Эксплуатационный дефект типа трещина металлической усталости возникает при воздействии на металл

Обновлено: 12.05.2024

Чисто эксплуатационными дефектами являются трещины or отверстий под накладки ( рис. 23.8) - усталостные разрушения от ударных нагрузок на область накладок. Они тоже могут приводить к выкрошиванию отдельного куска рельса, что может служить причиной серьезных аварий. В зависимости от формы и материала рельсов дефекты на отдельных участках железнодорожных путей различаются по расположению и частоте, что должно учитываться и при выборе методов контроля. [16]

Наиболее опасными эксплуатационными дефектами являются холодные и усталостные трещины. В большинстве случаев трещины возникают в сварных соединениях с выходом или без выхода на основной металл. [17]

Различают конструктивные, производственные и эксплуатационные дефекты в автомобиле. [18]

К эксплуатационным дефектам относятся, прежде всего, коррозионные повреждения и усталостные трещины. В трубопроводах встречаются все виды коррозии: точечная, язвенная, сплошная. Глубина повреждений варьируется от 0 5 мм до сквозных отверстий. [19]

К эксплуатационным дефектам относятся перечисленные ниже повреждения. [20]

К эксплуатационным дефектам относятся, прежде всего, коррозионные повреждения и усталостные трещины. В трубопроводах встречаются все виды коррозии: точечная, язвенная, сплошная. Глубина повреждений варьируется от О 5 мм до сквозных отверстий. [21]

К эксплуатационным дефектам относятся, прежде всего, коррозионные повреждения и усталостные трещины. В трубопроводах встречаются все виды коррозии: точечная, язвенная, сплошная. Глубина повреждений варьируется от 03мм до сквозных отверстий. [22]

К эксплуатационным дефектам относятся, прежде всего, коррозионные повреждения и усталостные трещины. В трубопроводах встречаются все виды коррозии: точечная, язвенная, сплошная. Глубина повреждений варьируется от 0 5 мм до сквозных отверстий. [23]

К основным типовым эксплуатационным дефектам деталей относятся: изменения размеров, формы и расположения поверхностей, риски, царапины, задиры, вмятины, выкрашивание, отслаивание поверхностей, трещины и изломы различного происхождения, все разновидности остаточной деформации ( изогнутость, скручивание, смятие, коробление и пр. [24]

Другими широко распространенными эксплуатационными дефектами являются механические задиры на внутренних поверхностях автоклавов, истирание сварных швов и кромок фланцев. На Воронежском заводе силикатного кирпича задиры были выявлены на 21 из 26 обследованных автоклавов; в некоторых из них суммарная длина задиров достигала 20 м, а глубина их - до 3 мм. Причиной образования указанных дефектов является неудовлетворительное состояние рельсового пути, вагонеток и приспособлений для загрузки вагонеток в автоклав и выгрузки их из него. [25]

Алгоритмы диагностирования монтажных и эксплуатационных дефектов базируются на распознавании информации, содержащейся в статистических характеристиках виброакустических процессов, сопровождающих функционирование машин и механизмов. [26]

Существенными причинами эксплуатационных дефектов двухслойных панелей являются: неравномерная и неправильная укладка утеплителя с последующей заливкой швов между плитами утеплителя тяжелым раствором или бетоном; завышенные размеры ребер железобетонной плиты; мостики холода по обрамлениям окон и ряда других недостатков. [27]

По происхождению различают производственные и эксплуатационные дефекты . [28]

Трещины усталости - наиболее распространенный эксплуатационный дефект , появляющийся в результате действия высоких переменных напряжений. [29]

Трещины усталости - наиболее распространенный эксплуатационный дефект , появляющийся в результате действия высоких переменных напряжений. [30]

Дефекты стадии эксплуатации

Развитие дефектов стадии эксплуатации преимущественно связано с физическим старением оборудования, которое обусловлено процессами изнашивания, получения коррозионных и механических повреждений (рис. 1) в различных условиях (химическое и электрическое воздействие, циклические и термические нагрузки).

Рисунок 1 – Основные дефекты стадии эксплуатации

Рисунок 1 – Основные дефекты стадии эксплуатации

Усугубляющее действие при этом оказывает наличие в деталях и элементах оборудования внутренних напряжений, вызванных конструктивными недостатками (например, в случае отсутствия учета температурных условий эксплуатации), дефектами изготовления, ошибками монтажа и наладки. На развитие дефектов стадии эксплуатации также влияют повреждения транспортирования и хранения, а особенно условия эксплуатации, качество технического обслуживания и ремонтов, соблюдение персоналом правил эксплуатации оборудования.

Указанные факторы с течением времени приводят к изменению характера и условий взаимодействия рабочих поверхностей оборудования друг с другом или с рабочей средой, что обусловлено:

а) изменением их размеров и геометрической формы (нецилиндричность, неплоскостность и тому подобные);
б) нарушением точности взаимного расположения рабочих поверхностей (неперпендикулярность, несоосность и другие);
в) изменением физико-механических свойств их материала (наклеп, старение материала и так далее).

Для полноты картины следует отметить, что наряду с постепенным процессом физического старения на стадии эксплуатации могут иметь место случайные внешние воздействия различного характера, не предусмотренные проектными условиями эксплуатации, которые могут привести к внезапному отказу оборудования. Предупреждение и предотвращение таких ситуаций относится к сферам обеспечения промышленной безопасности, а также повышения живучести оборудования (на стадии проектирования).

1. Изнашивание

Определяющим процессом стадии эксплуатации, как правило, является изнашивание, которое обусловлено фрикционным взаимодействием (трением) рабочих поверхностей или рабочей поверхности и среды при их относительном движении, что сопровождается постепенным разрушением поверхностей деталей. При этом в поверхностных слоях деталей возникают упругопластические деформации, вызывающие появление вторичных (физических, химических, механических) процессов.

1.1. Механический износ

Профессор Б.И. Костецкий выделил пять основных видов механического износа, которые представлены в табл. 1 [1].

Таблица 1 – Виды механического износа (по проф. Б.И. Костецкому)
Условия возникновения Механизм разрушения Проявление
Износ схватыванием первого рода
– трение скольжения;
– малая скорость относительного движения (для стальных деталей – до 1 м/с);
– высокое давление, превышающее предел текучести на фактических площадках контактов;
– отсутствие смазки;
– низкая температура нагрева поверхностных слоев (до 100 °С).
При высоких давлениях взаимодействие рабочих поверхностей сопровождается интенсивными пластическими деформациями, в результате которых разрушаются пленки окислов и вскрываются химически чистые металлические поверхности. Если расстояния между ними соизмеримы с размерами атомных решеток, то между кристаллами деталей появляются металлические связи. Их взаимное смещение приводит к упрочнению металла в местах образования связей. При предельных значениях твердости и хрупкости металлические связи разрываются. На контактной поверхности детали из менее прочного материала образуются хаотически расположенные вырывы, а на детали из более прочного материала – налипания. Налипшие частицы высокой твердости способствуют развитию вторичных процессов местной пластической деформации и микрорезанию поверхностей трения. При этом коэффициент трения чрезвычайно высок.

1.2. Эрозионные виды изнашивания

Кроме того выделяют эрозионные виды изнашивания:

– эрозионный износ возникает при взаимодействии поверхности детали и твердых частиц, движущихся в потоке газа или жидкости. Многократные локальные импульсные удары, вызывают разрушение поверхностного слоя деталей (эрозию);
– электроэрозионный износ – эрозионный износ поверхности в результате воздействия электрического тока при его прохождении через смежные детали оборудования. При электрической эрозии происходит частичный перенос металла с одного контакта на другой, сопровождающийся его распылением;
– кавитационный износ – гидроэрозионный износ при движении твердого тела относительно жидкости (или наоборот), при котором пузырьки газа схлопываются вблизи поверхности, создавая местное повышение давления (рис. 2).

Рисунок 2 – Кавитационный износ поверхности рабочего колеса и корпуса насоса

2. Коррозионные повреждения

В результате химического или электрохимического воздействия среды поверхности деталей оборудования получают коррозионные повреждения (рис. 3). Чистая металлическая поверхность легко подвергается химическому воздействию среды. Однако если в процессе начавшейся коррозии продукты ее образуют прочно связанную с металлом пленку, изолирующую поверхность от коррозионной среды, то металл приобретает пассивность по отношению к ней.

Рисунок 3 – Примеры коррозионных повреждений:
а) атмосферная коррозия; б) электрохимическая коррозия; в) коррозия лопаток рабочего колеса, сопровождавшаяся эрозией; г) коррозионное растрескивание под нагрузкой; д) коррозия наружного кольца подшипника

Различают следующие виды коррозии:

а) атмосферная коррозия (рис. 3.а):

– влажная, которая протекает при относительной влажности воздуха менее 100% под невидимой пленкой, образующейся на поверхности металла вследствие конденсации влаги;
– мокрая, которая протекает при непосредственном увлажнении металлической поверхности атмосферными осадками или производственными выбросами.

Средняя скорость такой коррозии составляет 0,1 мм/год;

б) химическая коррозия протекает при взаимодействии металлов с сухими газами, парами и жидкими неэлектролитами. Ее разновидностью является газовая коррозия, которая проявляется в виде пленки окислов при температуре 200…300 °С. С повышением температуры до 600 °С, при образовании под действием внутренних напряжений трещин в защитной пленке, скорость коррозии возрастает и образуется окалина;

в) электрохимическая коррозия (рис. 3.б) обусловлена неоднородностью металла при контакте с электролитом. Разновидностью электрохимической коррозии является почвенная коррозия ‑ разрушение подземных металлоконструкций почвенной средой.

На скорость коррозии влияет скорость взаимного перемещения поверхности и среды, при высоких значениях которой коррозия усиливается под действием эрозии (рис. 3.в). Кроме того, влияние оказывает температура: при высоких температурах увеличивается скорость химических процессов окисления, а при низких – повышается хрупкость металла, что особенно актуально в случае воздействия переменных или динамических нагрузок. Условия нагружения также оказывают значительное влияние на характер и скорость протекания процесса коррозии:

1) коррозионная усталость представляет собой процесс разрушения металлов и сплавов при одновременном действии коррозионной среды и циклических напряжений. Процесс развития трещины протекает более интенсивно, так как дно и стенки трещины подвергаются воздействию коррозионной среды;
2) коррозионное растрескивание (рис. 3.г) возникает под действием напряжений и агрессивной коррозионной среды. Оно является следствием пониженной коррозионной стойкости границ зерен, наличия в сплаве структурной составляющей, подверженной коррозии, и уменьшения межкристаллической прочности;
3) фреттинг-коррозия возникает при трении скольжения с очень малыми возвратно-поступательными перемещениями в условиях воздействия коррозионной среды и динамических нагрузок. Динамический характер нагружения обусловливает резкое повышение градиента деформации и температур, окисление и схватывание поверхностей. Изнашивание при фреттинг-коррозии наблюдается в посадочных поверхностях подшипников, поворотных цапф, шестерен, в болтовых и заклепочных соединениях и тому подобных случаях.

Коррозия рабочих поверхностей деталей неработающих машин (рис. 3.д) также снижает их износостойкость. У неработающих пар трения ухудшается качество поверхности и после пуска оборудования снова начинается процесс приработки. При этом продукты коррозии действуют как абразив. Срабатывание продуктов коррозии, происходящее за малое время, сопряжено с быстрым изменением линейных размеров деталей, увеличением зазоров.

При щелевой коррозии коррозионные повреждения сосредоточены в зазоре между поверхностями. Зазором могут быть щели между листами, зазоры в сопряжениях и стыках, зоны трещин в металле, а также щели между осевшими или прилипшими к поверхности посторонними веществами. Щелевой коррозии подвержены даже металлы, которые устойчивы к другим видам коррозии благодаря образованию на их поверхностях пленок, обладающих высокими защитными свойствами.

Последствиями коррозии являются местные ослабления сечений рабочих элементов и узловых соединений оборудования, что приводит к концентрации напряжений и к последующему разрушению конструкции.

3. Механические повреждения

К механическим повреждениям относятся:

– остаточные деформации, возникающие при превышении действующими нагрузками предела упругости для материала детали;
– нарушения целостности, возникающие при превышении предела прочности для материала детали или их соединения (например, сварного шва) либо как результат усталости материала детали или их соединения в условиях циклических знакопеременных или ударных нагрузок.

3.1. Деформация

Деформация – изменение формы, размеров детали под действием приложенных к ней сил. Деформации могут носить линейный, угловой и комплексный характер.

Линейная деформация характеризуется изменением линейных размеров тела, его ребер. Линейные размеры тела могут изменяться одновременно в одном, двух или трех взаимно перпендикулярных направлениях, что соответствует линейной, плоской и объемной деформации. Линейная деформация, как правило, сопровождается изменением объема тела.

Угловая деформация характеризуется изменением угловых размеров тела, углов наклона его граней. В результате угловой деформации происходит взаимное смещение граней. При этом изменяется только форма тела, объем сохраняется неизменным.

Линейная деформация связана преимущественно с действием нормальных напряжений, а угловая – с действием касательных напряжений.

К основным видам деформаций относят:

а) растяжение (сжатие) – деформация, возникающая под действием в поперечном сечении только продольной (растягивающей или сжимающей) силы;
б) сдвиг – деформация, характеризующаяся взаимным смещением параллельных слоев материала под действием сил, приложенных касательно к его поверхности, при неизменном расстоянии между слоями;
в) кручение – деформация, характеризующаяся взаимным поворотом поперечных сечений тела под действием пары сил (момента) в этих сечениях;
г) изгиб – деформация, при которой происходит изменение кривизны осей тела под действием изгибающих моментов в поперечных сечениях.

3.2. Нарушения целостности

В местах концентрации напряжений (по галтелям, в местах с резкими переходами сечений и наличием подрезов, у основания резьбы и зубьев шестерен, в углах шпоночных канавок, у отверстий и тому подобных), а также дефектов металлургического и технологического происхождения, следов грубой механической обработки поверхности (глубоких рисок, следов резца и так далее) под действием нагрузок происходит образование микротрещин. При стабильных силовых воздействиях рост микротрещин протекает медленно, и трещины не скоро достигают критических размеров. Этому способствует пластическая деформация, снижающая поле упругих напряжений в вершинах трещин. Когда возможности упрочнения из-за пластической деформации исчерпаны, закончилось вязкое подрастание трещин, под действием переменных или статических сил трещины начинают сливаться, приближаясь к критическому размеру. Упругая энергия напряженной конструкции начинает расходоваться на развитие трещин и разрыв межатомных связей. Процесс разрушения становится хрупким и протекает с большой скоростью, достигающей 0,3…0,5 скорости распространения ультразвуковых колебаний в материале детали (для стали V = 5…6 км/с). Здесь докритическое развитие трещины ‑ нормальный процесс физического старения, а закритическое – катастрофического старения. Рост трещины уменьшает рабочее сечение, увеличивая значения внутренних напряжений, что ускоряет процесс разрушения (нарушения целостности) и приводит к излому деталей или их соединений.

Характерные примеры трещин приведены на рис. 4.

Рисунок 4 – Примеры трещин:
а) трещина на лотке загрузочного устройства; б) трещина на соединительной муфте; в) продольная трещина по телу трубы; г) трещина на поверхности, ×100; д) трещина на ходовом колесе; е) трещины разгара

Трещины усталости (рис. 4.д) относятся к наиболее распространенным дефектам стадии эксплуатации и возникают при действии периодических напряжений, превышающих предел усталостной прочности материала. В зоне усталостного разрушения отсутствуют признаки пластической деформации. Ширина раскрытия усталостной трещины у выхода ее на поверхность в начальной стадии разрушения не превышает нескольких микрон. При приложении знакопеременных сил к деталям в них возникают знакопеременные напряжения, приводящие к образованию микротрещин, а затем и трещин.

Трещины термической усталости (трещины разгара) возникают после многократного воздействия периодически меняющихся термических напряжений, что представляет собой явление термической усталости (рис. 4.е).

Перечень ссылок

    Костецкий Б.И. Трение, смазка и износ в машинах [Текст]. – К.: Техніка, 1970. – 395 с.
Материал предоставили СИДОРОВ Александр Владимирович, СИДОРОВ Владимир Анатольевич.

Больше информации по указанной теме можно найти в книге «Управление отказами оборудования», подготовленной под эгидой Ассоциации эффективного управления производственными активами (Ассоциации EAM). Первая часть издания доступна здесь.

Усталость металла

Усталость металла

Что это такое? Усталость металла – это постепенное повреждение его структуры с последующим разрушением. Опасность заключается в том, что процесс этот не одномоментный, проходит время, прежде чем материал окончательно придет в негодность.

От чего зависит? Усталость металла связана с условиями, в которых он эксплуатируется. Поэтому, чтобы не допустить деформации, прибегают к различным мерам, способным защитить материал от порчи.

Что такое усталость металлов

Понятие «усталость металла» скрывает за собой неравновесно-напряженное состояние, из-за которого в материале накапливаются отрицательные остаточные явления. Кроме того, металл оказывается неспособен сопротивляться разрушающей силе ниже его предела прочности.

Появление статической усталости объясняется непрерывным продолжительным воздействием на предмет статичной нагрузки, которая меньше предела прочности металла.

VT-metall предлагает услуги:

Лазерная резка металла Гибка металла Порошковая покраска металла Сварочные работы

Динамическая нагрузка, например, удары, вибрация, является знакопеременной, то есть при ней сжатие постоянно сменяется растяжением. При подобных процессах усталость металла наступает в короткие сроки и может классифицироваться как одноцикловая, малоцикловая и многоцикловая.

  • Одноцикловая усталость металла – простыми словами это его разрушение в результате перехода в неравновесно-нагруженное состояние. Нагрузка оказывается единожды и равна либо превышает предел прочности материала.
  • Малоцикловая усталость металла возникает из-за неравновесно-нагруженного состояния, вызывающего разрушение металла под действием нагрузки, соответствующей или немного превышающей предельный уровень его прочности. Количество нагружаемых циклов не превосходит 10 000.
  • Многоцикловая усталость металла также является неравновесно-нагруженным состоянием, результатом которого становится разрушение металла при соответствующей либо превышающей предел прочности нагрузке. Количество циклов превышает 10 000.

История термина

В процессе развития транспорта инженеры стремились увеличить скорость его движения, однако это привело к увеличению частоты крушений. Дело в том, что ломались вагонные и паровозные оси, коленчатые валы на пароходах.

Подобная картина складывалась и на предприятиях, ведь и там важно было добиться, чтобы оборудование функционировало быстрее. Станки ускоряли за счет увеличения количества оборотов двигателя, что вскоре вызывало поломку деталей.

История термина

Специалисты пытались обнаружить причины аварий, качество металла изучалось в лабораторных условиях, но ничего выяснить не удавалось. Проверки показывали, что размеры элементов рассчитаны верно, использовался качественный металл, а детали имели хороший запас прочности.

Со временем инженеры обратили внимание на тот факт, что обычно из строя выходят компоненты механизмов, испытывающие на себе повторную переменную нагрузку. Допустим, именно такому воздействию подвергается шток в паровой машине: он крепится к шатуну, а тот приводит в движение коленчатый вал. В паровозе принцип примерно тот же, только ведущее колесо вращается благодаря работе кривошипа.

Поршень перемещается в цилиндре, из-за чего шток меняет направление движения. Сначала он испытывает на себе осевое сжатие, а потом растяжение, сопровождающееся изменением нагрузки на данный элемент.

Никто не мог понять, по какой причине повторяющаяся переменная нагрузка разрушает деталь, ведь с постоянной нагрузкой аналогичной величины материал может долго справляться.

Чтобы описать данный процесс, решили использовать усталость металла на фоне переменной нагрузки. Проблема лишь в том, что такое объяснение не несет в себе никакой информации. Кроме того, оно далеко от сути явления, поскольку усталость мышцы, сопровождающаяся снижением ее способности к сокращению, имеет более сложную природу, далекую от поломки металлического элемента.

Понятие «усталость» сохранилось в технике до сих пор, хотя уже известно, почему металл быстро разрушается при переменной нагрузке. По аналогии было введено понятие «выносливость металлов»: чем дольше изделие не «устает», тем более «выносливым» считается металл.

Если материал подвержен усталости, важно сформировать новые пределы напряжений, отказаться от имеющихся справочных материалов, опыта, накопившегося за годы инженерной работы.

Необходимо было доказать связь между выносливостью и повторяющимися переменными нагрузками, причем проверить способность металла к физической усталости можно было только опытным путем.

Рекомендуем статьи

Всю вторую половину XIX века вопросы усталости и текучести металлов оставались одними из наиболее актуальных для технических обществ. Специалисты рассуждали о том, как колебания воздействуют на детали оборудования, корпусы морских судов.

Имена многих исследователей данной темы сейчас остаются неизвестным, поскольку мало у кого была возможность публиковать результаты своих опытов. До наших дней дошла информация только о ряде ученых, которые занимались определением сути усталости металлов.

Например, В. Альберт, горный инженер из Германии, стремился понять, почему обрывались подъемные цепи. В то время бадьи и клети опускались в шахту при помощи цепей, которые перебрасывали через шкив и накручивали на барабан специальной машины. На барабане звенья претерпевали изгибающую нагрузку, а при раскручивании цепи изгиб уступал место растяжению. Во время подъема груза процесс повторялся в обратном порядке.

Инженер понял, что причина обрыва кроется в частой перемене изгибания элементов цепи, пока она наматывается на барабан и огибает шкив. Чтобы доказать свое предположение, В. Альберт проводил опыты, до ста тысяч раз подвергая образцы изгибу. Далее он осматривал цепи, чтобы найти на звеньях трещины, сформировавшиеся из-за переменной нагрузки.

Опыты с железными брусками

Аналогичные опыты с железными брусками в 1950-х годах проводили английские капитаны Г. Джеймс и Д. Гальтон. Они создали машину, чтобы быстро нагружать брус и снимать с него нагрузку.

Эти эксперименты вдохновили английского инженера В. Ферберна на изучение выносливости массивных железных балок, используемых при строительстве мостов. В 1960-х годах он работал с балками по 6-7 метров, при помощи рычагов оказывая и убирая нагрузку. Данный процесс сопровождался прогибом и выпрямлением изделия, а несколько сотен тысяч перемен нагрузки вызывали образование трещины.

Названные опыты носили бессистемный характер и не были представлены в широких технических кругах. На тот момент было сложно сказать, правда ли существует явление усталости металла либо трещины появлялись по случайному стечению обстоятельств.

Систематические исследования проводил механик из Германии А. Велер, несмотря на то, что он был выпускником коммерческого училища и работал чертежником на паровозном заводе, потом машинистом.

Требовалось понять причины аварий, поэтому создали специальную постоянную комиссию, куда А. Велер вошел в качестве эксперта, долгое время работавшего с паровозами. Он проводил испытания металлов в лаборатории, сам изобретал машины, позволявшие подвергать образцы переменным растяжению, изгибу, скручиванию. Интересно, что современные ученые испытывают материалы на изгиб на оборудовании, разработанном А. Велером.

Его машины для испытаний на усталость металла отличались небольшими скоростями, из-за чего исследования длились годами. Так, станок для имитации переменного изгиба совершал за минуту всего 72 оборота, а один из образцов выдержал более 132 миллионов перемен нагрузки.

Тем не менее А. Велер смог доказать, что образцы из стали и железа разрушаются при повторной переменной нагрузке, которая в иных ситуациях оказывается допустимой. Деталь сможет справляться с ней в течение неограниченного отрезка времени, если подобная нагрузка остается в определенных границах, то есть не выходит за предел выносливости. Данную величину необходимо учитывать при создании проектов быстроходных паровозов и скоростных машин.

Опыты А. Велера в корне изменили представления об уровне нагрузки, которой можно подвергать вагонные оси, шатуны, штоки цилиндров, пр. Благодаря ему расчеты компонентов скоростных машин начали выполнять в соответствии с пределом выносливости, который устанавливали опытным путем.

Основные виды усталости металла

  1. Пороговая усталость представляет собой состояние, при котором заметны первые признаки неравномерного напряжения, являющегося необратимым.
  2. Накопление усталости является необратимым относительным процессом накопления неравновесно-напряженного состояния, в результате которого металл разрушается.

Основные виды усталости металла

Снова добиться прежней износостойкости, надежности конструкции, увеличить ее срок службы можно, если повысить уровень твердости. С этой целью прибегают к поверхностной или объемной закалке. Температуру металла повышают до +850 °C и выдерживают в течение 15–20 минут, затем резко охлаждают в воде или масле. В итоге обеспечивается высокая твердость детали.

Старение и усталость металлов и сплавов вызывают значительное снижение уровня прочности, сокращают срок службы изделия, провоцируя его разрушение из-за появления усталостных трещин. Все это негативно отражается на надежности, продолжительности работы и безотказности техники.

Причины возникновения усталости металла

Локальное перенапряжение приводит к появлению небольшой трещины на металлическом изделии, которая постепенно увеличивается в процессе его использования. В результате деталь ослабевает и резко выходит из строя при разрастании трещины до критических показателей. Это называется механической усталостью металлов.

Причины возникновения усталости металла

Выделяют три этапа усталостного разрушения:

  1. Образование трещины.
  2. Распространение трещины.
  3. Разрушение материала.

Чтобы деталь использовалась в течение максимально долгого срока, не подвергаясь усталостному разрушению, а специалисты не задумывались, через сколько лет наступит усталость металла, важно не допускать превышение локальными напряжениями определенного значения, известного как предел выносливости.

Усталость металла определяется присутствием концентраторов напряжений, в качестве которых могут выступать отверстия, сварные соединения, зазубрины, очаги ржавчины. Не менее важно качество обработки поверхности изделия, так как гладкие плоскости менее подвержены усталостным процессам.

Усталостное разрушение деталей может быть разных типов в соответствии с причиной образования дефекта:

  • перепады температуры – в этом случае говорят о термической усталости металла;
  • совместные циклы давления и температуры;
  • наличие очага коррозии;
  • постоянная вибрация, исходящая от оборудования.

Как определить усталость металла

Экспериментальные методы исследования усталости металлов позволяют создавать надежные конструкций, которые служат долго и справляются с переменными нагрузками. Существуют испытания на усталость для хрупких, малопластичных и пластичных материалов, которые проводят в ускоренном или длительном режиме.

Как определить усталость металла

Нередко предел выносливости определяют в условиях симметричного цикла при помощи гладкого вращающегося образца либо имеющего надрез. Так как специалистам нужно определить усталость металла, прибегают к большому количеству циклов знакопеременных нагрузок. Испытание осуществляется при заданной нагрузке и завершается сразу после разрушения материала, далее фиксируют число выполненных циклов.

Меры повышения выносливости металла

Разрушение крепежных элементов является недопустимым. Избежать преждевременного проявления усталости металла можно таким образом:

  • Прибегнуть к рационализации конструкции, то есть к увеличению радиуса скруглений, переходов между отдельными участками изделия, что позволяет избавиться от концентраторов напряжений.
  • Выбирать материал, обладающий повышенным показателем прочности. Сюда относятся титан, легированная сталь, а также сталь с высоким содержанием углерода.
  • Обеспечить более высокую прочность поверхности при помощи метода закалки с отпуском, азотирования, гальванической обработки металла для защиты от ржавчины.
  • Постоянно затягивать резьбовой крепеж во время работы – практически полная защита от ослабления предварительной затяжки достигается при помощи стопорных клиновых шайб.
  • Тщательно отслеживать качество затяжки соединений, если изготовитель указал величину момента затяжки.
  • Защищать поверхности крепежа от воздействия извне, что позволяет избежать коррозионной усталости металла.
  • Предельно серьезно отнестись к выбору типа крепежа, оценив несущую способность, которая требуется от подобных изделий в конкретной ситуации.
  • Провести грамотный монтаж, благодаря чему удается исключить вибрации, слабину крепежа в рабочем состоянии – так, анкерный болт не должен болтаться при установке в пористый бетон, кирпич.
  • Учесть класс пожаростойкости объекта, конструкции, ведь от этой характеристики зависит необходимость в изделиях с повышенным уровнем стойкости.

Разрушение металла в результате усталости происходит внезапно и связано с большим количеством нюансов, чем обычное. А значит, при проектировании объекта важно проанализировать показатели усталости. На данном этапе уже известен материал, который планируется использовать для проекта, и параметры среды – инженеру нужно выбрать ПО для оценки степени усталости всех элементов конструкций.

Почему следует обращаться именно к нам

Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.

Наши производственные мощности позволяют обрабатывать различные материалы:

  • цветные металлы;
  • чугун;
  • нержавеющую сталь.

При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.

Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.

Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.

Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.

Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.

Дефекты металлический изделий

Дефекты металлический изделий

Производство предметов из металла представляет собой сложный технологический цикл. Некоторые операции могут как исключаться из этой цепочки, так и проводиться повторно. В процессе обработки металл претерпевает изменения, на нем могут появляться изъяны. Далее вы узнаете, какие бывают дефекты металлических изделий, а также как их можно выявить.

Типы дефектов металлических изделий

Из-за дефектов ухудшаются физико-механические свойства металлов, такие как электропроводность, магнитная проницаемость, прочность, плотность, пластичность. Принято выделять изъяны тонкой структуры или атомарного масштаба, а именно дислокации, вакансии, пр., и более грубые. К последним относятся субмикроскопические трещины, появляющиеся на границах блоков кристалла и на его поверхности.

Еще более грубыми считаются микро- и макроскопические дефекты металлических изделий, предполагающие нарушение сплошности или однородности. Они появляются по двум причинам: из-за несовершенства используемой технологии и низкой технологичности многокомпонентных сплавов. Дело в том, что при работе с подобными сплавами необходимо особенно точно соблюдать режимы, установленные для всех этапов изготовления и обработки.

Типы дефектов металлических изделий

С точки зрения прикладного, технического понимания, дефектами называют отклонения от установленной нормы, при которых ухудшаются рабочие характеристики металла или металлического изделия, происходит снижение сортности или отбраковка продукции. Но нужно понимать, что не любой изъян металла распространяется на изделие. Если отклонения не влияют на работу металлической детали, они не воспринимаются в качестве недостатков.

Отклонения, признанные дефектами для изделий, эксплуатируемых в определенных условиях (допустим, при усталостном нагружении), могут не приниматься во внимание при других условиях работы (например, при статическом нагружении).

Литьевые дефекты металлических изделий

Сегодня в металлургии принято использовать несколько классификаций брака, получаемого при литье.

Дефекты делятся на типы по месту нахождения. Так, если брак выявлен внутри участка, его считают внутренним. Если же проблема проявилась при дальнейшей обработке, ее относят к внешнему браку.

С точки зрения внешнего проявления, выделяют такие основные виды дефектов отливок, как пригар, при котором слой формовочных материалов, спекшихся с металлом, крепко присоединился к поверхности заготовки, и приливы, которые представляют собой отклонение размеров отливок от проекта в большую сторону.

Приливы делят на:

  • Заливы, которые образуются вдоль стыка частей формы. Причина их появления кроется в несоблюдении размеров моделей и плохом соединении элементов опок.
  • Подутость (распор) – возникает из-за давления расплава на рыхлую смесь.
  • Нарост, который появляется, когда поток расплава размывает форму при заливке.
  • Просечки (гребешки, заусенцы), образующиеся при затекании расплава в повреждения формы или стержня.

Литьевые дефекты металлических изделий

Нередко дефекты при литье проявляются в виде пороков поверхности. Сюда относятся:

  • Засоры. Массы зерен земли или шлаков. Эта проблема появляется из-за ошибок, допущенных при проектировании форм, непродуманного расположения литников, несоблюдения технологии складирования и перевозки.
  • Ужимины – образуются при сырой формовке, когда слой земли разрывается в месте конденсации жидкости и расплав заполняет образовавшуюся пустоту.
  • Спаи, или неслитины, возникают, когда происходит контакт между слоями охладившегося расплава. Поскольку не достигнута необходимая температура, потоки не могут правильно сплавиться.
  • Плены – появляются, когда окисляются легирующие добавки.
  • Морщинистость, или складчатость. Данный дефект выглядят как разнонаправленные складки на поверхности металлического изделия. Такой изъян связан со скоплением большого объема углерода в металле.
  • Выпот – провоцирует взрывообразное выделение скоплений графита, поэтому он похож на множество лопнувших пузырьков.
  • Корольки появляются и из-за разбрызгивания расплава при заливке. В этом случае шарик металла кристаллизуется отдельно от отливки, не соединяясь с ней.
  • Коробление отливки возникает по причине внутренних напряжений, провоцируемых неравномерным остыванием.

Также среди распространенных пороков литья стоит назвать трещины. Подобные дефекты металлических изделий также делятся на виды:

  • Горячие. Возникают, когда металл достигает температуры кристаллизации, обычно вызваны усадочным напряжением. Имеют неровные формы.
  • Холодные. Появляются при более низких температурах, чем горячие, при этом отличаются ровным, прямым профилем.
  • Межкристаллические. Образуются на металлических изделиях из легированных сталей в тех зонах, где имеются неметаллические включения.

Помимо прочего, нередко на предметах из металла появляются газовые дефекты:

  • Ситовидная пористость, то есть большое количество мелких пузырьков в теле детали.
  • Газовые раковины, которые представляют собой крупные каверны, возникшие после выхода и объединения мелких пузырьков.

Пластические дефекты металлических изделий

При отбраковке заготовок достаточно часто приходится сталкиваться с включениями инородных металлических или неметаллических тел, причем последние бывают различной величины, формы.

Надрыв представляет собой местные несквозные разрывы, находящиеся поперек или под углом к направлению обработки материла. Такие дефекты образуются из-за раскрытия внутренних несплошностей материала, а также несоблюдения норм, установленных для процесса обработки.

Сквозной разрыв отличается от предыдущего вида тем, что на металлическом изделии наблюдаются сквозные несплошности. Они образовываются при деформации плоской заготовки, имеющей неравномерную толщину, либо причиной появления сквозного разрыва могут стать вкатанные инородные тела.

Накол выглядит как несквозные единичные или групповые точечные углубления. Они появляются при использовании загрязненных смазочно-охлаждающих жидкостей, попадании на заготовку мелких металлических и инородных элементов. Еще одной причиной для образования накола могут стать выступы и налипшие частицы на валках.

Рекомендуем статьи по металлообработке

Вмятинами называют отдельные единичные углубления различных размеров, форм, имеющие пологие края. Вмятины появляются из-за повреждения металла в процессе производства, перевозки, хранения.

Забоина представляет собой углубление неправильной формы. Обычно такой дефект имеет острые края, поскольку появляется при ударе металлического изделия.

Пластические дефекты металлических изделий

Отпечаток – периодически повторяющиеся углубления, выступы, расположенные по всему металлическому изделию или на некоторых его участках. Отпечатки появляются под действием неровностей на прокатных и правильных валках.

Задир выглядит как широкое продольное углубление с неровным дном и краями. Причина его появления состоит в резком трении заготовки о детали оборудования, при помощи которого осуществляется обработка.

Риска – это продольное узкое углубление, дно которого может быть закругленным либо плоским. Образуется при царапании заготовки металлического изделия выступами на поверхности оборудования.

Царапина представляет собой углубление неправильной формы, имеющее произвольное направление. Появляется из-за механических повреждений, например, во время складирования, перевозки металлических изделий.

Потертостью называют нарушение блеска на отдельно взятом участке металлического изделия, а также скопление мелких разнонаправленных царапин. Такие дефекты появляются из-за трения металлических изделий между собой.

Налип появляется в результате прилипания к металлическому изделию частиц или слоя металла с инструмента.

Закат образуется за счет вдавливания в изделие частиц обрабатываемого металла, заусенцев, выступов и других дефектов, появившихся в процессе обработки.

Пережог проявляется в виде темных, оплавленных или окисленных пятен на металлическом изделии, которые образуются, если была превышена температура, время нагрева материала.

Расслоение выглядит как отделение слоя материала на торцах, кромках металлического изделия, заготовки. Причина для расслоения одна – изначально внутри металла были дефекты, такие как рыхлости, включения, внутренние разрывы, пережог.

Плена представляет собой расслоение, обычно имеет форму языка, идущего по направлению обработки и одним краем соединенного с основным металлом. Подобное расслоение появляется, если в металле изначально были надрывы, трещины, пузыри, либо при нагреве материала был допущен его пережог, оплавление.

Чешуйчатость представляет собой пластическую деформацию, вызванную пережогом или недостаточной пластичностью металла периферийной зоны. В соответствии с названием, такие разрывы на металлическом изделии больше всего похожи на чешую или сетку.

Рябизна

Рябизна выглядит как скопление углублений, появившихся на металлическом изделии во время проката или плавки.

Смятой поверхностью называют тип деформации, при котором на металлическом изделии появляются складки, изгибы, волны, при этом не вызывающие разрыва металла.

Излом представляет собой полосу поперек направления прокатки или под углом к нему. Изломы появляются из-за резкого перегиба в процессе сматывания, разматывания рулонов, либо при перекладке тонких листов.

Недотрав выглядит как пятна, полосы, появившиеся на металлическом изделии из-за неравномерного травления.

Перетрав – это местное или общее разъедание поверхности изделия, которое проявляется как точечные либо контурные углубления. Образуется, так же как и недотрав, при несоблюдении режима травления.

Пятна загрязнения могут иметь форму полос, натеков, разводов. Их оставляют на поверхности металлического изделия технологическая эмульсия, загрязненное масло, мазут.

Коррозионные пятна могут быть светлыми или темными, обычно имеют шероховатую текстуру, так как появляются под действием коррозии.

Цвета побежалости проявляются в виде окисленных участков, то есть пятен и полос различной окраски и формы. Такие пятна отличаются гладкой поверхностью, так как проявляются при нарушении норм термической обработки и травления.

Кольцеватость характерна только для круглых металлических заготовок – на их поверхности появляются повторяющиеся кольцеобразные выступы, углубления. Виной тому пластическая деформация, плавка.

Следы плавки несколько похожи на кольцеватость, они выглядят как повторяющиеся светлые и темные полосы. Однако в данном случае полосы идут по заготовке в любом направлении: могут быть продольными, поперечными либо спиралеобразными. Образуются при плавке.

Омеднение проявляется как покраснение некоторых участков поверхности металлического изделия. Такие пятна образуются после контактного выделения меди, что связано с нарушением режимов термической обработки и травления.

Серповидность полос и лент – это отклонение формы металлического изделия от поверочной линейки. Такой дефект измеряют в миллиметрах на метр длины полуфабриката.

Овальностью называют отклонение поперечного сечения изделия от формы круга. Если с – максимальный, d – минимальный и т – средний диаметр сечения, то по формуле c - d/m × 100 можно рассчитать отклонение от идеальной формы в процентах.

Разностенность – несовпадение толщины стенки по длине трубы с номинальной толщиной либо разница в толщине заготовки по ее площади.

Разнотолщинность – отклонение толщины плоского изделия по длине и ширине от установленных параметров либо разница толщины стенки вдоль длины металлической трубы.

Фестонистость представляет собой появление выступов по краю металлического изделия при глубокой штамповке листов и лент. Направление выступов соответствует направлению оси прокатки.

Способы обнаружения дефектов металлических изделий

Способы обнаружения дефектов металлических изделий

Существует несколько уровней исследования, которые используются для разных глубин и размеров дефектов:

  1. Субмикроскопическое исследование.
  2. Микроанализ.
  3. Макроанализ.

Под дефектами кристаллического строения металлов принято понимать отклонения от структуры идеального, то есть бездефектного, кристалла.

Дефекты кристаллической структуры делят на типы в соответствии с их формой и размерами:

  • Дислокации, то есть отсутствие полуплоскости кристаллической решетки.
  • Вакансии или пустоты в узлах кристаллической решетки.
  • Атомы внедрения, предполагающие присутствие в решетке дополнительных атомов между узлами.
  • Атомы замещения, то есть атомы другого элемента, находящиеся в узлах кристаллической решетки обрабатываемого металла.

1. Субмикроскопическое исследование.

Цель его состоит в выявлении дефектов на границах кристаллов или зерен. Дело в том, что из-за неравномерности кристаллизации или недостаточного питания зародышей жидким раствором появляются тонкие прослойки между блоками кристаллов. Либо причина может скрываться в выделении на поверхности кристаллов твердой фазы нерастворимых соединений и элементов. Так, фосфор и целый ряд тугоплавких металлов не способны образовывать соединения с железом в сталях, поэтому они откладываются на границах зерен.

В число субмикроскопических дефектов входят сколы в стали 38Х2МЮА. Причина их появления проста: во время легирования стали алюминием по границам зерен выделяются локальные плоскости, которые и становятся слабым местом металла во время дальнейшей обработки.

2. Микроанализ.

При подобном исследовании для выявления дефектов используют микроскопы с увеличением более 100 крат. Именно микроанализ применяется чаще всего при поиске литейных дефектов. Этот метод позволяет определить балл зерна, наличие и количество включений неметаллической природы, меди, серы и фосфора, структуру металла.

От доли углерода и легирующих элементов, содержащихся в стали, зависит, какие твердые фазы выделятся при кристаллизации. Отметим, что данные стадии имеют различную прочность, твердость и пластичность. В стойких к коррозии марках стали при разных температурных режимах охлаждения формируются фазы аустенита, мартенсита или ледобурита.

Также к ключевым характеристикам, определяющим качество металла, относится балл зерна. Дело в том, что при снижении данного показателя повышается пластичность металла, но снижается его прочность. Однако легирование карбидообразователями или тугоплавкими материалами позволяет добиться упрочнения стали, сохраняя при этом ее изначальную пластичность.

Одним из главных направлений исследования микроанализа считается определение доли вредных примесей и неметаллических включений (в процентах). Чаще всего роль вредной примеси играют сера и фосфор, из-за которых сталь приобретает такие свойства, как красноломкость и хладноломкость.

Чтобы металл мог применяться для производства изделий, доля этих двух элементов должна укладываться в установленные нормы. Благодаря контролю неметаллических включений удается установить содержание в стали оксидов, сульфидов, нитридов и других соединений. Отметим, что такие примеси могут влиять на металл как положительным, так и отрицательным образом.

3. Макроанализ.

Данный способ изучения представляет собой визуальное выявление дефектов металлических изделий, иными словами, с его помощью поверхность рассматривается при увеличении до 30 крат. Такое исследование позволяет обнаружить крупные дефекты поверхности или глубинных слоев металла. Нужно понимать, что макроскопические изъяны могут образовываться на любом этапе производства металлического изделия – от выплавки и до хранения. Чаще всего после выявления подобных деформаций металл забраковывают или возвращают на доработку.

Читайте также: