистый металл, руда должна быть отделена физическим, химическим или электролитическим способом.

Металлурги работают с тремя основными составляющими: сырьём, концентратом (ценный оксид или сульфид металла) и отходами. После добычи большие куски руды измельчаются до такой степени, когда каждая частица является либо ценным концентратом либо отходом.

Горные работы не обязательны, если руда и окружающая среда позволяют провести выщелачивание. Таким путём можно растворить минерал и получить обогащённый минералом раствор.

Зачастую руда содержит несколько ценных металлов. В таком случае отходы одного процесса могут быть использованы в качестве сырья для другого процесса.

История



Первые свидетельства того, что человек занимался металлургией, относятся к 5-6 тысячелетиям до н. э. и были найдены в Майданпеке, Плочнике [3] и других местах в Сербии (в том числе медный топор 5500 лет до н. э., относящийся к культуре Винча) [4] , Болгарии (5000 лет до н. э.), Палмеле (Португалия), Испании, Стоунхендже (Великобритания). Однако, как это нередко случается со столь давними явлениями, возраст не всегда может быть точно определён.

В культуре ранних времён присутствуют серебро, медь, олово и метеоритное железо, позволявшие вести ограниченную металлообработку. Так, высоко ценились «Небесные кинжалы» — египетское оружие, созданное из метеоритного железа 3000 лет до н. э. Но, научившись добывать медь и олово из горной породы и получать сплав, названный бронзой, люди в 3500 годы до н. э. вступили в Бронзовый век.

Получение железа из руды и выплавка металла было гораздо сложнее. Считается, что технология была изобретена хеттами примерно в 1200 году до н. э., что стало началом Железного века. Секрет добычи и изготовления железа стал ключевым фактором могущества филистимлян.

Следы развития чёрной металлургии можно отследить во многих прошлых культурах и цивилизациях. Сюда входят древние и средневековые королевства и империи Среднего Востока и Ближнего Востока, древний Египет и Анатолия (Турция), Карфаген, греки и римляне античной и средневековой Европы, Китай, Индия, Япония и т. д. Нужно заметить, что многие методы, устройства и технологии металлургии первоначально были придуманы в Древнем Китае, а потом и европейцы освоили это ремесло (изобретя доменные печи, чугун, сталь, гидромолоты и т. п.).

Тем не менее, последние исследования свидетельствуют о том, что технологии римлян были гораздо более продвинутыми, чем предполагалось ранее, особенно в области горной добычи и ковки.

(о российской металлургии XVIII — начала XIX вв.)

См. также

Примечания

  1. ↑ Проверка правописания на Грамота.ру [1].
  2. ↑Металлургия (рус.) . Словарь научных терминов. Архивировано из первоисточника 24 августа 2011.Проверено 10 декабря 2010.
  3. ↑В Сербии найдены древнейшие медные изделия
  4. ↑Neolithic Vinca was a metallurgical culture (англ.) (17 ноября 2007). Архивировано из первоисточника 24 августа 2011.Проверено 27 августа 2009.

Ссылки

Литература

  • Герасимов Я. И. Химическая термодинамика в цветной металлургии. Т. 1-7. / Я. И. Герасимов, А. Н. Крестовников, А. С. Шахов и др. — М.: Металлургиздат, 1960—1973. — 2108 с.
  • Металловеды / Составитель С. С. Черняк — Иркутск: Изд-во ИрГУ, 2000. — 532 с.
  • Павленко Н. И. История металлургии в России XVIII века. Заводы и заводовладельцы. М.: Издательство АН СССР, 1962. — 566 с.

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое "Металлургия" в других словарях:

МЕТАЛЛУРГИЯ — греч., от metallon, металл, и ergon, труд. Наука о способах добывания и обработки металлов. Объяснение 25000 иностранных слов, вошедших в употребление в русский язык, с означением их корней. Михельсон А.Д., 1865. МЕТАЛЛУРГИЯ наука о способах… … Словарь иностранных слов русского языка

МЕТАЛЛУРГИЯ — (от греч. metallurgeo добываю руду обрабатываю металлы), область науки и техники и отрасль промышленности, охватывающие процессы получения металлов из руд или др. материалов, изменения химического состава, структуры и свойств металлических… … Большой Энциклопедический словарь

Металлургия — отрасль тяжелой промышленности, охватывающая процессы получения (выплавки) металлов из руд и других материалов, производства сплавов, придания нужной формы металлическим заготовкам путем обработки их давлением. Традиционно металлургия… … Финансовый словарь

металлургия — Наука о металлах и сплавах. Металлургия процессов имеет отношение к извлечению металлов из их руд и их очистке. Физическая металлургия работает с физическими и механическими свойствами металлов в соответствии с их соединением, обработкой и… … Справочник технического переводчика

МЕТАЛЛУРГИЯ — МЕТАЛЛУРГИЯ, область науки и техники, а также отрасль промышленности, занимающаяся МЕТАЛЛАМИ. Металлургия включает изучение методов выделения металлов из их РУД; физических и химических свойств металлов; производство СПЛАВОВ; закалку и упрочнение … Научно-технический энциклопедический словарь

МЕТАЛЛУРГИЯ — МЕТАЛЛУРГИЯ, и и МЕТАЛЛУРГИЯ, и, жен. 1. Наука о промышленных способах производства металлов и сплавов и их первичной обработке. 2. Промышленное производство металлов и сплавов, их механическая и химическая обработка. М. сплавов. Порошковая м.… … Толковый словарь Ожегова

металлургия — (горячий, огненный) цех Словарь русских синонимов. металлургия сущ., кол во синонимов: 5 • гидрометаллургия (1) • … Словарь синонимов

МЕТАЛЛУРГИЯ — МЕТАЛЛУРГИЯ, добыча металлов из их природных соединении руд, распадается на два отдела: черную и цветную. Черная М. охватывает добычу чугуна, железа и стали. Чугун добывается из железных руд, именуемых железняками: красного (Fe203), магнитного… … Большая медицинская энциклопедия

металлургия — и металлургия … Словарь трудностей произношения и ударения в современном русском языке

металлургия — комбинаты. Металл өндіретін және өңдейтін комбинат. Айталық, Қарағанды мен Теміртаудың м е т а л л у р г и я к о м б и н а т т а р ы н а н шыққан ақаба су Нұраға осы жолмен табысады (Қаз. әдеб., 18.03.1988, 3). Металлургия отаны. п е р и ф р.… … Қазақ тілінің түсіндірме сөздігі

Читайте также: