Электрохимические установки для извлечения металлов

Обновлено: 19.04.2024

Изобретение относится к установкам для непрерывного электрохимического извлечения металлов из растворов их солей. Установка содержит, по меньшей мере, две электролитические ванны с исходным раствором, связанные между собой общим движущимся через них с помощью тянущих вальцов электродом, токоподводы из графитовых вальцов и противоэлектроды. Общий электрод выполнен в виде замкнутого кольца, состоящего из графитированных токопроводящих участков и участков из токонепроводящей химически стойкой ткани. Общий электрод установлен с возможностью одновременного извлечения целевого металла из исходного раствора и выделения его в конечной электролитической ванне на накопительном электроде. Технический результат при использовании изобретения - упрощение конструкции установки при проведении непрерывного электрохимического извлечения металлов, повышение срока эксплуатации электрода без разрушения в агрессивных химических средах. 7 з.п. ф-лы, 5 ил.

установка для непрерывного электрохимического извлечения металлов из растворов их солей, патент № 2343231

Формула изобретения

1. Установка для непрерывного электрохимического извлечения металлов из растворов их солей, содержащая, по меньшей мере, две электролитические ванны с исходным раствором, связанные между собой общим движущимся через них с помощью тянущих вальцов электродом, токоподводы из графитовых вальцов и противоэлектроды, при этом общий электрод выполнен в виде замкнутого кольца, состоящего из графитированных токопроводящих участков и участков из токонепроводящей химически стойкой ткани, и установлен с возможностью одновременного извлечения целевого металла из исходного раствора и выделения его в конечной электролитической ванне на накопительном электроде.

2. Установка по п.1, в которой графитированные токопроводящие участки и участки из токонепроводящей химически стойкой ткани, соединенные в замкнутое кольцо, образуют ленту Мебиуса.

3. Установка по п.1, в которой в качестве токонепроводящей ткани использована полипропиленовая ткань.

4. Установка по п.1 или 3, в которой участки из полипропиленовой ткани соединены с графитированными токопроводящими участками путем сшивания.

5. Установка по п.1, в которой накопительный электрод в конечной электролитической ванне выполнен из углеродной ткани или пластины из металла.

6. Установка по п.1, которая дополнительно содержит, по меньшей мере, одну промывную ванну с проточной водой.

7. Установка по п.1, в которой противоэлектроды в электролитических ваннах, кроме конечной, выполнены из углеродного графитированного материала, а в конечной электролитической ванне - из углеродного графитировнного материала или из фольги из металла.

8. Установка по п.1, которая выполнена с возможностью селективного извлечения металлов из растворов их солей.

Описание изобретения к патенту

Изобретение относится к электрохимии и предназначено для электрохимического извлечения металлов из растворов их солей.

К таким металлам относятся, например, медь, серебро, золото, платиноиды, редкие металлы.

Наиболее близким аналогом заявленного изобретения является устройство для электролитического извлечения металлов из растворов их солей, включающее электролизер, катодная камера которого содержит корпус с перфорированными стенками, разделенный перфорированными токопроводящими перегородками на три секции, углеграфитовые электроды, размещенные в крайних секциях и выполненные в виде ленты, уложенной в секциях зигзагообразно (пат. RU 2054055 C1, С25С 7/02, 10.02.1996) - прототип.

Недостатком известного технического решения является его сложность и трудность эксплуатации, а также ограниченный срок эксплуатации в нем электрода.

Техническим результатом при использовании заявленного изобретения является упрощение конструкции установки при проведении непрерывного электрохимического извлечения металлов, увеличение срока эксплуатации электрода в стационарном режиме без разрушения в агрессивных химических средах в одном устройстве с разными электрическими режимами одновременно.

Указанный технический результат достигается тем, что установка для непрерывного электрохимического извлечения металлов из растворов их солей содержит, по меньшей мере, две электролитические ванны с исходным раствором, связанные между собой общим движущимся через них с помощью тянущих вальцев электродом, токоподводы из графитовых вальцев и противоэлектроды, при этом общий электрод выполнен из графитированной токопроводящей углеродной ленты, соединенной в замкнутое кольцо, содержит участки из токонепроводящей химически стойкой ткани и установлен с возможностью одновременного извлечения целевого металла из исходного раствора и выделения его в конечной электролитической ванне на накопительном электроде. Ленточный электрод выполнен в виде ленты Мебиуса; в качестве токонепроводящей ткани использована полипропиленовая ткань; участки из полипропиленовой ткани соединены с углеродной лентой путем сшивания; накопительный электрод в конечной электролитической ванне выполнен из углеродной ткани или пластины из металла.

Установка может дополнительно содержать, по меньшей мере, одну промывную ванну с проточной водой. Противоэлектроды в электролитических ваннах, кроме конечной, выполнены из углеродного графитированного материала, а в конечной электролитической ванне - из углеродного графитированного материала или из фольги металла, аналогичного извлекаемому металлу.

Установка выполнена с возможностью селективного извлечения металлов из растворов их солей.

Изобретение иллюстрируется чертежами, где:

на фиг.1 изображена схема установки, общий вид;

на фиг.2 изображена схема электрода, общий вид;

на фиг.3 изображен электрод в виде ленты Мебиуса;

на фиг.4 изображен фрагмент электрода, включающий соединенные участки углеродной токопроводящей ленты и токонепроводящей ткани;

на фиг.5 изображена схема соединения участков электрода.

Установка для непрерывного электрохимического извлечения металлов из растворов их солей (фиг.1) содержит электролитические ванны 1, 2, 3, 4, связанные между собой общим движущимся через них с помощью тянущих вальцов 5 электродом 6, выполненным из графитированной токопроводящей углеродной ленты 7 (фиг.2) в виде замкнутого кольца. Электрод 6 (фиг.2, 5) содержит участки 8 из токонепроводящей химически стойкой ткани. Концы углеродной ленты соединены путем поворота относительно друг друга на 180° (фиг.3) в виде ленты Мебиуса. Участки 8 (фиг.4, 5) выполнены из полипропиленовой ткани и соединены с углеродной лентой 7 сшиванием, например, полиэфирной нитью 9. Для фиксации углеродных нитей углеродной ленты, ее электроизоляции и более прочного сцепления сшивки торцы ленты заклеены фторопластовой клейкой лентой 10.

Расстояние n (фиг.4) между соединяемыми концами углеродной ленты 7, а соответственно, и длина участка 8 из токонепроводящей ткани, составляет 0,5-1,0 см, что вполне достаточно и необходимо для прерывания тока между участками электрода.

Исходный раствор, содержащий ионы целевого металла, подают в электролитическую ванну 1 (фиг.1), в которой в качестве катода служит углеродная графитированная лента 6, которая с извлеченным металлом поступает в ванну 2, являющуюся промывной с подготовленной проточной водой; после выхода из ванны 2 электрод 6 подвергают сушке горячим воздухом 11. Для продолжения процесса извлечения металла из раствора углеродную ленту 6 протягивают через электролитическую ванну 3, в которой извлекаемый металл переносится с углеродной ленты 6 на катод данной ванны, а для последующей промывки углеродную ленту 6 протягивают через ванну 4 с подготовленной проточной водой и далее при помощи тянущих вальцов 5 снова поступает в ванну 1 с исходным раствором. Подачу электрического тока на электролитические ванны осуществляют через верхние графитовые вальцы 12 и противоэлектроды 13, которые в электролитических ваннах, кроме конечной, выполнены из углеродного графитированного материала, а в конечной электролитической ванне - из углеродного графитированного материала или из фольги металла. Извлекаемый металл в конечной электролитической ванне накапливается на катодах из углеродной ткани или на пластинах металла, выполненных в виде кассет или рулонов.

Электрохимическая проработка исходного раствора, восстановление ионов целевого металла в ваннах электролизеров происходит в гальваностатическом режиме при нагрузке ниже предельного тока для данного иона металла в данном растворе, что обусловливает селективность процесса, а при электрохимическом растворении целевого металла с ленточного электрода и перенос его на накопительный электрод в конечной электролитической ванне протекает в специально подобранном растворе для конкретного металла в гальваностатическом режиме при токе, превышающем предельный ток для данного иона металла в этом растворе. При работе в данных условиях различные участки электрода находятся при разной токовой нагрузке разной полярности, а в промежутках между электролитическими ваннами - без тока.

Количество электролитических ванн, длина, ширина и скорость протяжки углеродной ленты (электрода) определяют селективность, степень извлечения целевого металла и производительность установки.

Процесс извлечения металлов из их растворов иллюстрируется примерами.

Исходный раствор содержит катионы трех металлов: палладия 0,2 г/л, меди 0,5 г/л, железа 2 г/л. Электрод 6 заправляется в установку, содержащую, по меньшей мере, две электролитические ванны. В первую ванну подают ток, плотность которого при электроэкстракции палладия устанавливают ниже того значения, которое можно было бы установить исходя из концентрации извлекаемых ионов в данном растворе (предельного тока). Это позволяет значительно повысить селективность извлечения, но при снижении степени извлечения данного иона, до примерно 90%. После извлечения в первой ванне ионов целевого металла обедненный раствор направляют с прерыванием струи во вторую ванну с более низким значением тока, в которой извлекается еще примерно 90% палладия.

Суммарное извлечение палладия после прохождения электрода через две электролитические ванны составляет около 99%. Таким образом, в растворе остается около 0,002 г/л палладия.

Далее электрод протягивают через конечную электролитическую ванну, в которой палладий электрохимически переносится на накопительный электрод до накопления на нем определенной массы.

Исходный раствор по примеру 1 подают в установку, увеличенную на две ванны. После экстракции палладия из раствора и последующего его переноса на накопительный электрод, подобно примеру 1, раствор, содержащий катионы меди и железа, направляют в следующую электролитическую ванну, в которой происходит электрохимическое извлечение 99% меди. Затем электрод протягивают через ванну, в которой медь электрохимически переносится на накопительный катод.

В отработанном растворе остается около 0,002 г/л палладия, 0,005 г/л меди и исходное количество железа.

Заявленное изобретение обладает по сравнению с известным уровнем техники рядом преимуществ:

- предельная простота конструкции и эксплуатации;

- посредством общего подвижного электрода и многостадийного электрохимического процесса извлечения металлов возможно селективное, регулируемое по степени, извлечение целевого металла;

- высокий процент извлечения металлов;

- все электрохимические процессы протекают в стационарном режиме;

- возможное автоматизирование процесса извлечения металлов;

- при исполнении электрода в виде ленты Мебиуса вся поверхность электрода работает в одинаковых условиях, износ электрода происходит равномерно и срок его эксплуатации увеличивается.

Установка для непрерывного электрохимического извлечения металлов из растворов их солей

Установка для непрерывного электрохимического извлечения металлов из растворов их солей

Устройство для извлечения металлов электролизом

Устройство для извлечения металлов электролизом

Изобретение относится к устройство для извлечения металлов электролизом, в частности к устройству для извлечения золота. Оно содержит корпус с патрубками подачи и выхода электролита, аноды и титановые катоды. При этом устройство снабжено выполненными из полимерного материала перегородками, разделяющими внутреннее пространство устройства на ячейки. Корпус выполнен из полимерного материала литым, а аноды изготовлены из графита. Техническим результатом изобретения является увеличение срока службы устройства и повышение степени извлечения золота. 1 ил., 1 табл.

Изобретение относится к гидрометаллургическому извлечению металлов из водных растворов.

Существуют гидрометаллургические ванны для электролитического осаждения металлов, например, меди, цинка, кадмия, никеля, серебра, золота и других.

Гидрометаллургические ванны - электролизеры имеют корпус, электроды - анод и катод, диафрагму, если это необходимо, патрубки входа и выхода растворов. На бортах ванны располагаются токоподводящие шины из меди (Практикум по прикладной электрохимии. Учебное пособие для ВУЗов. /Под редакцией Кудрявцева Н.Т. и. Вячеславова П.М. - Л.: Химия, 1980, стр.116).

Известен электролизер для осаждения золота, состоящий из корпуса, размещенного в нем катода и анода, разделенных между собой пористой перегородкой - диафрагмой. При подаче напряжения на электроды на катоде происходит электроосаждение металлов, на аноде - растворение металла, если анод растворимый, или выделение кислорода, если анод нерастворимый. (Баймаков Ю.В., Журин А.И. Электролиз в гидрометаллургии. - М.: Металлургия, 1977, стр.138).

В качестве прототипа выбран электролизер ЭУ-1М, состоящий из сварного титанового корпуса, в котором размещены титановые пластинчатые катоды, на которых происходит осаждение металла. Платиновые сетчатые аноды помещены в винипластовую анодную коробку, к боковым стенкам которой прижаты ионообменные мембраны. Анодная коробка выполнена герметичной. В ванне имеются патрубки для подачи и выхода католита, а в анодной коробке - патрубки подачи и выхода анолита (Лодейщиков В.В. Технология извлечения золота и серебра из упорных руд. Монография в 2-х томах. - Иркутск, ОАО «Иргиредмет», 1999, стр.95).

Недостатком электролизера является то, что сварной титановый корпус со временем подвергается коррозионному разрушению. Степень извлечения золота в электролизере недостаточно высока - при начальной концентрации золота 500-700 мг/литр конечная концентрация составляет 120-140 мг/литр. У существующих электролизеров высокая стоимость оборудования за счет применения платины.

Задача изобретения - увеличение срока службы электролизера и повышение степени извлечения золота.

Поставленная задача решается тем, что устройство для извлечения золота содержит корпус с патрубками подачи и выхода электролита, аноды, титановые катоды. Устройство снабжено выполненными из полимерных материалов перегородками, разделяющими внутреннее пространство устройства на ячейки. Корпус выполнен из полимерного материала литым. Аноды изготовлены из графита.

Устройство состоит из полимерного корпуса 1, в котором расположены графитовые аноды 2 и титановые катоды жалюзийного типа 3. Внутреннее пространство электролизера разделено полимерными перегородками 4 на ячейки 5, в каждой из которых расположен между двумя анодами 2 катод 3. В электролизере имеются патрубки подачи электролита 6 и выхода электролита 7.

Процесс электроосаждения металла происходит следующим образом. Во входной патрубок электролизера 6 подают продуктивный раствор, который, проходя последовательно через все ячейки 5 электролизера, выходит через патрубок 7. В электролизере при этом протекают процессы осаждения металлов на катоде 3 и окисление воды на аноде 2.

Преимущество данного электролизера в том, что используют литой полимерный корпус, не имеющий сварных швов и не подвергающийся коррозии. Толщина стенок электролизера - 30 мм, что обеспечивает срок его службы 10-15 лет.

Наличие полимерных перегородок позволяет увеличить путь и время пребывания электролита в ванне, что значительно повышает степень извлечения золота.

В таблице представлены данные по электроосаждению золота на катодах в зависимости от скорости протекания электролита.

В качестве примеров конкретного выполнения работы устройства приведен электролиз на лабораторных установках:

Пример 1 (Опыт 1)

Подвергают выщелачиванию тиомочевинным раствором 150 г концентрата. Содержание золота в продуктивном растворе - 134 мг/литр. Раствор подвергают электролизу при объемном расходе католита 10 л/час, степень извлечения составляет 99,2%.

Пример 2 (Опыт 2)

Подвергают выщелачиванию тиомочевинным раствором 150 г концентрата. Содержание золота в продуктивном растворе - 126 мг/литр. Раствор подвергают электролизу при объемном расходе католита - 15 л/час, степень извлечения составляет 98,1%.

Пример 3 (Опыт 5)

Электролиз на опытно-промышленном электролизере.

Электролизу подвергают раствор, содержащий 402,15 г золота.

Содержание золота в продуктивном растворе - 220 мг/литр. Объем раствора, подвергшийся электролизу, составляет 1830 литров. Масса золота на катодах - 397,39 г. Объемный расход католита - 20 л/час. Степень извлечения золота составляет 98,82%.

Концентрация золота до электролиза, мг/лКонцентрация золота после электролиза, мг/лОбъемный расход католита, л/часСтепень извлечения золота
Опыт 11341,001099,2
Опыт 21262,281598,1
Опыт 311413,95587,8
Опыт 414910,967092,6
Опыт 52202,602098,82

Устройство для извлечения золота электролизом, содержащее корпус с патрубками подачи и выхода электролита, аноды и титановые катоды, отличающееся тем, что оно снабжено выполненными из полимерного материала перегородками, разделяющими внутреннее пространство устройства на ячейки, корпус выполнен из полимерного материала литым, а аноды изготовлены из графита.

Изобретение относится к электролизеру для выделения галлия из растворов восстановлением на жидком металлическом катоде. .

Изобретение относится к устройствам для формирования и перемещения пакетов изделий в форме брусьев с технологическими отверстиями, например анодных блоков, используемых при электролитическом производстве магния.

Изобретение относится к установкам для непрерывного электрохимического извлечения металлов из растворов их солей. .


Изобретение относится к конструкции электродов для электрохимического извлечения металлов из растворов их солей. .

Изобретение относится к области цветной металлургии, в частности к электролизерам для получения щелочно-земельных металлов из расплавов солей. .

Изобретение относится к объемно-пористому электродному материалу с контролируемыми геометрическими параметрами структуры для использования в электрохимических и электрокаталитических процессах, в области топливных элементов и других смежных областях.

Изобретение относится к устройствам для выделения галлия из растворов электрохимическим восстановлением на жидком металле или сплаве. .

Изобретение относится к способу электролиза и электролизеру для извлечения металла из водного раствора. .

Электрод для электрохимического извлечения металлов из растворов их солей

Электрод для электрохимического извлечения металлов из растворов их солей

Изобретение относится к конструкции электродов для электрохимического извлечения металлов из растворов их солей. Электрод выполнен из ленты из графитированного углеродного токопроводящего материала. При этом он содержит участки из токонепроводящей химически стойкой ткани. Углеродная лента выполнена из участков, концы которых соединены участками из токонепроводящей химически стойкой ткани с образованием электрода в виде замкнутого кольца. Концы участков углеродной ленты и участки из токонепроводящей химически стойкой ткани, соединенные в замкнутое кольцо, образуют ленту Мебиуса. В качестве токонепроводящей химически стойкой ткани может быть использована полипропиленовая ткань. Торцы концов участков углеродной ленты, соединенные сшиванием с участками из полипропиленовой ткани, могут быть зафиксированы фторопластовой клейкой лентой. Технический результат при использовании изобретения - повышение срока эксплуатации ее в стационарном режиме без разрушения в агрессивных химических средах в одном устройстве с разными электрическими режимами одновременно. 4 з.п. ф-лы, 5 ил.

Изобретение относится к электрохимии, предназначено для электрохимического извлечения металлов из растворов их солей. К таким металлам относятся, например, медь, серебро, золото, платиноиды, редкие металлы.

Известны электроды из углеграфитовых материалов, используемые в катодных камерах электролизеров для извлечения металлов, например, благородных, из растворов солей, которые выполнены в виде углеграфитовых пластин (патент RU 2021394 С1, МПК5 С25С 7/00, 15.10.1994) или в виде углеграфитового волокнистого материала, например, графитизированного ватина (патент RU 2248413 С2, МПК7 С25С 7/02, 20.03.2005), а также в виде лент углеграфитового электропроводного волокнистого материала (патент RU 2255152 С1, МПК7 D01F 11/16, 27.06.2005).

Известен также катод для использования в электролизере для электрохимического извлечения металла из водного раствора, имеющий поверхность осаждения с набором чередующихся гребней и впадин (заявка RU 2005115463 А, МПК7 С25С 1/00, 27.10.2005).

Наиболее близким аналогом заявленного изобретения является углеграфитовый электрод, выполненный в виде волокнистой ленты, размещенный зигзагообразно между стенками корпуса катодной камеры электролизера и токоподводами, используемый для извлечения металлов из растворов их солей (патент RU 2054055 C1, C25C 7/02,10.02.1986) - прототип.

Недостатком известного технического решения является неудовлетворительная полнота извлечения целевого металла, а также ограниченный срок эксплуатации электрода.

Техническим результатом при использовании заявленного изобретения является повышение срока эксплуатации его в стационарном режиме без разрушения в агрессивных химических средах в одном устройстве с разными электрическими режимами одновременно.

Указанный технический результат достигается тем, что электрод для электрохимического извлечения металлов из растворов их солей выполнен из графитированной углеродной токопроводящей ленты, содержащей участки из токонепроводящей химически стойкой ткани; при этом концы углеродной ленты соединены в замкнутое кольцо; упомянутые концы могут быть соединены путем поворота.

В качестве токонепроводящей химически стойкой ткани использована полипропиленовая ткань; участки из полипропиленовой ткани соединены с углеродной лентой путем сшивания; торцы углеродной ленты, сшиваемой с полипропиленовой тканью, зафиксированы (склеены) фторопластовой клейкой лентой.

на фиг.1 изображена схема электрода, общий вид;

на фиг.2 изображен фрагмент электрода, иллюстрирующий соединенные участки из углеродной токопроводящей ленты и токонепроводящей ткани;

на фиг.3 изображена схема соединения участков полипропиленовой ткани и углеродной ленты;

на фиг.4 изображен электрод в виде ленты Мебиуса;

на фиг.3 изображена схема установки для электрохимического извлечения металлов из растворов их солей.

Электрод для электрохимического извлечения металлов из растворов их солей (фиг.1, 2) выполнен в виде замкнутого кольца из графитированной углеродной токопроводящей ленты 1, содержащей участки 2 из токонепроводящей химически стойкой ткани, например, полипропиленовой. Концы углеродной ленты могут быть соединены в кольцо с поворотом соединяемых концов друг относительно друга на 180° с образованием ленты Мебиуса (фиг.4).

Длина участков углеродной ленты L (фиг.1) между участками полипропиленовой ткани обусловлена конструктивными особенностями устройства, электролизера, в котором она используется, а ширина m (фиг.2) обусловлена объемом перерабатываемого исходного раствора солей металлов.

Для фиксации углеродных нитей углеродной ленты 1, ее электроизоляции и более прочного сцепления сшивки торцы ленты заклеены фторопластовой клейкой лентой 3 и соединены с полипропиленовой тканью сшивкой полиэфирными нитями 4 (фиг.3). Расстояние n (фиг.2) между соединяемыми концами графитированной ленты составляет 0,5-1,0 см, которое необходимо и достаточно для прерывания тока на различных участках электрода.

Работа электрода по извлечению металлов из раствора их солей (электроэкстракции) заключается в следующем.

Электрод 1 принудительно протягивают через установку, содержащую электролитические ванны 5, 6, 7, 8 с заданной линейной скоростью при помощи тянущих вальцов 9. Сшивки участков электрода поэтому должны обеспечивать прочность сцепления соединяемых концов, быть гидрофобными и химически стойкими в используемых растворах.

Исходный раствор, содержащий ионы целевого металла, подают в электролитическую ванну 5 (фиг.5), в которой катодом является участок заявленного электрода 1, служащий противоэлектродом стационарного электрода (анода) ванны, выполненного из ленты углеродной графитированной ткани. При пропускании постоянного тока заданной величины в гальваностатическом режиме, значение которого ниже предельного тока извлекаемого металла в данном растворе, происходит восстановление целевых ионов до металла на катоде и обеднение исходного раствора по ионам этого металла. Далее углеродная графитированная лента 1 с извлеченным металлом поступает в ванну 6, являющуюся промывной с подготовленной проточной водой, а после выхода из ванны 6 электрод подвергают сушке горячим воздухом 10. Для продолжения процесса извлечения металла из раствора углеродную ленту 1 протягивают через электролитическую ванну 7, в которой извлекаемый металл переносится с углеродной ленты 1 на катод данной ванны, а для последующей промывки углеродную ленту протягивают через ванну 8 с подготовленной проточной водой и далее при помощи тянущих вальцов 9 снова направляют в ванну 5 с исходным раствором. Подачу электрического тока на электролитические ванны осуществляют через верхние графитовые вальцы 11 и противоэлектроды 12, которые в электролитических ваннах, кроме конечной, выполнены из углеродного графитированного материала, а в конечной электролитической ванне - из углеродного графитированного материла или из фольги металла, аналогичного извлекаемому металлу. Извлекаемый металл в конечной электролитической ванне накапливается на катодах из углеродной ткани или на пластинах металла, аналогичного извлекаемому металлу, выполненных, например, в виде кассет или рулонов.

В стационарном режиме электролиза обеднение раствора по ионам целевого металла восполняется непрерывной подачей исходного раствора.

При нахождении в растворе ионов разных металлов в первую очередь будут восстанавливаться ионы более положительных металлов. Таким образом, при заданном токовом режиме можно селективно извлекать целевые металлы.

После одной или двух, а при необходимости, и более стадий извлечения целевого металла из раствора солей, данный участок электрода попадает в ванну, в которой, как противоэлектрод, он является анодом. Металл под действием постоянного тока окисляется и переходит с него (анода) в раствор, а затем восстанавливается на катоде из фольги данного металла или из углеродной ткани.

Накопление металла на катоде может происходить сколь угодно долго, однако количество осаждаемого на заявленном электроде металла должно быть таково, чтобы не происходило его осыпания при прохождении через вращающиеся вальцы, и определяется скоростью протяжки через установку при прочих постоянных условиях.

Процесс извлечения металлов из их растворов с помощью заявленного электрода проиллюстрирован примерами.

Пример 1. Исходный раствор содержит катионы трех металлов:палладия 0,2 г/л, меди 0,5 г/л, железа 2,0 г/л. Электрод 1 заправляется в установку, содержащую, по меньшей мере, две электролитические ванны. В первую ванну подают ток, плотность которого при электроэкстракции палладия устанавливают ниже предельного значения тока для ионов в данном растворе, исходя из их концентрации. Это позволяет значительно повысить селективность извлечения, но при снижении степени извлечения данного иона до примерно 90%.

После извлечения в первой ванне ионов целевого металла обедненный раствор направляют с прерыванием струи во вторую ванну с более низким значением тока, в которой извлекается еще примерно 90% палладия.

Пример 2. Исходный раствор по примеру 1 подают в установку, увеличенную на две ванны. После экстракции палладия из раствора и последующего его переноса на накопительный электрод, раствор, содержащий катионы меди и железа, направляют в следующую электролитическую ванну, в которой происходит электрохимическое извлечение 99% меди. Затем электрод протягивают через ванну, в которой медь электрохимически переносится на накопительный электрод (катод).

Преимуществами заявленного электрода являются следующие:

- простота конструкции и эксплуатации;

- при соединении концов заявленного электрода в кольцо, особенно с поворотом на 180° в виде ленты Мебиуса вокруг продольной оси, вся поверхность электрода работает в одинаковых условиях, износ электрода идет равномерно, и срок эксплуатации его повышается;

- возможность использования на разных участках электрода различных токовых режимов;

- работа электрода в стационарном режиме.

1. Электрод для электрохимического извлечения металлов из водных растворов их солей, содержащий ленту из графитированного углеродного токопроводящего материала, отличающийся тем, что электрод содержит участки из токонепроводящей химически стойкой ткани, углеродная лента выполнена из участков, концы которых соединены участками из токонепроводящей химически стойкой ткани с образованием электрода в виде замкнутого кольца.

2. Электрод по п.1, отличающийся тем, что концы участков углеродной ленты и участки из токонепроводящей химически стойкой ткани, соединенные в замкнутое кольцо, образуют ленту Мебиуса.

3. Электрод по п.1, отличающийся тем, что в качестве токонепроводящей химически стойкой ткани использована полипропиленовая ткань.

4. Электрод по п.3, отличающийся тем, что участки из полипропиленовой ткани соединены с концами участков углеродной ленты путем сшивания.

5. Электрод по п.4, отличающийся тем, что торцы концов участков углеродной ленты, сшиваемые с участками из полипропиленовой ткани, зафиксированы фторопластовой клейкой лентой.

Изобретение относится к цветной металлургии, в частности к устройствам для подвода тока к ванне печи с солевым обогревом. .

Изобретение относится к катоду для рафинирования или выделения металлов электролизом и способу его изготовления. .

Изобретение относится к электролизерам для электролитического получения и рафинирования цветных металлов, например меди. .

Изобретение относится к аноду для выделения газа в электрохимическом процессе, содержащему подложку из титана или другого вентильного металла и отличающемуся поверхностью с низкой средней шероховатостью, составляющей от 2 до 6 микрометров по показаниям профилометра со средней шириной полосы вокруг средней линии Рс±8,8 микрометров, пики которой в целом совпадают с границами кристаллических зерен.

Изобретение относится к гидрометаллургии и может быть использовано для электролитического извлечения благородных, редких и цветных металлов из разбавленных растворов их солей.

Изобретение относится к цветной металлургии, в частности к получению магния электролитическим путем. .

Изобретение относится к электрохимии, а именно к процессам, основанным на проведении окислительно-восстановительных реакций на объемно-пористых электродах, и может быть использовано для обработки фиксажно-отбеливающих растворов с целью их повторного использования и извлечения серебра.

Изобретение относится к области электрохимического растворения металлов и сплавов и может быть использовано для растворения порошков, листового металла, отходов катализаторов, стружки проволоки и т.п.

Изобретение относится к порошковой металлургии и может быть использовано для получения порошка серебра электролитическим способом из водного раствора электролита, содержащего азотно-кислое серебро.

Изобретение относится к электролитическому извлечению металлов из растворов, в частности к извлечению благородных металлов из цианисто-щелочных элюатов, и может быть использовано на золотоизвлекательных предприятиях с цианистой и угольно-сорбционной технологией извлечения благородных металлов.

Изобретение относится к области металлургии благородных металлов, в частности к способам получения аффинированного серебра. .

Изобретение относится к гидрометаллургии благородных металлов, в частности к способам извлечения золота и серебра из различных видов полиметаллического сырья, в состав которого могут входить медь, никель, олово, свинец, нержавеющая сталь и другие металлы.

Изобретение относится к области металлургии цветных и благородных металлов, в частности к способам переработки материалов, содержащих благородные и цветные металлы, а также их халькогениды, и может быть использовано при переработке концентратов платиновых металлов.

Изобретение относится к порошковой металлургии, в частности к получению порошка серебра из водного раствора электролита. .

Изобретение относится к области гидрометаллургии благородных металлов, в частности к извлечению золота из цианидных растворов. .

Изобретение относится к области переработки жидких радиоактивных отходов, в частности, к способам извлечения из них благородных металлов. .

Изобретение относится к установкам для непрерывного электрохимического извлечения металлов из растворов их солей

Изобретение относится к устройство для извлечения металлов электролизом, в частности к устройству для извлечения золота. Оно содержит корпус с патрубками подачи и выхода электролита, аноды и титановые катоды. При этом устройство снабжено выполненными из полимерного материала перегородками, разделяющими внутреннее пространство устройства на ячейки. Корпус выполнен из полимерного материала литым, а аноды изготовлены из графита. Техническим результатом изобретения является увеличение срока службы устройства и повышение степени извлечения золота. 1 ил., 1 табл.

устройство для извлечения металлов электролизом, патент № 2346086

Читайте также: