Доктор лом расчет металлической балки

Обновлено: 30.06.2024

Недавно один из посетителей обратился ко мне со следующим вопросом:

Добрый вечер Доктор Лом, хочу рассчитать балку под площадкой лестничной клетки, 2х маршевая лестничная клетка размеры в плане 5800х2600, под каждой площадкой на продольные кирпичные стены (380 мм) опираются по 2 стальные балки (двутавр h=270), сверху на стальные балки опираются металлические косоуры (двутавр h=270) ну и выше монолитная ж/б площадка=110 (общая высота 270+270+110=650 мм) если я правильно понимаю на балку приходится распределенная нагрузка от площадки и 4 сосредоточенных силы (по 2 косоура на марш), поправьте если я не прав и подскажите каким примером лучше воспользоваться для расчёта балки?

В принципе на подобные вопросы всегда есть ответы в различных типовых сериях. Тем не менее я приветствую стремление людей самим разобраться в тонкостях расчета, а так как примеров подобного расчета на сайте не было, то приведу ниже в очень упрощенной форме пример расчета подобной балки, что в принципе следовало бы сделать уже давно. Конструктивные особенности различных элементов конструкции здесь не рассматриваются.

Пример расчета металлической балки под лестничные марши

Особенность расчета подобной балки даже не в том, что на такую балку будет действовать не только равномерно распределенная нагрузка от монолитной ж/б площадки, людей и прочих грузов, находящихся на этой площадке, но и сосредоточенные нагрузки от косоуров. И не просто сосредоточенные нагрузки от косоуров, а при определенных условиях вертикальная и горизонтальная составляющая этих нагрузок, поэтому приводить сосредоточенные нагрузки к эквивалентной равномерно распределенной большого смысла нет - сильно это наш расчет не упростит.

Поступим так. Из конструктивных соображений для балок будет использоваться двутавр высотой 270 мм. Согласно сортаменту такой двутавр имеет моменты сопротивления Wz = 371 см 3 и Wy = 41.5 см 3 , моменты инерции Iz = 5010 см 4 и Iy = 260 см 4 , а также массу погонного метра m = 31.5 кг/м. Расстояние между стенами, на которые опираются балки - 2600 мм, следовательно расчетная длина балок 2.6 м или 260 см. Расстояние между балками, на которые опирается плита - монолитная площадка, примем равным 1.2 м. Полное расстояние между косоурами - 1.2 м, по косоурам бетонные ступеньки типа ЛС. Таким образом горизонтальная проекция косоуров 3.4 м, тогда при наклоне косоуров 30° длина косоуров (гипотенузы прямоугольного треугольника) составляет

lк = 3.4/cos30° = 3.4/0.866 = 3.92 ≈ 4 м

Так как на одну из балок будет опираться только монолитная площадка, а на вторую и площадка и косоуры, а обе балки будут изготавливаться из двутавров одного сечения, то нам достаточно проверить прочность наиболее нагруженной балки. Сделаем это следующим образом.

Сбор нагрузок на балку

1.1. От собственного веса металлической перемычки:

где n - количество уголков, швеллеров или других профилей, составляющих балку

m - собственный вес 1 погонного метра швеллера или другого профиля, определяемый по сортаменту. В нашем случае балка состоит из одного двутавра и тогда

q1 = 31.5 кг/м

1.2. От плиты лестничной площадки.

Кроме того, что монолитная плита сама по себе весит не мало, так еще следует учитывать возможную нагрузку от стяжки, напольного покрытия, мебели и разных всяких людей, перемещающихся по лестнице не в режиме спокойной ходьбы, а бегом и вприпрыжку. Чтобы хоть как-то упростить этот процесс, можно принимать общую нагрузку от вышеперечисленных факторов в пределах q2 = 700-800 кг/м 2 . Монолитная плита толщиной 11 см весит около

qп = ρhk = 2500·0.11·1.2 = 330 кг/м 2

где ρ - объемный вес железобетона, принимаемый равным 2500 кг/м 3 , h = 0.11 м - высота (толщина) плиты, k= 1.2 - коэффициент надежности по нагрузке.

Еще до 100 кг/м 2 может дать стяжка, а остальное - нагрузка от мебели, людей и прочих неожиданностей (динамическая и ударная нагрузка - это не шутки).

Таким образом погонная равномерно распределенная расчетная нагрузка на балку составляет:

q = q1 + q21.2/2 = 31.5 + 800·1.2/2 = 31.3 + 480 = 511.5 кг/м

Так как ширина плиты составляет 1.2 м, а нагрузка от плиты лестничной площадки будет распределятся на две балки, то и значение нагрузки на балку составит q2bп/2.

Примечание: автор вопроса предполагает сделать такую конструкцию, при которой нагрузка от плиты будет передаваться на балку сосредоточенно в местах крепления косоуров и в этом случае расчет будет более простым, так как распределенную нагрузку от собственного веса балки можно вообще не учитывать, а учитывать только сосредоточенные нагрузки. Тем не менее далее будет рассматриваться случай, когда плита лестничной площадки опирается непосредственно на балку.

1.3. От лестничных маршей.

На нашу балку опираются 4 косоура, по 2 от каждого лестничного марша. Нагрузки, передаваемые от косоуров балке, более правильно рассматривать как распределенные по ширине косоуров. Тем не менее с учетом небольшой ширины косоуров по отношению к длине балки эти нагрузки можно рассматривать как сосредоточенные и приложенные в центрах ширины косоуров. Кроме того нагрузками от двух крайних косоуров для упрощения расчетов можно пренебречь, так как эти косоуры опираются на балку возле стен - опор балки и расстояние от точки приложения нагрузки до опоры относительно небольшое.

Еще 2 косоура опираются на балку недалеко от середины балки и для упрощения расчетов можно нагрузки от этих двух косоуров рассматривать как одну, приложенную посредине балки и суммарно равную нагрузке от 2 косоуров. Тогда

Нагрузка от собственного веса косоуров

В данном случае мы приняли значение коэффициента надежности по нагрузке k = 1.4 достаточно большим, чтобы учесть возможные конструктивные особенности косоуров.

Нагрузка от ступенек

Qc = nmck = 13·128·1.1 = 1830.4 кг

где n = lк/пс = 3.92/0.3 = 13 - количество ступенек, укладываемых по косоуру, если длина постели одной ступеньки около 30 см. mc = 128 справочная масса одной ступени ЛС согласно ГОСТ 8717.0-84.

Временная нагрузка от людей и перемещаемых по лестнице грузов

Таким образом суммарная сосредоточенная нагрузка посредине балки составит

Q = Qк + Qс + Qв = 352.8 + 1830.4 + 2016 = 4199.2 кг

При этом для дальнейших расчетов нам нужно знать вертикальную и горизонтальную составляющие этой нагрузки

Q в = Qcos30° = 4199.2·0.866 = 3636.6 кг

Q г = Qsin30° = 4199.2·0.5 = 2099.6 кг

Определение максимальных изгибающих моментов

Для балки, на которую действует равномерно распределенная нагрузка, максимальный момент будет посредине длины балки и будет составлять

М в 1 = ql 2 /8 = 511.5·2.6 2 /8 = 432.302 кгм или 43230.2 кгсм

Для балки, на которую действует сосредоточенная нагрузка посредине балки (горизонтальная составляющая от нашей нагрузки), максимальный момент будет также посредине балки и будет составлять

М в 2 = Q в l/4 = 3636.4·2.6/4 = 2363.66 кгм или 236366 кгсм

Максимальный изгибающий момент от вертикально приложенной нагрузки составит

М в max = М в 1 + М в 2 = 43230.2 + 236366 = 279596.2 кгсм

Требуемый момент сопротивления:

W в треб = М в max / Ry = 279596.2/2100 = 133.14 см 3

где Ry - расчетное сопротивление стали. Ry = 2100 кгс/ см 2 (210 МПа)

Примечание: Вообще-то расчетное сопротивление для выбранного профиля лучше уточнить у производителя, если есть такая возможность, потому, что расчетное сопротивление может быть и больше. Но если нет возможности узнать расчетное сопротивление, то лучше принимать 2100, как наиболее распространенное.

У выбранного нами двутавра момент сопротивления относительно оси z составляет Wz = 371 см 3 , т.е. имеется чуть ли не 3-х кратный запас прочности и волноваться вроде бы не о чем. Однако не следует забывать о горизонтальной составляющей нагрузки. Момент от горизонтальной составляющей будет составлять

М г = Q г l/4 = 2099.6·2.6/4 = 1364.74 кгм или 136474 кгсм

Тогда требуемый момент сопротивления в перпендикулярной плоскости:

W г треб = М г / Ry = 136474/2100 = 65 см 3

А у нас момент сопротивления Wy = 41.5 см 3 и этого для восприятия нагрузки в горизонтальной плоскости совершенно недостаточно и для того, чтобы балка не разрушилась, необходимо принять соответствующие конструктивные меры. Это может быть крепление косоуров к балке сваркой или болтами после соответствующего расчета сварных швов или болтовых соединений, а кроме того соединение балок между собой некоторым профилем, перпендикулярным осям балок. Крепится такой профиль посредине пролета балок, т.е. почти в месте приложения сосредоточенных нагрузок. Этот профиль будет как минимум перераспределять горизонтальную составляющую нагрузки между двумя балками, а в некоторых случаях почти полностью передавать горизонтальную составляющую нагрузки на стены. А если таких профилей будет несколько, хоть и значительно меньшего сечения, чем балки, то мы в итоге получим достаточно сложное составное сечение с очень большим моментом сопротивления относительно оси у.

Примечание: стоит ли при расчетах учитывать горизонтальную составляющую нагрузки или нет, зависит от конструктивных решений различных конструкций и их сопряжений. Так в данном случае, если монолитная плита будет достаточно прочно закреплена на балках, то ее можно рассматривать как элемент, препятствующий деформациям балок в горизонтальном направлении, и тогда горизонтальную составляющую при расчетах можно не учитывать.

Впрочем, что учитывать при расчетах, а что нет - решать вам. Расчет на прогиб здесь не приводится, как правило при столь значительном запасе прочности, в расчетах по деформациям нет необходимости.

Как видим сам расчет - дело 5 минут, а вот сбор нагрузок может отнять очень много времени.

На этом пока все.

Доступ к полной версии этой статьи и всех остальных статей на данном сайте стоит всего 30 рублей. После успешного завершения перевода откроется страница с благодарностью, адресом электронной почты и продолжением статьи. Если вы хотите задать вопрос по расчету конструкций, пожалуйста, воспользуйтесь этим адресом. Зараннее большое спасибо.)). Если страница не открылась, то скорее всего вы осуществили перевод с другого Яндекс-кошелька, но в любом случае волноваться не надо. Главное, при оформлении перевода точно указать свой e-mail и я обязательно с вами свяжусь. К тому же вы всегда можете добавить свой комментарий. Больше подробностей в статье "Записаться на прием к доктору"

Для терминалов номер Яндекс Кошелька 410012390761783

Номер карты Ymoney 4048 4150 0452 9638 SERGEI GUTOV

Для Украины - номер гривневой карты (Приватбанк) 5168 7422 4128 9630

Уважаемый доктор Лом. Позвольте с вами не согласиться. Горизонтальных усилий на лобовую балку от косоура нет. Почему:
1. На косоур действуют только вертикальные нагрузки (собственный вес, вес ступеней и полезная).
2. Из условия равновесия сумма всех сил и опорных реакций равна нулю.
3. Горизонтальных сил нет. Соответственно нет и горизонтальных опорных реакций.
Можно зайти с другой стороны если так проще:
1. При расчете методом конечных элементов МКЭ всегда первыми определяются перемещения, а потом уже вычисляются усилия. Нет перемещений - нет усилий. Расчетная схема сначала должна деформироваться.
2. Если взять обычную балку под нагрузкой, то ее концы при прогибе не перемещаются, а поворачиваются вокруг центра тяжести сечения. (изогнутая ось балки).
3. В наклонном элементе будет тоже самое. А раз нет перемещения по горизонтали, нет и усилия.
Ну или если уж совсем грубо, если уж предположить что концы балок все же переместились (сошлись от прогиба, хоть это и не так). То тогда тоже ничего страшного не случится. Ну переместятся они на миллиметр, за ними переместится лобовая балка. После этого система придет в равновесие и все. После снятия нагрузки она вернется в исходное положение. И зачем тогда сложности с закреплением лобовой балки из плоскости?

Не позволю, Николай. Долго расписывать не буду, объясню коротко:
1. Косоур - это наклонная балка, на которую действуют вертикальные нагрузки (формально нагрузки могут быть не только вертикальными, но сейчас не об этом).
2. Для того, чтобы рассчитать наклонную балку на вертикальную нагрузку, или горизонтальную балку на наклонную нагрузку, нужно разложить действующую нагрузку на продольную и поперечную составляющую, других более точных методов расчета пока не существует.
3.Это означает, что в рассматриваемых поперечных сечениях косоура действуют нормальные напряжения, вызываемые продольной составляющей нагрузки.
4. То, что сумма горизонтальных реакций равна нулю, означает лишь то, что соблюдается условие равновесия, а не то, что эти реакции равны 0. Точно также, как в трехшарнирной арке из 2-х прямолинейных стержней, на которую действуют строго вертикальные нагрузки.
5. Конечно же при расчете по любой из упрощенных методик, о которых я упомянул в начале статьи, вы получите столь любимый вами 0. Но это опять же означает лишь то, что принятая методика расчета является упрощенной и приближенной. Тот же упомянутый вами МКЭ - приближенный метод расчета. А вот эту дикость "Нет перемещений - нет усилий" вы лучше никому не говорите. Не буду объяснять вам разницу между поступательным и вращательным видами движения, надеюсь, сами разберетесь.
6. Если хотите, можете почитать статью "Расчетные схемы для наклонных балок", там эта тема рассматривается более подробно.
А если мне не верите, то спросите у любого грузчика и он вам без всяких МКЭ скажет, что когда поднимаешь или спускаешь какую-либо длинную тяжелую вещь по лестничной площадке, то такую вещь всегда легче держать сверху, чем снизу. И не только из-за смещения центра тяжести.

М-да. коротко не получилось.

Николай, вертикальный стержень меня не смущает. Даже хорошо, что вы так нарисовали. А теперь замените вверху жесткое соединение между вертикальным и наклонным стержнями на шарнирное и представьте, что вертикальный стержень не идеально вертикальный (как это легко изобразить на бумаге, но практически невозможно добиться в жизни), а имеет отклонение от вертикали на некий бесконечно малый угол, стремящийся к 0. Что в этом случае произойдет с рассматриваемой системой из двух стержней? Система сложится, т.к. на опорах отсутствуют горизонтальные связи.
Повторяю еще раз, в данной статье я рассматриваю не идеальный частный случай, а так сказать общий случай. И да, статью я писал лет 5-7 назад, о чем тут речь, я сейчас и не помню, а перечитывать совершенно нет времени.

Такие дела. Кстати, с наступающими вас праздниками, раз уж вы заглянули ко мне на огонек!

Николай, рисовать схемы я и сам прекрасно могу. И в статье, которую я упоминал выше, все достаточно подробно расписано, если вы не хотите читать, то это ваши проблемы, а не мои.
Но самое главное даже не это, а то что принимаемые расчетные схемы и реальная работа конструкции - это разные вещи (да и на схемах ваших крепление наклонной балки к идеальным колесикам - отдельный достаточно сложный вопрос). И я ничего никому доказывать не собираюсь, мне то оно зачем? Я и так это знаю, вижу и даже могу снять соответствующее видео, где наклонная балка будет съезжать в указанную вами сторону, скользя по вполне реальной горизонтальной полированной поверхности (нижняя опора), и по гладкой точечной верхней опоре и даже реальная сила трения тут не помеха. И балке этой глубоко чихать на все возможные МКЭ, МНП и прочую софистику.
И опять же куда у вас деваются нормальные сжимающие напряжения от продольной составляющей нагрузки, хотел бы я знать? Этак еще 45 градусов поворота и уже вертикальная, а не наклонная балка будет. И в ее поперечных сечениях все нормальные сжимающие напряжения только от продольной составляющей нагрузки.
Это я еще про кориолисово ускорение не упоминал, которое в расчетах вообще не учитывается.

Ну доска приставленая к вертикальной стенке съезжает потому что у ее верхнего конца нет закрепления по вертикальной оси, а только по горизонтали. А сжимающие напряжения никуда не деваются. Просто внутренние усилия в балке, как в замкнутой системе уравновешивают друг друга, не вызывая внешних опорных реакций. Мы упираемся во все тоже уравнение равновесия для балки целиком. А для стойки оно как раз будет выполнятся четко.
Но это все не важно. Потому что нет самого главного, желания продолжать дискуссию.
Извините, если отнял у вас время, удачи в вашем деле. Сайт на самом деле очень полезный и замечательный.

Я не о доске, приставленной к вертикальной стене, речь веду, а именно о балке с двумя условно вертикальными шарнирными опорами - почти все так, как вы нарисовали. Но вы правы, продолжать дискуссию нет смысла.

p.s. Если посмотреть на формулы, то горизонтальная составляющая продольной силы N уравновешивается горизонтальной составляющей поперечной силы Q. Они равны по величине но разные по знаку. Т.е. все усилия гасятся внутри системы. И наружу в виде опорной реакции ничего не выходит.

Это все ни о чем, дискуссия закрыта. Я никому свое мнение не навязываю. С новым годом,

С Наступающим!
Вызывает уважение, что мои ответы все же были опубликованы полностью и без купюр. Ну а мнения бывают разные. И я безусловно могу искренне заблуждаться. Удачи вам.

Примечание: Возможно ваш вопрос, особенно если он касается расчета конструкций, так и не появится в общем списке или останется без ответа, даже если вы задатите его 20 раз подряд. Почему, достаточно подробно объясняется в статье "Записаться на прием к доктору" (ссылка в шапке сайта).

Расчет металлической балки под лестничные марши

Доктор лом расчет металлической балки

Перед началом расчета стальной балки необходимо собрать нагрузку, действующая на металлическую балку. В зависимости от продолжительности действия нагрузки разделяют на постоянные и временные.

К постоянным нагрузкам относятся:

  • собственный вес металлической балки;
  • собственный вес перекрытия и т.д.;

К временным нагрузкам относятся:

  • длительная нагрузка (полезная нагрузка, принимается в зависимости от назначения здания);
  • кратковременная нагрузка (снеговая нагрузка, принимается в зависимости от географического расположения здания);
  • особая нагрузка (сейсмическая, взрывная и т.д. В рамках данного калькулятора не учитывается);

Нагрузки на балку разделяют на два типа: расчетные и нормативные. Расчетные нагрузки применяются для расчета балки на прочность и устойчивость (1 предельное состояние). Нормативные нагрузки устанавливаются нормами и применяется для расчета балки на прогиб (2 предельное состояние). Расчетные нагрузки определяют умножением нормативной нагрузки на коэффициент нагрузки по надежности. В рамках данного калькулятора расчетная нагрузка применяется при определении прогиба балки в запас.

Нагрузки можно собрать на нашем сайте.

После того как собрали поверхностную нагрузку на перекрытие, измеряемой в кг/м2, необходимо посчитать сколько из этой поверхностной нагрузки на себя берет балка. Для этого надо поверхностную нагрузку умножить на шаг балок(так называемая грузовая полоса).

Например: Мы посчитали, что суммарная нагрузка получилась Qповерхн.= 500кг/м2, а шаг балок 2,5м. Тогда распределенная нагрузка на металлическую балку будет: Qраспр.= 500кг/м2 * 2,5м = 1250кг/м. Эта нагрузка вносится в калькулятор

2. Построение эпюр

Далее производится построение эпюры моментов, поперечной силы. Эпюра зависит от схемы нагружения балки, вида опирания балки. Строится эпюра по правилам строительной механики. Для наиболее частоиспользуемых схем нагружения и опирания существуют готовые таблицы с выведенными формулами эпюр и прогибов.

3. Расчет по прочности и прогибу

После построения эпюр производится расчет по прочности (1 предельное состояние) и прогибу (2 предельное состояние). Для того, чтобы подобрать балку по прочности, необходимо найти требуемый момент инерции Wтр и из таблицы сортамента выбрать подходящий металлопрофиль. Вертикальный предельный прогиб fult принимается по таблице 19 из СНиП 2.01.07-85* (Нагрузки и воздействия). Пункт2.а в зависимости от пролета. Например предельный прогиб fult=L/200 при пролете L=6м. означает, что калькулятор подберет сечение прокатного профиля (двутавра, швеллера или двух швеллеров в коробку), предельный прогиб которого не будет превышать fult=6м/200=0,03м=30мм. Для подбора металлопрофиля по прогибу находят требуемый момент инерции Iтр, который получен из формулы нахождения предельного прогиба. И также из таблицы сортамента подбирают подходящий металлопрофиль.

4. Подбор металлической балки из таблицы сортамента

Из двух результатов подбора (1 и 2 предельное состояние) выбирается металлопрофиль с большим номером сечения.

Расчёт железобетонной балки


Расчёт прогиба и прочности железобетонной балки онлайн сложно выполнить самостоятельно без специальных знаний. Применение балок в строительстве и ремонте – повсеместное, поэтому задача носит универсальный характер. Требуется надёжное решение.

Особенности расчёта железобетонной балки

  • арматура задаётся как снизу, так и сверху;
  • при схеме со свободным концом арматура будет располагаться сверху – в растягиваемом слое;
  • методика расчёта – по «СНБ 5.03.01-02 Бетонные и железобетонные конструкции».

Результаты имеют уровень справочного типа, а не проектных изысканий.

Порядок расчёта

Данный расчёт железобетонной балки выполняется для наиболее часто применяемого поперечного сечения – прямоугольного. Актуальность этой формы подчёркивается практичностью: в домашних или «полевых» условиях такая балка оперативно изготавливается без сложных форм.

Требуется указать в миллиметрах ширину «t» и высоту «h» - не наоборот: деформации балка наиболее качественно противостоит именно при таком соотношении.

Длина балки - не общее значение, а расстояние между внутренними крайними точками контакта с опорами балки.

Параметр указывает на прочность конструкции – он напрямую зависит от марки применяемого бетона и соотношения количеств песка и цемента.

Схема арматуры

Чем выше число, тем прочнее будет бетон.

класс бетона

Наш онлайн-калькулятор железобетонной балки учитывает основные типы арматуры – периодического поперечного сечения и гладкого.

класс арматуры

Прочностные характеристики арматуры описываются классом и маркой:

  • буква «А» или «В» обозначает технологию производства (арматура горячекатаная или прошедшая холодную деформацию соответственно);
  • цифра после неё – уровень предела текучести стали.

Эти сведения находятся в сертификате на арматуру.

сертификат на арматуру

Условия работы деформируемого стержня – ключевой фактор для расчёта: от этого зависит порядок и точность результата.

Действие нагрузки разнится для шарнирно закрепленных концов и жёстко заделанного. Наш онлайн-расчёт железобетонной балки рассчитан на эти варианты: выбирайте между шарнирным опиранием и заделкой одного конца.

Типовой случай нагружения – распределённая нагрузка (килограммов на погонный метр). Если точно определить значение не представляется возможным, есть стандартная величина для междуэтажного перекрытия: 200 кг/м.

Параметр отражает мощность балки – чем больше продольной арматуры заложено, тем более сильному изгибу будет противостоять изделие.

  • Параметры нижнего, наиболее нагруженного, слоя балки.

Условия эксплуатации железобетонной балки носят определяющий характер, в частности - уровни влажности и защищенности от атмосферы.

Выбор предлагается сделать с учётом имеющихся данных.

Если планируется выполнить изделие по особым требованиям, раздел поможет уточнить сжимаемый слой балки. Наш ресурс имеет такую возможность – железобетонная балка будет рассчитана под самые значительные нагрузки.

Расчет балки на прогиб - формулы, параметры и примеры решения

Расчет балки на прогиб нужно проводить практически для любой конструкции, чтобы проверить ее надежность и прочность. Под влиянием внешних, внутренних факторов, природных явлений балка подвержена деформации.

Балку сравнивают со стержнем, закрепленным на опорах. Чем больше опор, тем сложнее провести расчет самостоятельно. Основная нагрузка считается путем сложения сил, перпендикулярно направленных к сечению.

Данный расчет – основы сопромата, помогает определить наивысшую деформацию. Значения показателей должны входить в рамки допустимых величин.

Виды балок

При возведении зданий используется балки разных конфигураций, размеров, профиля, характера сечения. Их изготавливают из металла и дерева. Для любого вида используемого материала нужен индивидуальный расчёт изгиба.

Типы балок

Деревянные - их используют в основном при строительстве индивидуальных построек. Они применяются при возведении полов, потолков, несущих перекрытий. Дерево – капризный материал и подвержено деформации. Для определения максимального изгиба, существенны такие параметры: используемый профиль, размер, нагрузка, характер поперечного сечения.

Металлические - такие балки изготавливают из сплава металлов и сечение у них сложное. Поэтому особое внимание уделяется жесткости, а также прочности соединений. Балки из металла применяются в возведении многоэтажек, сооружений, требующих высокой прочности.

Прочность и жесткость балки

При проектировании следует учесть изгиб балок, чтобы конструкция была надежная, качественная, прочная и практичная.

Условие прочности при изгибе

На эти параметры влияют следующие факторы:

величина наружных нагрузок, их положение;

параметры, характер, нахождение поперечного сечения;

число опор, метод их закрепления.

Выделяют 2 метода исчисления: простой – применяется увеличительный коэффициент, и точный – дополнительно включает пограничные подсчеты.

Построение эпюр балки

Эпюра распределения величины нагрузки на объект:

215

Расчет на жесткость

В формуле обозначены:

M – max момент, возникающий в брусе;

Wn,min – момент сопротивления сечения (табличный показатель);

Ry – сопротивление на изгиб (расчётный показатель);

γc – показатель условий труда (табличный показатель).

Такой расчет не трудоемок, но для более верного значения требуется следующее:

рабочий план объекта;

определение характеристик балки, характер сечения;

определение max нагрузки, воздействующей на брус;

оценка точки max прогиба;

проверка прочности max изгибающего момента.

Расчет моментов инерции и сопротивления сечения

J – момент инерции сечения;

W – момент сопротивления.

Для определения данных параметров необходимо учитывать сечение по грани разреза. Если момент инерции возрастает, величина жесткости также возрастает.

Нахождение максимальной нагрузки и прогиба

Формула для вычисления:

223

q – нагрузка равномерно-распределенная;

E – гибкость (табличный показатель);

I – момент инерции сечения.

Нагрузки учитываются статические и периодические.

Расчет на прогиб и его особенности

Он необходим для всех перекрытий при высоких эксплуатационных нагрузках.

230

При применении соответствующих коэффициентов, придерживаются следующего:

балка, держащаяся на одной жесткой и одной шарнирной опоре, подвергающаяся воздействию сосредоточенной нагрузки;

балка, держащаяся на жесткой и шарнирной опоре, подвергающаяся воздействию распределенной нагрузки;

нагрузка консольного типа;

воздействие комплексной нагрузки.

Пример расчет балки на прогиб

Рассмотрим задачу из курса сопромата.

Дано: балка четырехугольного сечения 20 на 30 см; поперечная сила Q = 19 кН; изгибающий момент М = 28 кНм.

Необходимо рассчитать напряжение: нормальное и в пределе К, отдаленной на 11 см от оси, узнать прочность бруса из дерева, при [σ] = 10 МПа, [τ] = 3 МПа.

231

Чтобы узнать σ(К), τ(К), σmax, τmax определяем значение осевого момента инерции общего сечения IН.О., осевого момента сопротивления WН.О., статического момента отсеченного ряда и статического момента середины сечения Smax:

241

Из этого следует:

242

Определение прочности по нормальному напряжению:

243

Определение прочности по касательному напряжению:

244

При проектировании конструкций важно соблюдать все физико-механические вычисления на прочность. Удобно и качественно произвести расчеты может онлайн, что существенно сократит временные сроки.

Калькулятор выполняет подробный подсчет на основе формул, эпюр усилий, подбирает номер сечения металлической балки из прокатных профильных, двутавровых материалов, а также из металлических труб.


Читайте также: