Движение металла в магнитном поле

Обновлено: 03.05.2024

Мы все знаем, что такое постоянные магниты. Магниты – это металлические тела, притягивающиеся к другим магнитам и к некоторым металлам. То, что располагается вокруг магнита и взаимодействует с окружающими предметами (притягивает или отталкивает некоторые из них), называется магнитным полем.

Источником любого магнитного поля являются движущиеся заряженные частицы. А направленное движение заряженных частиц называется электрическим током. То есть, любое магнитное поле вызывается исключительно электрическим током.

За направление электрического тока принимают направление движения положительно заряженных частиц. Если же движутся отрицательные заряды, то направление тока считается обратным движению таких зарядов. Представьте себе, что по кольцевой трубе течет вода. Но мы будем считать, что некий «ток» при этом движется в противоположном направлении. Электрический ток обозначается буквой I.

В металлах ток образуется движением электронов – отрицательно заряженных частиц. На рисунке ниже, электроны движутся по проводнику справа налево. Но считается, что электрический ток направлен слева направо.


Это произошло потому, что когда начали изучение электрические явления, не было известно, какими именно носителями чаще всего переносится ток.

Если мы посмотрим на этот проводник с левой стороны, так, чтобы ток шел «от нас», то магнитное поле этого тока будет направлено вокруг него по часовой стрелке.

Если рядом с этим проводником расположить компас, то его стрелка развернется перпендикулярно проводнику, параллельно «силовым линиям магнитного поля» — параллельно черной кольцевой стрелке на рисунке.

Если мы возьмем шарик, имеющий положительный заряд (имеющий дефицит электронов) и бросим его вперед, то вокруг этого шарика появится точно такое же кольцевое магнитное поле, закручивающееся вокруг него по часовой стрелке.

Ведь здесь тоже имеет место направленное движение заряда. А направленное движение зарядов есть электрический ток. Если есть ток, вокруг него должно быть магнитное поле.

Движущийся заряд (или множество зарядов – в случае электрического тока в проводнике) создает вокруг себя «тоннель» из магнитного поля. Стенки этого «тоннеля» «плотнее» вблизи движущего заряда. Чем дальше от движущегося заряда, тем слабее напряженность («сила») создаваемого им магнитного поля. Тем слабее реагирует на это поле стрелка компаса.

Закономерность распределение напряженности магнитного поля вокруг его источника такая же, как закономерность распределения электрического поля вокруг заряженного тела – она обратно пропорциональна квадрату расстояния до источника поля.

Если положительно заряженный шарик перемещается по кругу, то кольца магнитных полей, образующихся вокруг него по мере его движения, суммируются, и мы получим магнитное поле, направленное перпендикулярно плоскости, в которой перемещается заряд:


Магнитный «тоннель» вокруг заряда оказывается свернутым в кольцо и напоминает по форме тор (бублик).

Такой же эффект получается, если свернуть в кольцо проводник с током. Проводник с током, свернутый в многовитковую катушку называется электромагнитом. Вокруг катушки складываются магнитные поля движущихся в ней заряженных частиц — электронов.

А если заряженный шарик вращать вокруг его оси, то у него появится магнитное поле, как у Земли, направленное вдоль оси вращения. В данном случае током, вызывающим появление магнитного поля, является круговое движение заряда вокруг оси шарика – круговой электрический ток.


Здесь, по сути, происходит то же самое, что и при движении шарика по кольцевой орбите. Только радиус этой орбиты уменьшен до радиуса самого шарика.

Все сказанное выше справедливо и для шарика заряженного отрицательно, но его магнитное поле будет направлено в противоположную сторону.

Данный эффект был обнаружен в опытах Роуланда и Эйхенвальда. Эти господа регистрировали магнитные поля вблизи вращающихся заряженных дисков: рядом с этими дисками начинала отклоняться стрелка компаса. Направления магнитных полей в зависимости от знака заряда дисков и направления их вращения, показаны на рисунке:


При вращении незаряженного диска, магнитные поля не обнаруживались. Не было магнитных полей и вблизи неподвижных заряженных дисков.

Модель магнитного поля движущегося заряда

Чтобы запомнить направление магнитного поля движущегося положительного заряда, мы представим себя на его месте. Поднимем правую руку вверх, затем укажем ею направо, затем опустим ее вниз, затем укажем влево и вернем руку в исходное положение – вверх. Затем повторим это движение. Наша рука описывает круги по часовой стрелке. Теперь начнем движение вперед, продолжая вращать рукой. Движение нашего тела – аналог движения положительного заряда, а вращение руки по часовой стрелке – аналог магнитного поля заряда.

Теперь представьте себе, что вокруг нас находится тонкая и прочная эластичная паутина, похожая на струны пространства, которые мы рисовали, создавая модель электрического поля.


Когда мы движемся сквозь эту трехмерную «паутину», из-за вращения руки, она, деформируясь, смещается по часовой стрелке, образуя подобие спирали, словно бы наматываясь в катушку вокруг заряда.


Сзади, за нами, «паутина» восстанавливает свою правильную структуру. Примерно так можно представлять себе магнитное поле положительного заряда, движущегося прямо.

А теперь попробуйте двигаться не прямо вперед, а по кругу, например, поворачивая при ходьбе налево, при этом вращая рукой по часовой стрелке. Представьте себе, что вы движетесь через нечто, напоминающее желе. Из-за вращения вашей руки, внутри круга, по которому вы движетесь, «желе» будет смещаться вверх, образуя горб над центром круга. А под центром круга, образуется впадина из-за того, что часть желе сместилось вверх. Так можно представлять себе формирование северного (горб сверху) и южного (впадина снизу) полюсов при движении заряда по кольцу или его вращения.


Если при ходьбе вы будете поворачивать направо, то «горб» (северный полюс) сформируется снизу.

Аналогично можно сформировать представление о магнитном поле движущегося отрицательного заряда. Только вращать рукой нужно в противоположную сторону – против часовой стрелки. Соответственно, магнитное поле будет направлено в противоположную сторону. Просто каждый раз следите за тем, в какой сторону ваша рука выталкивает «желе».

Такая модель наглядно демонстрирует то, почему северный полюс одного магнита притягивается к южному полюсу другого магнита: «горб» одного из магнитов втягивается во «впадину» второго магнита.


И еще эта модель показывает, почему не существуют отдельных северных и южных полюсов магнитов, как бы мы их не разрезали – магнитное поле представляет собой вихревую (замкнутую) «деформацию пространства» вокруг траектории движущегося заряда.

У электрона было обнаружено магнитное поле, такое, какое у него должно быть в том случае, если бы он был шариком, вращающимся вокруг своей оси. Это магнитное поле назвали спином (от английского to spin — вращаться).

Кроме того, у электрона существует еще и орбитальный магнитный момент. Ведь электрон не только «вращается», но движется по орбите вокруг ядра атома. А движение заряженного тела порождает магнитное поле. Так как электрон заряжен отрицательно, магнитное поле, вызванное его движением по орбите, будет выглядеть так:


Если направление магнитного поля, вызванного движением электрона по орбите, совпадает с направлением магнитного поля самого электрона (его спином), эти поля складываются и усиливаются. Если же эти магнитные поля направлены в разные стороны, они вычитаются и ослабляют друг друга.


Кроме того, могут суммироваться или вычитаться друг из друга магнитные поля других электронов атома. Этим объясняется наличие или отсутствие магнетизма (реакции на внешнее магнитное поле или наличие собственного магнитного поля) некоторых веществ.

UPD: Материал предназначен, в первую очередь, для школьников средних классов. Возможно, Хабр не место для подобных вещей, Но где место? Нет его.

Магнитное поле

Магнитное поле играет очень большую роль в электротехнике и электронике. Без магнитного поля не функционировали бы герконы, электромагнитные реле, соленоиды, катушки индуктивности, дроссели, трансформаторы, двигатели, динамики, генераторы электрической энергии да и вообще много чего.

Природа магнетизма

Согласно одной из легенд, когда-то давным-давно жил в Греции пастух по имени Магнес. И вот шел он как-то со своим стадом овец, присел на камень и обнаружил, что конец его посоха, сделанный из железа, стал притягиваться к этому камню. С тех пор стали называть этот камень магнетит в честь Магнеса. Этот камень представляет из себя оксид железа.

магнетит

Если такой камень положить на деревянную доску на воду или подвесить на нитке, то он всегда выстраивался в определенном положении. Один его конец всегда показывал на СЕВЕР, а другой — на ЮГ.

магнетит на воде

Этим свойством камня пользовались древние цивилизации. Поэтому, это был своего рода первый компас. Потом уже стали обтачивать такой камень и делать из разные фигурки. Например, так выглядел китайский древний компас, ложка которого была сделана из того самого магнетита. Ручка у этой ложки всегда показывала на ЮГ.

китайский древний компас

Ну а далее дело шло за практичностью и маленькими габаритами. Из магнетита вытачивали маленькие стрелки, которые подвешивали на тонкую иглу посередине. Так стали появляться первые малогабаритные компасы.

древний компас со стрелкой

Древние цивилизации, конечно, не знали еще что такое север и юг. Поэтому, одну сторону магнетита они назвали северным полюсом (North), а противоположный конец — южным (South). Названия на английском очень легко запомнить, если кто смотрел американский мультфильм «Южный парк», он же Сауз (South) парк).

сауз парк

Магнитные линии и магнитный поток

Вокруг магнита экспериментальным путем были обнаружены магнитные силовые линии. Эти магнитные линии создают так называемое магнитное поле.

Как вы могли заметить на рисунке, концентрация магнитных силовых линий на самых краях магнита намного больше, чем в его середине. Это говорит о том, что магнитное поле является более сильным именно на краях магнита, а в его середине практически равна нулю. Направлением магнитных силовых линий считается направление от севера к югу.

Ошибочно считать, что магнитные силовые линии начинают свое движение от северного полюса и заканчивают свой век на южном. Это не так. Магнитные линии — они замкнуты и непрерывны. В магните это будет выглядеть примерно так.

замкнутые магнитные линии

Если приблизить два разноименных полюса, то произойдет притягивание магнитов

взаимодействие разноименных магнитных полей

Если же приблизить одноименными полюсами, то произойдет их отталкивание

взаимодействие одноименных полюсов магнита

Итак, ниже важные свойства магнитных силовых линий.

  • Магнитные линии не поддаются гравитации.
  • Никогда не пересекаются между собой.
  • Всегда образуют замкнутые петли.
  • Имеют определенное направление с севера на юг.
  • Чем больше концентрация силовых линий, тем сильнее магнитное поле.
  • Слабая концентрация силовых линий указывает на слабое магнитное поле.

Магнитные силовые линии, которые образуют магнитное поле, называют также магнитным потоком.

Итак, давайте рассмотрим два рисунка и ответим себе на вопрос, где плотность магнитного потока будет больше? На рисунке «а» или на рисунке «б»?

плотность магнитного потока

Видим, что на рисунке «а» мало силовых магнитных линий, а на рисунке «б» их концентрация намного больше. Отсюда можно сделать вывод, что плотность магнитного потока на рисунке «б» больше, чем на рисунке «а».

В физике формула магнитного потока записывается как

формула магнитного потока

Ф — магнитный поток, Вебер

В — плотность магнитного потока, Тесла

а — угол между перпендикуляром n (чаще его зовут нормалью) и плоскостью S, в градусах

S — площадь, через которую проходит магнитный поток, м 2

магнитный поток

Что же такое 1 Вебер? Один вебер — это магнитный поток, который создается полем индукцией 1 Тесла через площадку 1м 2 расположенной перпендикулярно направлению магнитного поля.

Напряженность магнитного поля

Формула напряженности

Слышали ли вы когда-нибудь такое выражение: «напряженность между ними все росла и росла». То есть по сути напряженность — это что-то невидимое, какая-то сдерживающая сила, энергия. Здесь почти все то же самое. Напряженностью магнитного поля также часто называют силой магнитного поля. Напряженность магнитного поля напрямую зависит от плотности магнитного потока и выражается формулой

H — напряженность магнитного поля, Ампер/метр

B — плотность магнитного потока, Тесла

μ0 — магнитная постоянная = 4π × 10 -7 Генри/метр или если написать по человечески 1,2566 × 10 -6 Генри/метр.

Эта формула работает только тогда, когда между витками катушки находится воздух, либо вакуум. Более крутая формула выглядит вот так.

μ — это относительная магнитная проницаемость.

У разных веществ она разная

магнитная проницаемость веществ

Напряженность магнитного поля проводника с током

Итак, имеем какой-либо проводник, по которому течет электрический ток.

напряженность проводника с током

Для того, чтобы вычислить напряженность магнитного поля на каком-то расстоянии от проводника при условии, что проводник находится в воздушном пространстве либо в вакууме, достаточно воспользоваться формулой

I — сила тока, текущая через проводник, Ампер

r — расстояние до точки, в которой измеряется напряженность, метр

Магнитное поле проводника с током

Оказывается, если через какой-либо проводник пропустить электрический ток, то вокруг проводника образуется магнитное поле.

правило буравчика

Здесь можно вспомнить знаменитое правило буравчика, но для наглядности я лучше буду использовать правило самореза, так как почти все хоть раз в жизни ввинчивали либо болт, либо саморез.

Ввинчиваем по часовой стрелке — саморез идет вниз. В нашем случае он показывает направление электрического тока. Движение наших рук показывает направление линий магнитного поля. Все то же самое, когда мы начинаем откручивать саморез. Он начинает вылазить вверх, то есть в нашем случае показывает направление электрического тока, а наша рука в этом время рисует в воздухе направление линий магнитного поля.

Также часто в учебниках физики можно увидеть, что направление электрического тока от нас рисуют кружочком с крестиком, а к нам — кружочком с точкой. В этом случае опять представляем себе саморез и уже в голове увидим направление магнитного поля.

направление электрического тока

Как думаете, что будет если мы сделаем вот такую петельку из провода? Что изменится в этом случае?

суммирование магнитного поля

Давайте же рассмотрим этот случай более подробно. Так в этой плоскости оба проводника создают магнитное поле, то по идее они должны отталкиваться друг от друга. Но если они хорошо закреплены, то начинается самое интересное. Давайте рассмотрим вид сверху, как это выглядит.

сумма магнитных полей

Как вы можете заметить, в области, где суммируются магнитные силовые линии плотность магнитного потока прям зашкаливает.

Соленоид

А что если сделать много-много таких петелек? Взять какую-нибудь круглую бобину, намотать на нее провод и потом убрать бобину. У нас должно получится что-то типа этого.

соленоид

Если подать постоянное напряжение на такую катушку, магнитные силовые линии будут выглядеть вот так.

плотность магнитного потока в соленоиде

Вы только посмотрите, какая бешеная плотность магнитного потока внутри такой катушки! Получается, что от каждой петельки магнитное поле суммируется, что в итоге дает такую плотность магнитного потока. Такую катушку также называют катушкой индуктивности или соленоидом.

Вот также схема, показывающая как магнитные силовые линии складываются в соленоиде.

принцип работы соленоида

Плотность магнитного потока зависит от того, какая сила тока проходит через соленоид. Чтобы увеличить плотность магнитного потока, достаточно поверх витков намотать еще больше витков и вставить сердечник из специального материала — феррита.

многообмоточная катушка

Если в электрических цепях есть такое понятие, как ЭДС — электродвижущая сила, то и в магнитных цепях есть свой аналог — МДС — магнитодвижущая сила. Магнитодвижущая сила выражается в виде тока, протекающего через катушку из N витков и выражается в Амперах-витках.

многообмоточная катушка

I — это сила тока в катушке, Амперы

N — количество витков катушки, штуки)

Также советую посмотреть очень простое и интересное видео про магнитное поле.

Закон Фарадея или как магнит застревает в медной трубе

Магнит в медной трубе


Изображение взято с сайта «Популярная механика»

Многие видели опыт с постоянным магнитом, который как бы застревает внутри толстостенной медной трубки. В этой статье будем разбираться в физике процесса.
Сначала запишем формулу магнитного поля постоянного магнита, и посчитаем, какой магнитный поток проходит через поперечное сечение трубы, потом заставим магнитик двигаться и узнаем, какой возникает индуцированный электрический ток в металле, какова рассеиваемая электрическая мощность, запишем и решим уравнение движения постоянного магнита.

И если вы дочитали до этого места и не испугались, добро пожаловать под кат — дальше будет интереснее!

Сам я давно подумывал над тем, чтобы хорошенько разобраться в этом вопросе. И вот недавно зашёл разговор с коллегой по работе. Его ребёнку задали сделать научную демонстрацию в школе, на что папа раздобыл кусок медной трубы и неодим-железо-борный магнит. Ребёнок разобрался, произвёл демонстрацию опыта перед классом, дал пояснения, но ни класс ни учитель особо не впечатлились. На конкурсе научных опытов победил вулкан (!) из соды и лимонной кислоты =) Мы с коллегой прикинули на словах и поняли, что дело ясное, что дело тёмное. Да и в литературе не особо много написано по данной тематике. Этот разговор и сподвиг меня попробовать продраться сквозь дебри. В этой статье пишу, что у меня получилось.

Описание эксперимента

Начнём с просмотра видео с демонстрацией опыта. Прежде чем углубиться в теорию, будет полезно представить картину происходящего в общем. В интернете этот опыт был объяснён и продемонстрирован на видео много раз. Но мне тоже нужно его здесь описать, чтобы далее было понятно, от чего мы отталкиваемся.

Экспериментатор помещает постоянный магнит в виде небольшого шарика в медную трубу, которую он держит вертикально. Вопреки ожиданиям, шарик не падает сквозь трубу с ускорением свободного падения, а движется внутри трубы гораздо медленнее.

Итак, в опыте мы наблюдаем, как постоянный магнит движется внутри полой медной трубы с постоянной скоростью. Зафиксируем произвольную точку в теле медной трубки и мысленно проведем поперечное сечение. Через данное сечение медной трубы проходит магнитный поток, создаваемый постоянным магнитом. Из-за того, что магнит движется вдоль трубы, в сечении проводника возникает переменный магнитный поток, то ли нарастающий, то ли убывающий в зависимости от того, приближается или отдаляется магнит от точки, где мы мысленно провели сечение. Переменный магнитный поток, согласно уравнениям Максвелла, порождает вихревое электрическое поле, вообще говоря, во всём пространстве. Однако, только там, где есть проводник, это электрическое поле приводит в движение свободные заряды, находящиеся в проводнике — возникает круговой электрический ток, который создает уже своё собственное магнитное поле и взаимодействует с магнитным полем движущегося постоянного магнита. Проще говоря, круговой электрический ток создает магнитное поле того же знака, что и постоянный магнит, и на магнит действует некая диссипативная сила, а если конкретно — сила трения. Читатель может справедливо задать вопрос: «Трение чего обо что?» Трение возникает между магнитным полем диполя и проводником. Да, это трение не механическое. Вернее сказать, тела не соприкасаются. Ну и пусть! Трение всё равно есть!

В целом, на словах всё выглядит более или менее складно, а можно ли это описать на языке математики? Приступим…

Математическое описание

Постоянный магнит в медной трубе

Перво-наперво, нам понадобится математическая модель постоянного магнита. На мой взгляд, будет удобно представить постоянный магнит как магнитный диполь.


Здесь приняты обозначения — радиус-вектор из центра диполя в точку наблюдения, — вектор дипольного момента.

Далее, нам нужно записать -компоненту вектора магнитной индукции для вычисления магнитного потока, захваченного в поперечном сечении металла медной трубы. Выпишем -компоненту магнитного поля здесь


Теперь запишем выражение для магнитного потока через площадь, охватываемую окружностью радиуса на расстоянии от диполя.


Вы не поверите, но этот интеграл берётся. Не буду утомлять. В ответе получается очень красиво


Из-за того, что диполь движется вдоль оси со скоростью , нужно также сделать стандартную подстановку
Похоже, пора призвать на помощь одно из великих уравнений Максвелла, а именно, то самое уравнение, которое описывает закон Фарадея:

Изменение потока магнитной индукции, проходящего через незамкнутую поверхность , взятое с обратным знаком, пропорционально циркуляции электрического поля на замкнутом контуре , который является границей поверхности


Или, что то же самое,


Здесь мы воспользовались аксиальной симметрией задачи по отношению к оси , а также учли, что индуцированное электрическое поле имеет только азимутальную компоненту .
Отсюда можно найти азимутальную компоненту электрического поля, индуцированного магнитом.


Теперь, когда у нас есть выражение для электрического поля, можно вспомнить и о трубе. Как показано на рисунке выше, внутренний радиус трубы равен , а внешний — . Материал трубы — медь. В данный момент нам будет нужна только электрическая проводимость меди. Обозначим проводимость за .
Электрическое поле внутри проводника вызывает электрический ток. Поэтому можем записать закон Ома в дифференциальной форме


Электрический ток, в свою очередь вызывает омические потери внутри проводника. Иными словами, энергия рассеивается внутри проводника и переходит в форму тепла, строго говоря, в нашем случае во всём объёме проводника.
Объёмная плотность мощности омических потерь по определению равна


С другой стороны, при движении магнита сверху вниз потенциальная энергия магнита в поле тяжести Земли уменьшается, однако, скорость движения при этом остаётся постоянной, то есть не растёт, как это бывает при свободном падении. Это означает только одно: потенциальная энергия магнита рассеивается внутри проводника. А с точки зрения сил, действующих на магнит, на него действует сила трения, которая его тормозит и рассеивает потенциальную энергию магнита в тепло.
Запишем теперь баланс мощности в задаче: скорость убывания потенциальной энергии равна мощности омических потерь в проводнике.


Здесь необходимо заметить, что потенциальная энергия в координатах, изображенных на рисунке выше будет равна , а чтобы найти полную мощность омических потерь, следует проинтегрировать по всему объёму проводника. Длину трубы считаем бесконечной. Это не так далеко от истины, если учесть, что в опыте из видеоролика диаметр магнитика много меньше длины трубы.

Последний тройной интеграл выглядит очень сложным. И так оно и есть! Но, во-первых, интегрирование по азимутальному углу можно заменить просто домножением на в силу аксиальной симметрии задачи. Во-вторых, порядок интегрирования в данном конкретном интеграле можно изменить и сначала проинтегрировать по , а уж потом по . В-третьих, при интегрировании по по бесконечным пределам можно смело отбросить слагаемое . Оставшийся интеграл берется машиной.


В итоге получается ответ для полной мощности омических потерь


Здесь после второго знака равенства мы обозначили коэффициент трения


Отметим что, коэффициент трения зависит только от намагниченности магнита , свойств материала проводника и геометрических размеров трубы и — то есть зависит исключительно от параметров магнита и трубы и не зависит от, например, скорости или времени. Это хороший знак для нас и маленький зачётик в копилку найденных формул! Отсюда же становится понятно, почему для демонстрации опыта выбрана именно медная труба, а не, скажем, стальная. Трение зависит от проводимости линейно , а у стали проводимость меньше на порядок.

Это же обстоятельство объясняет и почему магнит левитирует над поверхностью сверхпроводника. Когда мы подносим постоянный магнит к сверхпроводнику, в последнем индуцируются незатухающие внутренние токи, которые создают своё магнитное поле и отталкивают магнитик.

Теперь можно записать


И внезапно (!), перед нами третий закон Ньютона! Сила действия равна силе противодействия. Можем найти установившуюся скорость движения магнита

Уравнение движения


Решать уравнение для неинтересно, потому что ну просто координата меняется с постоянной скоростью. Гораздо полезнее знать, как быстро стабилизируется падение, чему равна установившаяся скорость падения. В общем, надо решать это уравнение для скорости


А решение будет такое


Здесь — коэффициент затухания. Характерное время выхода на установившийся режим падения — . Начальная скорость — , установившаяся скорость — .

А вообще, это уравнение парашютиста. Вот, наверное, почему статья Популярной Механики называется «Магнитный парашют».

Численный эксперимент

А теперь будет то, ради чего всё это затевалось. Навели тут, понимаешь, теорию. А на что она способна? Вдруг это всего лишь как тень на плетень? Или вообще не работает…

Для начала нужно разобраться с геометрией задачи. Видео у нас из MIT, стало быть, американское. Попробую угадать размеры их демонстрационной установки в дюймах (они же в дюймах любят всё измерять). Размер магнитика похож на дюйма в диаметре. Это из тех какие есть в продаже. Тогда масса такого магнитика будет равна примерно г. Размер медной трубы в длину похож на дюймов (1 фут), а внутренний и внешний диаметры трубы, скорее всего, дюйма, дюйма.

С геометрией, вроде разобрались. Теперь физические свойства. Проводимость меди См/м.

Ранее здесь было написано, что я не смог увязать остаточную намагниченность неодимового магнита с его эквивалентным магнитным моментом. Но нашлись добрые люди в комментариях. Пользователь DenisHW подсказал источник (см. п. 5 в списке литературы), где можно прочитать, помог сделать необходимые расчёты и даже проверил их на симуляторе FEMM.

Расчёт магнитного поля шарика из NdFeB на симуляторе FEMM


Расчёт магнитного поля шарика из NdFeB на симуляторе FEMM. Изображение предоставлено пользователем DenisHW

Итак, что удалось выяснить. NdFeB магнит относится к классу парамагнетиков, поскольку под воздействием внешнего поля, внутреннее поле усиливается. Более того, сплав NdFeB способен сохранять внутреннее поле после прекращения воздействия внешнего поля. Этот факт классифицирует NdFeB как ферромагнетик. Если обозначить индукцию внутреннего поля магнетика за , а напряжённость внешнего магнитного поля за , то выполняется равенство


Здесь — магнитная восприимчивость вещества, а — вектор намагниченности вещества.

Когда магнит изготавливают на фабрике, его замагничивают внешним полем , а затем внешнее поле отключают, причём магнит сохраняет некоторую остаточную намагниченность . Известно, что для неодимовых магнитов остаточная намагниченность равна примерно Т. Теперь, если исключить внешнее поле из предыдущего уравнения, получится


Откуда находим магнитный момент, приходящийся на единицу объёма материала как


Чтобы найти магнитный момент магнита в целом, нужно умножить на объём шарика


Для остаточной намагниченности Т получается Ам².
Ниже построен график -компоненты магнитного поля в зависимости от радиальной координаты в нашей задаче на расстоянии половины диаметра шарика.

z-компонента магнитного поля на поверхности постоянного магнита


-компонента магнитного поля рядом с поверхностью постоянного магнита

Когда-то доводилось измерять прибором. Поля прямо на поверхности таких магнитов обычно оказываются меньше остаточной намагниченности и составляют порядка нескольких тысяч гаусс. То, что я измерял для прямоугольного магнита, было около 4500 Гс. Поэтому у нас на графике магнитного поля получился вполне реалистичный результат.

Теперь воспользуемся решением уравнения движения, чтобы построить график скорости магнита. Для всех выбранных выше параметров коэффициент трения получается равным Н/(м/с), установившаяся скорость — см/с — как раз примерно 3 дюйма в секунду! На видео шарик проходит через трубу длиной в 12 дюймов примерно за 4 секунды.

График решения уравнения движения магнитика в медной трубе


График решения уравнения движения магнитика в медной трубе

А мы продолжаем. Рассеиваемая мощность оказывается равной примерно мВт, а характерное время выхода на установившийся режим — мс. Ниже построены графики для двух разных начальных скоростей: нулевой, и см/с.

И вдобавок, пользователь vashu1 справедливо заметил, что неплохо бы было узнать ток, наведённый в медной трубке. Что ж, и это можно. Проинтегрируем


Интегрировать по нужно именно по полубесконечным пределам, поскольку в другой половине трубы ток течёт в обратном направлении. У меня в ответе получилось А. Честно говоря, я не ожидал, что получится такой большой ток. У пользователя vashu1 получилось 50 А, что, по-видимому, тоже недалеко от действительности. Думаю, vashu1 посчитал сумму токов во всей трубе, что из соображений мощности, тоже разумно.

Вот такое вот получилось исследование. Надеюсь, что было интересно. Оставляйте ваши комментарии. Постараюсь ответить всем. Если вам понравилась статья, поддержите автора лайком или плюсиком в карму. Спасибо, что прочитали.

Магнитное поле и металлы Однородное магнитное поле тока Сила индукция магнитного поля ⁠ ⁠


ВНИМАНИЕ! В связи с новой волной пандемии и шумом вокруг вакцинации агрессивные антивакцинаторы банятся без предупреждения, а их особенно мракобесные комментарии — скрываются.

Основные условия публикации

- Посты должны иметь отношение к науке, актуальным открытиям или жизни научного сообщества и содержать ссылки на авторитетный источник.

- Посты должны по возможности избегать кликбейта и броских фраз, вводящих в заблуждение.

- Научные статьи должны сопровождаться описанием исследования, доступным на популярном уровне. Слишком профессиональный материал может быть отклонён.

- Видеоматериалы должны иметь описание.

- Названия должны отражать суть исследования.

- Если пост содержит материал, оригинал которого написан или снят на иностранном языке, русская версия должна содержать все основные положения.

Не принимаются к публикации

- Точные или урезанные копии журнальных и газетных статей. Посты о последних достижениях науки должны содержать ваш разъясняющий комментарий или представлять обзоры нескольких статей.

- Юмористические посты, представляющие также точные и урезанные копии из популярных источников, цитаты сборников. Научный юмор приветствуется, но должен публиковаться большими порциями, а не набивать рейтинг единичными цитатами огромного сборника.

- Посты с вопросами околонаучного, но базового уровня, просьбы о помощи в решении задач и проведении исследований отправляются в общую ленту. По возможности модерация сообщества даст свой ответ.

Наказывается баном

- Оскорбления, выраженные лично пользователю или категории пользователей.

- Попытки использовать сообщество для рекламы.

- Многократные попытки публикации материалов, не удовлетворяющих правилам.

- Нарушение правил сайта в целом.

Окончательное решение по соответствию поста или комментария правилам принимается модерацией сообщества. Просьбы о разбане и жалобы на модерацию принимает администратор сообщества. Жалобы на администратора принимает @SupportComunity и общество пикабу.

По правилам сообщества Наука | Научпоп видео должны иметь небольшое текстовое описание того, о чём оно повествует. Это сделано для удобства читателей. Пожалуйста, отредактируйте пост и добавьте описание.

Что-то спать захотелось

Автор, вам бы описание товаров на Али писать.

Эффект тот-же самый:)

Блин, чувак, чего с речью у тебя, слушать тяжело.

Сначала вы говорите, что медь отталкивается от магнитного поля, а потом показываете это ни как не объясняя:

Он там дрочит чтоли? Слушать невозможно.

"Вихревые токи, или токи Фуко́ — объёмный электрический ток, возникающий в электрических проводниках" - википедия.
Умники и умницы, досмотрите ролик до конца где показана та же реакция с камнями. А камни это не металлы, то есть не проводники. А реакция ТА ЖЕ. То есть если вы и слышали где то за токи Фуко. То не стоит так явно блистать "глубиной" ваших знаний.

Первый раз имея дело с неодимовыми магнитами размером с шайбу получил два синих пальца. Подумать не мог, что они блин как пылесосы притягиваются уже с полуметра :))

Видео не полностью соответствует заголовку, вернее совсем не соответствует. Без описания совсем не дается представления об индуктивности, магнитной индукции.

Магнит, ну надо же. Срочно в УФН.

Всем спасибо за просмотр, всем всего хорошего и до свидания!

В роли диктора и ведущего нашей шоу-программы был Игорь Маменко - артист эстрады, пародист, юморист.

Сверхпроводимость при комнатной температуре говорили они⁠ ⁠

Сверхпроводимость при комнатной температуре говорили они

Откуда берутся атомы?⁠ ⁠

Материя в том виде, как она есть и известна нам, состоит из мельчайших частиц, называемых атомами. Комбинации атомов порождают целостные материалы, а атомы разных элементов отличаются друг от друга по ряду параметров.

Сами атомы тоже состоят из субатомных частиц, о которых я уже многократно рассказывал на канале. Но наиболее частый вопрос тут - это не как устроен атом, а откуда вообще атомы берутся?

Откуда берутся атомы? Наука, Физика, Исследования, Научпоп, Познавательно, Частица, Видео, YouTube, Длиннопост

Мы оказываемся тут где-то на границе мироздания. Нужно или принять, что всё существовало вечно, или допустить что не из чего вдруг родились первые колебания некоторой субстанции (будь то эфир или квантовое поле сейчас неважно), или же просто проанализировать технический характер появления материальных частиц. Давайте рассмотрим появления атома, исходя из имеющихся научных представлений.

Кстати, следующий вопрос, который тут напрашивается - появляются ли новые атомы или вся материя была создана один раз и теперь постоянно превращается из одного варианта в другой, а её количество определяется законом сохранения? Это интересный вопрос, но как говаривал один усатый дядька - "это уже совсем другая история".

Про природ материи как таковой советую посмотреть мой ролик на тубе. Отчасти там есть ответ на рассматриваемый вопрос.

Появление атомов в научных фильмах

В фильмах от Discovery обычно повествование строится следующим образом:

В первые три минуты существования Вселенной образовались ядра атома водорода - это простейший и легчайший атом. Следом за ним образовались ядра атома гелия. Остальные атомы образовались путём их соединения при повышенной температуре.

Вселенная после появления достигла температур, при которых стали происходить процессы захвата отрицательно заряженных электронов массивными протонами. Это формировало тот атом, который мы привыкли видеть.

После появления простых элементов, традиционного водорода и гелия, появляются более крупные элементы. Они образуются преимущественно в результате столкновения более мелких элементов, что известно как ядерный синтез. Столкновение с нужным количеством энергии рождает новые частички.

Некоторые типы атомов образуются в результате разложения очень больших нестабильных атомов. Этот процесс распада на части известен как ядерное деление.

Вроде бы и можно считать это некоторым ответом, но информации слишком мало. Например, откуда взялись сами протоны, нейтроны и даже электроны?

Откуда взяли запчасти?

Ещё Ломоносов исходил из того, что, говоря современным языком, в силу научного незнания мы должны принять вечное существование субатомных частичек. Но физики всё же высказывают разные варианты механизма появления субатомных частичек.

Многие считают, что во главе угла стоял электрон, который стал базой для формирования более сложных частиц. Тут уместно отметить, что по существующим сейчас представлениям сам электрон является не материей в прямом смысле этого слова и не может быть представлен, как мячик, а является флуктуацией волновой функции.

Иными словами - электрон есть энергия. Что приводит к банальному выводу - любая материя состоящая из атомов является энергией в определенной её форме и сам атом появился как результат взаимодействия энергии с пространством. Про это подробно рассказывается в моей заметке про отличие модели атома Шрёдингера.

Иными словами - электрон есть энергия. Что приводит к банальному выводу - любая материя состоящая из атомов является энергией в определенной её форме и сам атом появился как результат взаимодействия энергии с пространством.

Как сами электроны могли стать базой для появления атома?

Откуда берутся атомы? Наука, Физика, Исследования, Научпоп, Познавательно, Частица, Видео, YouTube, Длиннопост

По модели формирования протонов и нейтронов из электронов по мере увеличения их концентрации под действий внешних воздействий увеличивается энергия электронов, что и приводит к формированию субатомных частиц и потом уже самих атомов.

Этот процесс по-научному принято именовать конденсацией материи. Говоря просто - существовала плазма из которой конденсировались первые частички под действием огромного давления и высокой температуры. После формирования субатомных частичек закрутился карусель и пошёл бесконечный процесс превращения одного в другое. Частичек было огромное изобилие. Среди них и такие специфические, как например, нейтрино.

Когда некоторое количество материи образовалось и механизм был уже запущен, естественные процессы типа диффузии, привели нас к той материи и тому разнообразию атомов, которые мы получили сегодня. Правда тут ещё стоило бы обсудить сразу и темную материю.

Ну а всех, кто дочитал статью, приглашаю подписаться на мой канал в телеге :)


Откуда берётся отражение?⁠ ⁠

Из лекции А.Чирцова:

Откуда берётся изображение девушки в зеркале когда она смотрится в зеркало? Это сложный вопрос. Нет, ну конечно лучи света отражаются, но мы же знаем, что никаких лучей света нет, это выдумка. А есть электромагнитные волны. Мы конечно будем рассматривать не пакет волн которые бегут от девушки во все стороны, а всего лишь одну плоскую монохроматическую волну.

И вот это зеркало. Представим себе, что бежит плоская монохроматическая волна. Я её нарисую по школьному в виде косинусоиды. Вот она дошла до зеркала. И что дальше? За зеркалом есть свет? Нет. Поэтому вроде бы волна должна на зеркале оборваться. Чушь. На зеркале волна оборваться не может. Потому что зеркало состоит из атомов, а атом состоит из ядра. А если мы увеличим ядро до такого размера (показывает примерно 2 см), то электрон надо будет нарисовать где-то в районе Невского проспекта. А между ними пусто. Поэтому зеркало это практически вакуум. И поэтому волна от девушки пройдёт сквозь зеркало как через вакуум. Это и есть вакуум.

Всё дело в том, что в зеркале есть слой металла, в котором могут бегать свободные электроны.И вот тогда под действием этого меняющегося поля электроны в каждой точке зеркала начинают бегать взад вперёд. И каждый электрон излучает вот это ломающееся поле которое мы рисовали и излучает электромагнитные волны вот так - в разные стороны. И все эти волны, которые излучают электроны сюда, складываются в волну, которая идёт точно в противофазе от падающей волны. И в результате по ту сторону зеркала мы наблюдаем темноту. Не из-за того что свет туда не прошёл, а из-за того что электроны сгенерировали ещё одну волну, которая полностью погасила исходную. За зеркалом распространяется больше света, чем падает на него. Только эти два излучения друг друга гасят. Из симметрии понятно, что электроны излучают не только сюда. И в обратную сторону. И бежит ещё одна волна симметричная этой, но в другую сторону. И вот теперь смотрите, здесь исходная и гасящая волны бегут в одну сторону и в сумме дают ноль. А здесь падающая бежит сюда. а эта бежит в другую сторону и нуля не получается. Так формируется отражённая волна.

Поэтому дорогие девушки, когда вы смотритесь в зеркало, знайте, что там находитесь вовсе не вы. Вы видите вторичные электромагнитные поля, которые генерируются электронами, которые раскачены отражённым от вас светом. Вы нужны только для того чтобы раскачать электроны.

Если убрать вас от зеркала за время меньшее чем 10 в минус десятой степени секунды, электроны ещё некоторое время будут качаться и ваше изображение будет жить в зеркале. А если вас убрать, а электроны как-нибудь заставить качаться как они качались при вас, то ваше изображение заморозится в зеркале. Такие технологии существуют. Это называется голография.

Кстати, свет не проходит сквозь кирпичную стенку только потому что электроны стенки раскачиваются и генерируют гасящую волну. Но в течение примерно 10 в минус 10 степени секунды электроны стенки не успевают раскачаться и поначалу свет проходит сквозь стенку. Другое дело, что лампочка разгорается медленно, она разгорается одну десятую секунды. Пока она разгорается стенки теряют прозрачность. Современные лазерные импульсы имеют фронт порядка 10 в минус 16 степени секунды, что примерно на 3-4 порядка меньше, чем время раскачивания атомов и поэтому короткие и сверхкороткие импульсы проходят сквозь стенку. Это хорошая идея лазерной томографии.

Магнитные щиты планет. О разнообразии источников магнитосфер в солнечной системе


6 из 8 планет солнечной системы обладают собственными источниками магнитных полей, способные отклонять потоки заряженных частиц солнечного ветра. Объем пространства вокруг планеты, в пределах которого отклоняется от траектории солнечный ветер, именуется магнитосферой планеты. Несмотря на общность физических принципов генерирования магнитного поля, источники магнетизма, в свою очередь, сильно варьируются у разных групп планет нашей звездной системы.

Изучение разнообразия магнитных полей интересно тем, что наличие магнитосферы, предположительно, является важным условием для возникновения жизни на планете или ее естественном спутнике.

Железом и камнем

У планет земной группы сильные магнитные поля являются скорее исключением, чем правилом. Наиболее мощной магнитосферой в данной группе обладает наша планета. Твердое ядро Земли предположительно состоит из железоникелевого сплава, разогретого радиоактивным распадом тяжелых элементов. Эта энергия передается путем конвекции в жидком внешнем ядре в силикатную мантию (подробнее). Тепловые конвективные процессы в металлическом внешнем ядре до недавнего времени считались главным источником геомагнитного динамо. Однако исследования последних лет опровергают данную гипотезу.

Взаимодействие магнитосферы планеты (в данном случае Земли) с солнечным ветром. Потоки солнечного ветра деформируют магнитосферы планет, которые имеют вид сильно вытянутого магнитного «хвоста» направленного в противоположном от Солнца направлении. Магнитный «хвост» Юпитера тянется на более чем 600 млн км.

Предположительно источником магнетизма за время существования нашей планеты могло быть сложное сочетание различных механизмов генерирования магнитного поля: первичная инициализация поля от древнего столкновения с планетоидом; не тепловая конвекция различных фаз железа и никеля во внешнем ядре; выделения оксида магния из охлаждающегося внешнего ядра; приливное влияние Луны и Солнца и т.д.

Недра «сестры» Земли — Венеры практически не генерируют магнитного поля. Ученые до сих пор ведут споры о причинах отсутствия динамо эффекта. Одни обвиняют в этом медленное суточное вращение планеты, другие же возражают, что и этого должно было хватить для генерирования магнитного поля. Скорее всего, дело во внутренней структуре планеты, отличной от земной (подробнее).


Стоит оговориться, что Венера обладает так называемой индуцированной магнитосферой, создаваемой взаимодействием солнечного ветра и ионосферы планеты

Наиболее близок (если не сказать, идентичен) к Земле по длительности звездных суток Марс. Планета вращается вокруг своей оси за 24 часа, так же как и два вышеописанных «коллеги» гиганта состоит из силикатов и на четверть из железоникелевого ядра. Однако Марс на порядок легче Земли, и, по мнению ученых, его ядро остыло относительно быстро, поэтому планета не имеет динамо генератора.



Внутреннее строение железосиликатных планет земной группы

Парадоксально, но второй планетой в земной группе, которая может «похвастаться» собственной магнитосферой является Меркурий – наименьшая и самая легкая из всех четырех планет. Его близость к Солнцу предопределила специфические условия, при которых сформировалась планета. Так в отличие от остальных планет группы, у Меркурия чрезвычайно высокая относительная доля железа к массе всей планеты – в среднем 70%. Его орбита имеет наиболее сильный эксцентриситет (отношение ближайшей от Солнца точки орбиты, к наиболее удаленной) среди всех планет солнечной системы. Данный факт, а так же близость Меркурия к Солнцу усиливают приливное влияние на железное ядро планеты.


Схема магнитосферы Меркурия с наложенным графиком магнитной индукции

Научные данные, полученные космическими аппаратами, позволяют предположить, что магнитное поле генерируется движением металла в расплавленном приливными силами Солнца ядре Меркурия. Магнитный момент этого поля в 100 раз слабее Земного, а размеры сравнимы с размерами Земли, не в последнюю очередь из за сильного влияния солнечного ветра.


Магнитные поля Земли и планет гигантов. Красная линия — ось суточного вращения планет (2 — наклон полюсов магнитного поля к данной оси). Синяя линия — экватор планет (1 — наклон экватора к плоскости эклиптики). Магнитные поля представлены желтым цветом (3 — индукция магнитного поля, 4 — радиус магнитосфер в радиусах соответствующих планет)

Металлические гиганты

Планеты гиганты Юпитер и Сатурн обладают крупными ядрами из горных пород, массой в 3-10 земных, окруженные мощными газовыми оболочками, на которые, и приходиться подавляющая часть массы планет. Однако эти планеты обладают чрезвычайно крупными и мощными магнитосферами, и их существование нельзя объяснить лишь динамо-эффектом в каменных ядрах. Да и сомнительно, что при таком колоссальном давлении там вообще возможны явления, подобные тем, что происходят в ядре Земли.

Ключ к разгадке находится в самой водородно-гелиевой оболочке планет. Математические модели показывают, что в недрах этих планет водород из газообразного состояния постепенно переходит в состояние сверхтекучей и сверхпроводящей жидкости – металлический водород. Металлическим его называют из-за того, что при таких значениях давления водород проявляет свойство металлов.



Внутреннее строение Юпитера и Сатурна

Юпитер и Сатурн, как и свойственно планетам гигантам, сохранили в недрах большую тепловую энергию, накопившуюся в период формирования планет. Конвекция металлического водорода переносит эту энергию в газовую оболочку планет, определяя климатическую обстановку в атмосферах гигантов (Юпитер излучает в космос вдвое больше энергии, чем получает от Солнца). Конвекция в металлическом водороде в сочетании с быстрым суточным вращением Юпитера и Сатурна, предположительно и образуют мощные магнитосферы планет.



У магнитных полюсов Юпитера, как и на аналогичных полюсах остальных гигантов и Земли, солнечный ветер вызывает «полярные» сияния. В случае Юпитера, существенное влияние на его магнитное поле производят такие крупные спутники как Ганимед и Ио (виден след от потоков заряженных частиц, «текущих» с соответствующих спутников к магнитным полюсам планеты). Изучение магнитного поля Юпитера является основной задачей работающей на его орбите автоматической станции «Юнона». Понимание происхождения и структуры магнитосфер планет гигантов может обогатить наши знания о магнитном поле Земли

Ледяные генераторы

Ледяные гиганты Уран и Нептун так похожи друг на друга по размерам и массе, что их можно назвать второй парой близнецов в нашей системе, после Земли и Венеры. Их мощные магнитные поля занимают промежуточное положение между магнитными полями газовых гигантов и Земли. Однако и тут природа «решила» соригинальничать. Давление в железокаменных ядрах этих планет все еще слишком велико для динамо эффекта вроде земного, однако недостаточно для образования слоя металлического водорода. Ядро планеты окружено мощным слоем льда из смеси аммиака, метана и воды. Этот «лед» на самом деле представляет собой чрезвычайно нагретую жидкость, которая не вскипает исключительно из-за колоссального давления атмосфер планет.



Внутреннее строение Урана и Нептуна



Ось магнитного поля Урана, как и у Нептуна, сильно смещена относительно центра планеты. Справа сияние атмосферы у магнитных полюсов Урана (белое пятно) снятые телескопом Хаббла

Как и в случае с газовыми гигантами, тепло из недр планет передается конвективными процессами в атмосферу Нептуна и Урана. Математические модели показывают, что жидкость из метана, аммиака и воды обладает высокой электропроводимостью. На определенной глубине этой ледяной мантии, в тонкой прослойке, давление становиться благоприятным для того, что бы гидродинамический эффект от конвекции начал генерировать магнитные поля планет.

Читайте также: