Электрофизические и электрохимические методы обработки металлов

Обновлено: 04.10.2024

электрофизические методы обработки, позволяют обрабатывать материалы с высокими механическими свойствами без применения больших механических усилий и с применением инструментов, твердость которых значительно меньше твердости обрабатываемого материала. Например: обработка весьма хрупких материалов, например, полупроводников или неметаллических материалов (ситалла, кварца, керамики, поликора, стекла), получение изделий из сверхтонкой ленты (масок, микрофонных элементов и др.), получение изделий с поверхностью высокого класса, удаление деформированного слоя, снятие заусенцев. Кроме того, электрофизические методы позволяют производить локальную обработку материалов без изменения свойств материала детали, а в некоторых случаях и улучшать физико-механические свойства (уничтожать наклеп, удалять прижоги, повышать антикоррозийные свойства, улучшать электрофизические свойства – электропроводность и магнитную проницаемость и др.)

ü Электроэрозионная (электроискровая) обработка

процесс электроэрозии электродов из проводящих материалов при пропускании между ними импульсов электрического тока. Сущность процесса электроэрозии заключается в разрушении поверхности электродов при электрическом пробое межэлектродного промежутка как в газовой среде, так и при заполнении промежутка непроводящими жидкостями (керосином, трансформаторным маслом и т.д.), причем в последнем случае процесс электрической эрозии протекает интенсивнее.

Электроимпульсная обработка. В основе этого метода обработки лежит неодинаковая эрозия электродов при различной длительности импульсов. Этот метод применяется для обработки фасонных отверстий в деталях из нержавеющих и жаропрочных сплавов, с трудом поддающихся механической обработке.

Высокочастотная электроискровая обработка. Для обработки деталей без последующей доводки применяется высокочастотная электроискровая импульсная обработка повышенной частоты (для 300 кГц) малой мощности. Для обработки деталей электроискровым методом выпускают различные станки, которые могут выполнять следующие виды обработки:

прошивку отверстий различной формы и несквозных полостей;

вырезку изделий сложного контура из листовых материалов;

гравирование знаков и рельефа на поверхности деталей;

резку материалов стандартного сортамента на заготовки;

изготовление мелкоячеистых прецизионных сеток.

ü Электрохимическая обработка

К электрохимической обработке относится группа методов, основанных на явлении анодного растворения. При пропускании тока между электродами происходит растворение металла анода. Образующийся продукт растворения в виде солей или гидроокисей металлов удаляется с поверхности либо гидравлическим потоком электролита, либо механическим путем. При этом процесс анодного растворения на микро-выступах происходит интенсивнее вследствие относительно более высокой плотности тока на вершинах выступов. Количество металла, растворяемого в результате анодного процесса, описывается формулой ,где – количество вещества в г; J – ток в A; t – время в с; n – валентность; F =96464 – число Фарадея; A – молекулярный вес.

Катодом служит инструмент различной формы, изготовленный из стали, меди, латуни. В качестве электролитов обычно используются водные растворы хлорных, сернокислых и азотнокислых солей (NaCl, NaNO3, Na2SO4). Электрохимическая обработка в проточном электролите применяется для прошивки отверстий и полостей, резки заготовок и др. операций.

Электрохимическое полированиеосновано на том, что на микровыступах полируемой поверхности анода-детали плотность тока выше, чем на впадинах, и поэтому анодное растворение происходит избирательно, на выступах микронеровностей, а микровпадины заполняются непроводящими продуктами растворения. В результате происходит сглаживание поверхности, и шероховатость снижается, по сравнению с исходной. Одновременно устраняются микротрещины, наклеп и другие поверхностные дефекты, возникающие при предшествующей обработке. Этим методом производят снятие заусенцев после механической обработки или штамповки, наружное и внутреннее полирование тонкостенных труб, полирование тонких лент фольги.

ü Ультразвуковая обработка

Ультразвуковая обработка материалов – разновидность механической обработки основана на разрушении обрабатываемого материала абразивными зернами под ударами инструмента, колеблющегося с ультразвуковой частотой. Ультразвуковым методом обрабатывают хрупкие твердые материалы: стекло, керамику, ферриты, ситаллы, кремний, кварц, драгоценные материалы, в том числе, алмазы, твердые сплавы, титановые сплавы, вольфрам. Этим методом получают глухие и сквозные отверстия любой формы, в поперечном сечении, канавки, пазы. Ультразвуковые методы используются в технологических целях для очистки поверхностей деталей от загрязнений, пайки алюминиевых проводов, сварки тонких проводов с проводящими пленками микросхем.

ü Ультразвуковая очистка

поверхностей деталей основана на явлении кавитации, возникающей в жидкой среде при возбуждении в ней упругих колебаний ультразвуковых частот. При прохождении волны растяжения в жидкости появляются нарушения сплошности-разрывы, в результате чего образуются микрополости (пузырьки), которые при «захлопывании» образуют ударные волны.

ü Лучевые методы обработки:

ü Электронно-лучевая обработка

основана на превращении кинетической энергии направленного пучка электронов в тепловую. Высокая плотность энергии сфокусированного луча позволяет обрабатывать заготовки за счет нагрева, расплавления и испарения материала с узколокального участка.Электронно-лучевой метод применяют для обработки тугоплавких и легко окисляемых на воздухе металлов и сплавов: вольфрама, молибдена, титана, меди, а также неметаллических материалов: рубина, керамики, кварца, ферритов, полупроводниковых материалов.

ü Светолучевая (лазерная)

обработка основана на тепловом воздействии светового луча высокой энергии на поверхность обрабатываемой заготовки. Лазерную обработку применяют для прошивания сквозных и глухих отверстий, резки заготовок на части, вырезания заготовок из листовых материалов по сплошному контуру, прорезания пазов. Этим методом можно обрабатывать заготовки из любых материалов, включая самые твердые и прочные. Широко используются ОКГ для сварки различных металлов. Например, лучом лазера производят сварку корпусов гибридных интегральных схем и подгонку до номинала сопротивление тонкопленочных резистивных пленок.

«Электрофизические и электрохимические способы обработки материалов» Курс лекций

1. Введение. Историческая справка. Классификация физико-химических методов обработки материалов

Введение. В современном машиностроении возникают технологические проблемы, связанные с обработкой новых материалов и сплавов (например, жаро- и кислотостойкие, специальные никелевые стали, тугоплавкие сплавы, композиты, неметаллические материалы: алмазы, рубины, германий, кремний, порошковые тугоплавкие материалы и т.п.) форму и состояние поверхностного слоя которых трудно получить известными механическими методами.

К таким проблемам относится обработка весьма прочных или весьма вязких материалов, хрупких и неметаллических материалов (керамика), тонкостенных нежестких деталей, а также пазов и отверстий, имеющих размеры в несколько МКМ; получение поверхностей деталей с малой шероховатостью, с очень малой толщиной дефектного поверхностного слоя и т.д.

В этих условиях, когда возможность обработки резанием ограничены плохой обрабатываемостью материала изделия, сложностью формы обрабатываемой поверхности или обработка вообще невозможна, целесообразно применять электрофизические и электрохимические методы обработки [1].

Их достоинства следующие:

1) механические нагрузки либо отсутствуют, либо настолько малы, что практически не влияют на суммарную погрешность точности обработки;

2) позволяют изменять форму обрабатываемой поверхности заготовки (детали);

3) позволяют влиять и даже изменять состояние поверхностного слоя детали;

4) не образуется наклеп обработанной поверхности;

5) дефектный слой не образуется;

6) удаляются прижоги поверхности, полученные при шлифовании;

7) повышаются: износостойкость, коррозионная стойкость, прочность и другие эксплуатационные характеристики поверхностей деталей.

Кинематика формообразования поверхностей деталей электрофизическими и электрофизическими методами обработки, как правило, проста, что обеспечивает точное регулирование процессов и их автоматизацию.

На обрабатываемость деталей такими методами (за исключением ультразвукового) не влияют твердость и вязкость материала детали.

В науке и технике …. разрушение контактов под действием электрических разрядов было известно давно. В частности, искровые и дуговые разряды возникают при разрыве или отключении электрических цепей. Электрической эрозии подвержены контакты реле, выключателей, рубильников и других подобных устройств. Электрическая эрозия – очень вредное явление, сокращающее срок службы и снижающее надежность электрических устройств. Много исследований было посвящено устранению, или хотя бы уменьшению такого разрушения контактов.

Над этой проблемой в годы Великой Отечественной войны работали ученые Б.Р.Лазаренко и Н.И.Лазаренко. За изобретение ЭЭО они были удостоены Государственной премии СССР. Позднее Б.Р.Лазаренко был избран академиком АН Молдавской ССР, где и работал до конца жизни (1910….1979 г.г.).

Большой вклад в развитие методов ЭЭО советские ученые и инженеры Б.Н.Золотых, А.Л.Лившиц, Л. С. Палатник, М. Ш.Отто и другие.

Разработка основ электрохимического метода и технологического его применения принадлежит талантливому ученому В.Н.Гусеву (1904…1956 г.г.). В 1929 г. он получил патент на ЭХО. Первые опыты по размерной электрохимической обработке металлов были проведены в 40-х годах прошлого столетия. В 1954 г. он получил патент на заточку сверл с вершинами из карбидов. В последующие годы, как самим Гусевым, так и другими учеными были разработаны различные варианты электрохимической технологии и созданы основы теории электрохимического метода.

Начальный период развития метода характеризуется тем, что наряду с его использованием в производстве (для получения профиля пера турбинных и компрессорных лопаток, ковочных штампов, пресс форм, кольцевых деталей, прошивки отверстий и щелей, заточки инструмента, удаления заусенцев и др.) происходило накопление экспериментальных и статических данных; делались попытки теоретических обобщений, которые позволили бы заранее, без испытаний, предсказать конечные результаты обработки.

Позже появилось стремление к выявлению основных зависимостей процесса, которые позволяют управлять процессом электрохимической обработки. Попытка обобщения накопленного материала в области теории и практики электрохимической обработки с учетом опыта отечественных и зарубежных заводов сделана в монографии И.И.Мороза и др.[4].

Успехи, достигнутые в области электрохимического образования деталей сложной формы, и прежде всего лопаток турбин и компрессоров, а также полостей ковочных штампов, достаточно полно изложены в книге В.А.Головачева «Электрохимическая размерная обработка деталей сложной формы».

В настоящее время значительные успехи достигнуты в области моделирования электрических полей и решении задач формообразования поверхности при ЭХО, сделаны попытки аналитического расчета простых форм инструментов, обеспечивающих достаточно высокую точность изготовления отверстий и полостей. Созданы математические модели, учитывающие гидродинамику потока электролита, для определенной формы поверхности, получаемой при ЭХО, и методики определения погрешностей, припусков и качества обработки.

В области теории разработаны оригинальные методики прогнозирования обрабатываемости металлов и сплавов в условиях ЭХО [ И.Э.АН.СССР ].

Быстрое развитие технологически развитых отраслей промышленности (авиационной, ядерной и т.д.) сопровождалось повышением доли использования труднообрабатываемых сплавов. Характер металлообработки начинает изменяться. Традиционные способы резания металлов больше не соответствуют современным требованиям. Хотя скорость резания таких материалов, как низкоуглеродистая сталь, в результате успехов технологии станкостроения и режущих инструментов удваивается примерно каждые 10 лет, предельная прочность на разрыв материалов, которые можно обрабатывать, например, со скоростью 30 м / мин, удваивается примерно только каждые 50 лет. Кроме того, предельная прочность на разрыв используемых материалов, по-видимому, удваивается примерно каждые 20 лет. Следовательно, уже наблюдается упадок технологии металлообработки в некоторых отраслях промышленности.

Предпринимались попытки преодолеть трудности обработки труднообрабатываемых материалов путем горячей обработки, или путем применения абразивных методов или таких как У.З. обработка. Успех, однако был частичным. Необходимы методы, при которых скорость обработки не зависела бы от твердости детали.

Наметились два основных направления в решении данной проблемы: термические и химические методы обработки.

Термические методы обработки основаны на том, что путем концентрации энергии на маленьком участке детали материал можно расплавить и испарить. Энергия может подаваться в форме:

— теплоты — газопламенная или плазменная обработка;

— электронная бомбардировка — электронный луч и электрическая эрозия.

Из термических существует только один метод, который уже позволяет экономически выгодно удалять довольно большое количество металла с детали со значительной степенью точности: — это процесс электрической эрозии, который разрабатывается с 1940 г.

Однако скорость, с которой можно удалять металл электроискровым методом при условии высокого класса чистоты поверхности, ограничена, более того, высокая производительность процесса приводит к часто наблюдаемому повреждению поверхности, что делает этот способ во многих случаях непригодным. Следовательно, ни один из термических методов не решает полностью проблемы обработки высокопрочных металлов в широком масштабе.

Химические методы, кроме способов травления, включают электрохимическую обработку. Этот метод можно использовать для обработки особо твердых и вязких электропроводных материалов (не зависимо от твердости или прочности детали — скорость съема металла не меняется). При этом достигается:

— высокая скорость съема металла (более 1000 мм/мин);

— высокий класс точности;

— отсутствует износ инструмента;

— отсутствуют остаточные напряжения;

— отсутствуют повреждения материала детали;

— отсутствуют заусенцы на кромках реза.

К числу современных технологических процессов, получивших за последние 30…40 лет практическое применение, принадлежит ультразвуковая размерная обработка труднообрабатываемых материалов (кварц, керамика, фарфор, ферриты, кремний, германий, цветные поделочные и полудрагоценные камни). Сущность ультразвуковой размерной (абразивной) обработки твердых хрупких материалов состоит в направленном разрушении обрабатываемого материала под действием ударов абразивных зерен, находящихся между поверхностями материала и инструмента, колеблющегося с ультразвуковой частотой в продольном (осевом) направлении. Частота — 18…25 тыс. ударов в секунду. Число зерен, участвующих в резании — 30…100 тыс. на один квадратный сантиметр площади. Это разновидность механической обработки материалов. Ультразвуковые процессы основаны на использовании механических колебаний, распространяющихся в газах, жидкостях и твердых телах.

Бурное развитие квантовой электроники, в значительной мере обусловленное выдающимися достижениями научных школ академиков Н. Г. Басова и А. М. Прохорова, удостоенных совместно с американским ученым Ч. Таунсом Нобелевской премии, привело к созданию принципиально новых источников энергии — лазеров. Лазерное излучение характеризуется гигантской концентрацией энергии, сфокусированной на чрезвычайно малую площадь, теоретически соизмеримую с квадратом длины волны излучения.

Лазер – это генератор электромагнитных волн в диапазоне ультрафиолетового, видимого и инфракрасного излучений. Начиная с конца 60-х годов прошлого столетия лазеры (небольшой мощности) получили первое применение в технологии обработки материалов (сначала в приборостроении). Большие потенциальные возможности заложены в применении процессов, осуществляемых с помощью импульсного нагружения — высоковольтный электрический разряд в жидкости — электрогидравлическая обработка. Впервые на разрушительную силу электрического разряда указано в 18 столетии (1767 … 1769 г.г.) .

Экспериментальное устройство того времени включало все основные элементы современной установки для осуществления импульсного разряда:

— конденсатор (лейденская банка);

— коммутирующий элемент (воздушный шаровой разрядник);

— электроды, погруженные в жидкость.

Опытная проверка промышленного испытания электрогидравлической обработки началась с середины 50-х годов и установила ряд преимуществ перед методами, использующими в качестве источника энергии – взрывчатые вещества в режиме взрывного химического превращения:

— возможность управления процессом накопления и выделения энергии;

— отсутствие источников повышенной опасности после отключения установки;

— простота и низкая себестоимость оснастки.

1). Формообразование и калибровка деталей из пространственных заготовок диаметром 200 … 1100 мм при высоте до 1100 мм и толщине до 5 мм и др.;

2). Очистка от окалины и неметаллических покрытий отливок из цветных и черных металлов весом от 1кг до 10 …15 т.

Большая роль в развитии технологии электрогидравлической обработки машиностроительных материалов принадлежит С. М. Поляку, Л. А. Юткину, К. Н. Богоявленскому, Б. Г.Красичковой и др. (Физико-технический институт АН БССР)

32 Лекция №31. Электрофизические и электрохимические методы обработки

Электрофизико-химическую обработку (ЭФХО) применяют для обработки труднообрабатываемых, прочных, хрупких и многих других материалов, обработка которых обычными механическими методами затруднена или невозможна. К таким материалам относятся полупроводниковые материалы, кварц, рубин, ферриты, твердые сплавы и др.

Электроэрозионный метод обработкитокопроводящих материалов и сплавов основан на использовании преобразуемой в теплоту энергии импульсных электрических разрядов, возбуждаемых между инструментом и изделием. В зависимости от вида электрического разряда (искра, дуга), параметров импульсов тока, напряжения и других условий электроэрозионная обработка подразделяется на электроискровую, электроимпульсную, электроконтактную и анодно-механическую. Каждой разновидности электроэрозионной обработки свойственны определенные технологические характеристики, оборудование и область промышленного применения.

Лучевой метод обработки, к которому относится обработка световым, электронным и ионным лучами, используют для обработки токопроводящих материалов и диэлектриков. Они основаны на съеме материала при воздействии на него сфокусированными лучами с высокой плотностью энергии. Съем материала осуществляется преобразованием этой энергии непосредственно в зоне обработки в теплоту.

Электрогидравлическая обработкаматериалов представляет собой одну из форм механического воздействия на материал. Интенсивный электрический разряд в жидкости приводит к сильному гидравлическому удару, под воздействием которого обрабатываемый материал может деформироваться и при известных условиях разрушаться или изменять первоначальную геометрическую форму. Электрогидравлический эффект используется в промышленности преимущественно для дробления крупных материалов, очистки литья от формовочной земли и штамповки.

Магнитоимпульсная обработкаматериалов основана на использовании энергии сильного импульсного магнитного поля. Особо широкое применение магнитоимпульсная обработка находит для формообразования малопластичных, труднодеформируемых материалов, вырубки и штамповки и многих сборочных операций.

Ультразвуковой метод обработкизаключается в механическом воздействии на материал. Он назван ультразвуковым благодаря тому, что частота ударов соответствует диапазону неслышимых звуков, т. е. выше 16 кГц, Ультразвуковым методом можно обрабатывать твердые и хрупкие материалы, частицы которых могут как бы выкалываться при ударе.

Электрохимические методы обработки материалов основаны на преобразовании электрической энергии в энергию химических связей, т. е. на превращении металла заготовки в легко удаляемые из зоны обработки химические соединения (анодное растворение). Электрохимическая обра­отка имеет две разновидности: обработка в среде проточного электролита и электроабразивная. В последнем случае происходит комбинированный электрохимический и механический съем металла.

Рассмотрим более подробно электроискровой, ультразвуковой и лучевой методы обработки как наиболее используемые при производстве изделий ЭВМ.

32.2.2 Электроискровая обработка – до 20 мин

Электроискровая обработка основана на обработке металлов импульсами электрического тока. На рис. 32.2 приведена схема электроискровой обработки.


Рисунок 32.1 – Схема электроискровой установки: 1 – инструмент (катод); 2 – рабочая жидкость; 3 – обрабатываемая заготовка (анод); 4 – источник постоянного тока.

Электрические разряды, которые возникают между двумя электродами, находящимися на небольшом расстоянии друг от друга, разрушают их поверхности. Одним электродом с положительным потенциалом является обрабатываемая заготовка, а другим электродом является инструмент. Обработка детали заключается в следующем. Конденсатор С заряжается через сопротивление R от источника постоянного тока напряжением 100. 200 В. При достижении на подключенных параллельно конденсатору электродах напряжения, равного пробойному, образуется канал сквозной проводимости, через который осуществляется разряд всей энергии, накопленной конденсатором. Прохождение тока через эрозионный промежуток прекращается после деионизации объема жидкости, заключенного между электродами.

При электроискровом методе обработки применяют импульсы длительностью 20. 200 мкс. Электрическая эрозия проявляется наиболее интенсивно, если межэлектродное пространство заполнено диэлектрической жидкостью. В качестве такой жидкости используют керосин, минеральное масло, водные растворы электролитов и дистиллированную воду.

Форма обрабатываемой поверхности (отверстия) зависит от формы электрода-инструмента.

32.2.3 Ультразвуковая обработка – до 20 мин

Ультразвуковая размерная обработка основана на ультразвуковых колебаниях инструмента в среде абразивной суспензии. На рис. 32.2 приведена схема ультразвуковой размерной резки полупроводниковых слитков на пластины. Обрабатываемый материал выкалывается ударами зерен абразива, получающих ускорение от торца инструмента, колеблющегося с небольшой амплитудой. Обрабатываемый материал должен быть хрупким, а инструмент более мягким (среднеуглеродистые стали).


Рисунок 32.2 – Схема резки полупроводниковых слитков на пластины: 1 – инструмент, 2 – магнитостриктор, 3 – концентратор колебаний, 4 – генератор, 5 – разрезаемый слиток, 6 – абразивная суспензия.

Инструмент получает ультразвуковые колебания от магнитостриктора через концентратор колебаний. Некоторые материалы, называемые магнитострикционными, под воздействием электромагнитных колебаний от генератора начинают «сжиматься и разжиматься» с той же частотой. Если к торцу магнитостриктора, колеблющегося с ультразвуковой частотой и определенной амплитудой, прикрепить инструмент определенной формы, то можно вести обработку. Для усиления энергии колебаний применяют концентраторы различной конфигурации.

В качестве суспензии используют воду с абразивными зернами. Для повышения производительности суспензию следует прокачивать через зазор между инструментом и обрабатываемым слитком, так как абразивные зерна постепенно разрушаются и их необходимо заменять.

Широко используют ультразвуковую очистку деталей. Ультразвуковые колебания, накладываемые на жидкость для очистки деталей, особенно малогабаритных и имеющих сложную конфигурацию, резко повышают скорость и качество очистки.

Для пайки алюминия и его сплавов применяют способ удаления окисной пленки, основанный на ее механическом разрушении интенсивными ультразвуковыми колебаниями. Процесс ультразвукового лужения позволяет облудить всю обрабатываемую поверхность, с которой сняты окисные пленки, в то время как при механическом удалении окисной пленки облуживаются только отдельные зачищенные места поверхности.

32.2.4 Лучевая обработка – до 20 мин

Высокая плотность энергии сфокусированного электронного луча так же, как и светового луча лазера, позволяет проводить размерную обработку за счет нагрева и испарения материала с узколокального участка.

Для этих методов характерна практическая независимость обрабатываемости материала от механических характеристик, поэтому как металлы, так и неметаллические материалы (магнитные материалы, керамика, полупроводниковые материалы, легированные стали и ферриты, твердые сплавы, корунд и т. д.) обрабатываются одинаково успешно. Оба метода позволяют проводить такие операции, как разрезку материалов, получение фасонных поверхностей и т. д. При этом, поскольку инструментом является сфокусированный луч, вопрос об износе инструмента так же, как и об ошибках, связанных с этим износом, полностью снимается.

Возможность точного дозирования энергии луча позволяет осуществлять широкий круг технологических процессов от местной термообработки, зонной очистки и сварки до механической обработки. В ряде случаев, когда для обработки особо миниатюрных деталей изготовление инструмента практически неосуществимо (например, для отверстий диаметром 5. 10 мкм), лучевая обработка является единственно возможной.

При обработке электронным лучом расплавление и испарение происходит за счет повышения температуры материала при резком торможении потока электронов в месте встречи его с обрабатываемой поверхностью. Для получения мощного потока электронов электронный пучок, эмитируемый вольфрамовым катодом в электронной пушке, ускоряется напряжением, приложенным между катодом и анодом, юстируется и фокусируется при помощи системы магнитных линз. Перемещение луча по поверхности изделий осуществляется отклоняющей системой. Кроме того, изделие, закрепленное на координатном столике, само может перемещаться относительно луча. Все устройство находится в вакуумной камере.

Обработка световым лучом имеет ряд преимуществ: для обработки не требуется создания вакуума, при котором значительно труднее управлять технологическим процессом; нет рентгеновского излучения, сопутствующего обработке электронным лучом; лазерные установки конструктивно проще электронных пушек; в некоторых случаях механическая обработка может осуществляться за прозрачной преградой (например, в запаянной колбе). Главным недостатком обработки световым лучом является отсутствие надежных методов управления движением луча по обрабатываемой поверхности, поэтому при обработке перемещается сама деталь.

Введение в специальность

150206 «Машины и технология высокоэффективных процессов обработки материалов»

1. Электрофизические и электрохимические методы обработки, их классификация.

Электрохимические и электрофизические методы обработки материалов за последние годы все больше применяются как наиболее эффективные и экономичные, а нередко и как единственно возможные способы изготовления заготовок и деталей (особенно из современных высокопрочных и труднообрабатываемых металлических и неметаллических конструкционных материалов). Расширяется внедрение в промышленность так называемой совмещенной, или комбинированной, электрохимической и электрофизической обработки, когда традиционные методы формообразования (обработка резанием, штамповка и др.) дополняются электрохимическим или электрофизическим воздействием на обрабатываемый материал в целях интенсификации операций. В ряде случаев совмещают отдельные разновидности электрохимической и электрофизической обработки.

К электрохимическим и электрофизическим методам обработки материалов относят методы изменения формы, размеров, шероховатости и свойств обрабатываемых поверхностей заготовок, происходящие под воздействием электрического тока и его разрядов, электромагнитного поля, электронного или оптического излучения, плазменной струи, а также высокоэнергетических импульсов и магнитострикционного эффекта. Отличительной особенностью этих методов является использование электрической энергии непосредственно для технологических целей без промежуточного преобразования ее в другие виды энергии. Причем использование электрической энергии осуществляется непосредственно в рабочей зоне через химические, тепловые и механические воздействия.

К этим методам относят также и различные сочетания (совмещения) в одном процессе нескольких из указанных, способов воздействия между собой или с традиционными методами обработки резанием или давлением. Такие методы называют комбинированными.

Классификация электрофизических и электрохимических методов обработки:

Электрофизические методы обработки

б) Электромеханические методы

в) Лучевые методы

г) Плазменная обработка

Электрохимические методы обработки

а) Поверхностные методы

б) Размерные методы

Комбинированные методы обработки

Электрохимикофизические и комбинированные методы обработки характеризуются следующими технологическими особенностями:

Обработка материалов без приложения значительных механических усилий и без непосредственного механического контакта обрабатывающей поверхности инструмента с обрабатываемой поверхностью заготовки.

Получением сложных по форме поверхностей заготовок при сравнительно простой кинематике процессов.

Значительно меньшей зависимостью основных технологических показателей процессов от физико-механических свойств обрабатываемого материала.

Простотой, низкой себестоимостью и высокой стойкостью применяемого инструмента, а иногда и отсутствием его износа.

Большими возможностями интенсификации многих технологических процессов механической обработки, нанесения покрытий, сварки, пайки и других.

Возможностями механизации и автоматизации основных технологических и вспомогательных переходов.

Возможностями сокращения, а во многих случаях и исключения необходимости расходования остродефицитных и дорогих инструментальных сталей и сплавов, а также потерь обрабатываемых материалов.

Наряду с перечисленными положительными особенностями электрофизических и комбинированных методов обработки им присущи и некоторые недостатки или ограничения. Основные недостатки:

Повышенная энергоемкость процессов при равнозначных с механической обработкой производительности и качественных показателях;

Относительная громоздкость применяемого технологического оборудования и оснастки, а также необходимость применения специальных источников питания;

Необходимость размещения технологического оборудования в отдельных помещениях.

Электроэрозионная обработка основана на вырывании частиц материала с поверхности импульсом электрического разряда. Если задано напряжение между электродами, погруженными в жидкий диэлектрик, то при их сближении происходит пробой диэлектрика — возникает электрический разряд, в канале которого образуется плазма с высокой температурой.

Т.к. длительность используемых в данном методе обработки электрических импульсов не превышает 10 -2 сек, выделяющееся тепло не успевает распространиться в глубь материала и даже незначительной энергии оказывается достаточно, чтобы разогреть, расплавить и испарить небольшое количество вещества. Кроме того, давление, развиваемое частицами плазмы при ударе об электрод, способствует выбросу не только расплавленного, но и просто разогретого вещества. Поскольку электрический пробой, как правило, происходит по кратчайшему пути, то прежде всего разрушаются наиболее близко расположенные участки электродов. При приближении одного электрода заданной формы к другому поверхность последнего примет форму поверхности первого. Производительность процесса, качество получаемой поверхности в основном определяются параметрами электрических импульсов (их длительностью, частотой следования, энергией в импульсе). Электроэрозионный метод обработки объединил электроискровой и электроимпульсный методы.

Электроискровая обработка основана на использовании искрового разряда. При этом в канале разряда температура достигает 10000 °С, развиваются значительные гидродинамические силы, но сами импульсы относительно короткие и, следовательно, содержат мало энергии, поэтому воздействие каждого импульса на поверхность материала невелико. Метод позволяет получить хорошую поверхность, но не обладает достаточной производительностью. Кроме того, при этом методе износ инструмента относительно велик (достигает 100% от объёма снятого материала). Метод используется в основном при прецизионной обработке небольших деталей, мелких отверстий, вырезке контуров.

Электроимпульсная обработка основана на использовании импульсов дугового разряда. В отличие от искрового, дуговой разряд имеет температуру плазмы ниже (4000—5000°С), что позволяет увеличивать длительность импульсов, уменьшать промежутки между ними и вводить в зону обработки значительные мощности (несколько десятков квт), т. е. увеличивать производительность обработки. Характерное для дугового разряда преимущественно разрушение катода приводит к тому, что износ инструмента ниже, чем при электроискровой обработке, составляя 0,05—0,3% от объёма снятого материала.

Электроэрозионные методы особенно эффективны при обработке твёрдых материалов и сложных фасонных изделий. При обработке твёрдых материалов механическими способами большое значение приобретает износ инструмента. Условно технологические приёмы электроэрозионной обработки можно разделить на прошивание и копирование. Прошиванием удаётся получать отверстия диаметром менее 0,3 мм, что невозможно сделать механическими методами. В этом случае инструментом служит тонкая проволочка. Этот приём на 20—70% сокращает затраты на изготовление отверстий малого диаметра. Более того, электроэрозионные методы позволяют изготовлять спиральные отверстия. Первый в мире советский электроэрозионный (электроискровой) станок был предназначен для удаления застрявшего в детали сломанного инструмента (1943).

Электромеханическая обработка объединяет методы, совмещающие одновременное механическое и электрическое воздействие на обрабатываемый материал в зоне обработки. К ним же относят методы, основанные на использовании некоторых физических явлений (например, гидравлический удар, ультразвук и др.).

Электроконтактная обработка основана на введении в зону механической обработки электрической энергии — возбуждении мощной дуги переменного или постоянного тока (до 12 кА при напряжении до 50 В) между инструментом и изделием. Применяется для обдирки литья, резки и других видов обработки, аналогичных по кинематике движений почти всем видам механической обработки. Преимущества метода — высокая производительность на грубых режимах, простота инструмента, работа при относительно небольших напряжениях. Недостатки — большая шероховатость обработанной поверхности, тепловые воздействия на металл при жёстких режимах.

Разновидностью электроконтактной обработки является электроабразивная обработка — обработка абразивным инструментом (в т. ч. алмазно-абразивным), изготовленным на основе проводящих материалов. Введение в зону обработки электрической энергии значительно сокращает износ инструмента.

Магнитоимпульсная обработка применяется для пластического деформирования металлов и сплавов и основана на непосредственном преобразовании энергии меняющегося с большой скоростью магнитного поля, возбуждаемого при разряде батареи мощных конденсаторов на индуктор, в механическую работу при взаимодействии с проводником (изделием). Преимущества метода — отсутствие движущихся и трущихся частей в установках, высокая надёжность и производительность, лёгкость управления и компактность; недостатки — относительно невысокий кпд, затруднительность обработки заготовок с отверстиями или пазами (мешающими протеканию тока) и большой толщины.

Электрогидравлическая обработка (главным образом штамповка). Основана на использовании энергии гидравлического удара при мощном электрическом (искровом) разряде в жидком диэлектрике.

К лучевым методам обработки относится обработка материалов электронным пучком и световыми лучами. Электроннолучевая обработка осуществляется потоком электронов высоких энергий (до 100 кэв). Таким путём можно обрабатывать все известные материалы. Электроннолучевые станки могут выполнять резание и сварку с большой точностью. Основой электроннолучевого станка является электронная пушка. Из-за относительно высокой стоимости, малой производительности, технической сложности станки используются в основном для выполнения прецизионных работ в микроэлектронике, изготовления фильер с отверстиями малых диаметров, работ с особо чистыми материалами.

К электрофизическим методам обработки относится также плазменная обработка.

Основаны на законах электрохимии. По используемым принципам эти методы разделяют на анодные и катодные, по технологическим возможностям - на поверхностные и размерные.

Механизм съема (растворения, удаления) металла при ЭХО основан на электролизе - процессе, при котором происходит окисление или восстановление поверхностей электродов, соединенных с источником питания и помещенных в токопроводящий раствор - электролит. Один из электродов (заготовка) присоединен к положительному полюсу ИП и является анодом, а вто­рой (инструмент) — к отрицательному; последний яв­ляется катодом.

Поверхностная электрохимическая обработка. Практическое использование электрохимических методов началось с 30-х гг. XIX в. Первый патент на электролитическое полирование был выдан в 1910. Суть метода состоит в том, что под действием электрического тока в электролите происходит растворение материала анода (анодное растворение), причём быстрее всего растворяются выступающие части поверхности, что приводит к её выравниванию. При этом материал снимается со всей поверхности, в отличие от механического полирования, где снимаются только наиболее выступающие части. Электролитическое полирование позволяет получить поверхности весьма малой шероховатости. Важное отличие от механического полирования — отсутствие каких-либо изменений в структуре обрабатываемого материала.

Размерная электрохимическая обработка. К этим методам обработки относят анодно-гидравлическую и анодно-механическую обработку.

В соответствии с ГОСТ 25330-82 наименования видов ЭХО отражают как физико-химические особенности съема ма­териала заготовки, так и их технологическое назначение.

В зависимости от физико-химических особенностей съема металла разновидности ЭХО объединяют в две группы.

К первой группе относятся все виды ЭХО, при осуществлении которых припуск с заготовок удаляется только за счет электрохимического растворе­ния, а ко второй — разновидности, при реализации кото­рых наряду с электрохимическим растворением происхо­дит одновременное удаление припуска за счет дополни­тельного механического или электротермического воз­действий.

При выполнении операций первой группы разновидностей ЭХО образуются легкорастворимые в воде соединения, выпадающие в электролит и с его потоком уда­ляемые из зоны обработки. Необходимость дополнитель­ного механического или электротехнического воздействия на металл заготовки при ЭХО обусловлена образованием при анодном растворении на поверхности электропроводящих заготовок труднорас­творимых соединений (пленок). При осуществлении процес­сов, входящих в первую группу, инструменты не изнашиваются, а во вторую — изнашиваются.

Электрохимическая обработка выполняется в стацио­нарном или в проточном электролите.

Процесс анодного растворения обрабатываемых по­верхностей в проточном электролите характеризуется не только явлениями, происходящими на поверхности анода, но и гидродинамикой общего потока электролита.

Анодно-гидравлическая обработка впервые была применена в Советском Союзе в конце 20-х гг. для извлечения из заготовки остатков застрявшего сломанного инструмента. Скорость анодного растворения зависит от расстояния между электродами: чем оно меньше, тем интенсивнее происходит растворение. Поэтому при сближении электродов поверхность анода (заготовка) будет в точности повторять поверхность катода (инструмента). Однако процессу растворения мешают продукты электролиза, скапливающиеся в зоне обработки, и истощение электролита. Удаление продуктов растворения и обновление электролита осуществляются либо механическим способом (анодно-механическая обработка), либо прокачиванием электролита через зону обработки.

Этим методом, подбирая электролит, можно обрабатывать практически любые токопроводящие материалы, обеспечивая высокую производительность в сочетании с высоким качеством поверхности. Используемые для анодно-гидравлической обработки электрохимические станки просты в обращении, используют низковольтное (до 24 в) электрооборудование. Однако значительные плотности тока (до 200 а/см 2 ) требуют мощных источников тока, больших расходов электролита (иногда до 1/3 площади цехов занимают баки для электролита).

Комбинированные методы обработки сочетают в себе преимущества электрофизических и электрохимических методов. Используемые сочетания разнообразны. Например, сочетание анодно-механической обработки с ультразвуковой в некоторых случаях повышает производительность в 20 раз. Существующие электроэрозионно-ультразвуковые станки позволяют использовать оба метода как раздельно, так и вместе.

Лазеры история развития

Сейчас лазеры используются в космических иссле­дованиях, в машиностроении, в медицине, в вычисли­тельной технике, в самолетостроении и военной технике. Непрерывно увеличивается применение лазеров в научных исследованиях – физических, химических, биологических. Исполь­зуются лазеры и в различных видах военной техники – наземной, морской, воздушной.

В 1955–1957 годах появились работы Н.Г. Басова, Б.М. Вула, Ю.М. Попова и А.М. Прохорова в России, а также американских ученых Ч. Таунса и А. Шавлова, в которых были приведены научные обоснования для соз­дания квантовых генераторов оптического диапазона. В декабре 1960 года Т. Мейман сумел построить первый успешно работающий лазер с рубиновым стержнем в ка­честве активного вещества.

В 1961 году под руководством американского ученого А. Джавана был создан газовый лазер. Он использовал в качестве активной среды смесь газов гелия и неона.

В 1962 году практически одновременно в России и в США был создан лазер, у которого в качестве активного вещества применили полупроводниковый элемент.

Большой вклад в решение проблемы безопас­ности посадки самолетов в сложных условиях внесла лазерная техника. Широко распространена еще одна важная область применения лазеров – лазерная технология, с помощью которой обеспечивается резка, сварка, легирование, скрайбирование металлов и обра­ботка интегральных микросхем.

Значительный эффект получен и при использовании лазеров в медицине. Был создан лазерный скальпель. Возникла лазерная микрохирургия глаза. Лазеры применяются в стоматологии, нейрохирургии, при операциях на сердце и диагностике заболеваний. Ультрафиолетовые лазеры применяют для раннего обнаружения раковых опухолей.

В пищевой промышленности исследуются возможно­сти применения лазеров для улучшения качества хлебо­продуктов, ускорения производства безалкогольных на­питков с улучшенными свойствами, сохранения качества мяса и мясопродуктов.

Лазер – это устройство, в котором энергия, например тепловая, химическая, электрическая, преобразуется в энергию электромагнитного поля – лазерный луч. Слово лазер образовано как сочетание первых букв слов английского выражения «Light Amplification by Stimulated Emission of Radiation» («усиление света при помощи индуцированного излучения»).

Свойства лазерного излучения. Лазерные источники света обладают рядом существенных преимуществ по сравнению с другими источниками света:

1. Лазеры способны создавать пучки света с очень малым углом расхождения (около 10 -5 рад).

2. Свет лазера обладает исклю­чительной монохроматичностью. В отличие от обычных источников света, атомы которых излучают свет не­зависимо друг от друга, в лазерах атомы излучают свет согласованно. Поэтому фаза волны не испытывает нерегулярных изменений.

3. Лазеры являются самыми мощными источниками света. В уз­ком интервале спектра кратковре­менно (в течение промежутка време­ни продолжительностью порядка 10 -13 с) у некоторых типов лазеров достигается мощность излучения 10 17 Вт/см 2 , в то время как мощ­ность излучения Солнца равна толь­ко 710 3 Вт/см 2 , причем суммарно по всему спектру. На узкий же интер­вал =10 -6 см (ширина спектральной линии лазера) приходится у Солнца всего лишь 0,2 Вт/см 2 . На­пряженность электрического поля в электромагнитной волне, излучаемой лазером, превышает напряженность поля внутри атома.

Принцип действия лазеров. В обычных условиях большинство атомов находится в низшем энергетическом состоянии. Поэтому при низких температурах вещества не светятся.

При прохождении электромагнитной волны сквозь вещество её энергия поглощается. За счёт поглощённой энергии волны часть атомов возбуждается, т. е. Переходит в высшее энергетическое состояние. При этом от светового пучка отнимается энергия

Тема 4.4. Электрофизические и электрохимические методы обработки

В промышленности часто возникают технологические трудности с об­работкой материалов и деталей, форму и состояние поверхностного слоя которых трудно получить механическими методами. Эти задачи решаются приме­нением электрофизических и элек­трохимических методов обработки (ЭФЭХ). Они основаны на ис­пользовании явлений эрозии, возникающих под действием электри­ческого тока.

Электрохимическая обработка (ЭХО). Механизм съема металла при ЭХО основан на электролизе – процессе, при котором происходит окисление или восстановление поверхностей электродов, соединенных с источником тока и помещенный в токопроводящий растров – электролит. Один из электродов присоединен к положительному полюсу и является анодом, другой – к отрицательному и является катодом. Особенностями электролиза являются пространственное окисление (растворение) анода и восстановление (осаждения) металла на поверхности катода.

В зависимости от физико-химических особенностей съема металла с заготовки все разновидности ЭХО можно объединить в две группы: В первую группу входят виды ЭХО, при осуществлении которых припуск с заготовки удаляется только в процессе электрохимического растворения: отрезка, объемное копирование, точение, прошивание (в том числе струйное), калибрование, удаление заусенцев, маркирование, полирование.

Ко второй группе относятся разновидности ЭХО, при реализации которых наряду с электрохимическим растворением происходит одновременное удаление припуска путем механического или электротермического воздействий: анодно-механическая обработка; электрохимическое шлифование, заточка, доводка, суперфиниширование, абразивное полирование, жидкостно-абразивная обработка; электроэрозионно-химическая и электрохимическая ультразвуковая обработки.

Чаще всего при ЭХО электроды (заготовка и инструмент) перемещаются относительно друг друга. При выполнении некоторых операций ЭХО (электрохимическое калибрование и маркирование) электроды неподвижны.

Однако у этих методов есть и недостатки: повышенная по сравне­нию с механообработкой энергоемкость, необходимость использования специаль­ного оборудования, необходимость сбора и утилизации от­ходов.

Электроэрозионная обработка (ЭЭО). В основе лежит физическое явление, обусловленное разрядом и заключающееся в переносе материала электродов, в результате которого поверхность одного из них разрушается, называемое электрической эрозией. Электрический разряд представляет собой высококонцентрированный в пространстве и во времени импульс электрической энергии, преобразуемой между электродами (инструментом и заготовкой) в тепловую. При этом в канале разряда протекают нагрев, расплавление и испарение металла с локальных поверхностей электродов, ионизации и распад рабочей жидкости.

В соответствии с технологическими признаками различают следующие операции ЭЭО: отрезка, объемное копирование, вырезание, прошивание, шлифование, доводка, маркирование и упрочнение. Во всех случаях электрический разряд происходит в жидкой среде. Электроконтактная обработка (ЭКО) является разновидностью ЭЭО.

Электронно-лучевая (ЭЛО), светолучевая (СЛО) и плазменная (ПЗО) обработки относятся к электрофизическим методам и основаны на создании в зоне обработки высоких плотностей тепловой мощности благодаря протеканию электрического тока. В соответствии с технологическими процессами различают следующие виды ЭЛО: сварка, пайка, вырезание прецизионных заготовок, прошивание отверстий, резание труднообрабатываемых материалов, нанесение покрытий, запись информации. В настоящее время применяются следующие технологические схемы электрической обработки: 1) прошивание – формирование полостей и отверстий; 2) разрезание и прорезание – разделение заготовки на части; 3) шлифование – сглаживание неровностей шероховатой поверхности, повышение точности, удаление дефектного слоя; 4) клеймение (маркирование, гравирование) – нанесение надписей, штрихов шкал.

При ПЗО происходят процессы, при которых в результате воздействия потока низкотемпературной плазмы возникают изменения химического состава, структуры или физического состояния обрабатываемого материала. При этом изменяются форма и (или) геометрические размеры обрабатываемой заготовки. Использование ПЗО для формирования поверхности с заданными свойствами развивается по следующим направлениям: изменение структуры поверхностного слоя заготовок и нанесения на них другого материала.

Области применения указанных методов, их достоинства и недостатки рассмотрены в [1].

Читайте также: