Физические основы проводимости металлов

Обновлено: 19.05.2024

высокая проводимость металлов объясняется отсутствием запрещенной зоны между валентной зоной и зоной проводимостии наличием при комнатной температуредостаточного количества электронов в зоне проводимости.

Постоянный электрический ток, его характеристики:

Постоянный электрический ток – электрический ток, сила и направление которого с течением времени постоянны.

1). Сила тока — I, единица измерения — 1 а (Ампер).

Силой тока называется величина, равная заряду, протекающему через поперечное сечение проводника за единицу времени. I = Δq/Δt . Формула справедлива для постоянного тока, при котором сила тока и его направление не изменяются со временем. Если сила тока и его направление изменяются со временем, то такой ток называется переменным. Для переменного тока:I = lim Δq/Δt , (*) Δt —> 0 т.е. I = q’, где q’ — производная от заряда по времени.

2). Плотность тока — j, единица измерения — 1 а/м2.

Плотностью тока называется величина, равная силе тока, протекающего через единичное поперечное сечение проводника: j = I/S .

3). Электродвижущая сила источника тока — э.Д.С. ( ε ), единица измерения — 1 в (Вольт).

Э.д.с.- физическая величина, равная работе, совершаемой сторонними силами при перемещении по электрической цепи единичного положительного заряда: ε = Аст./q .

4). Сопротивление проводника — r, единица измерения — 1 Ом.

Под действием электрического поля в вакууме свободные заряды двигались бы ускоренно. В веществе они движутся в среднем равномерно, т.к. часть энергии отдают частицам вещества при столкновениях. Теория утверждает, что энергия упорядоченного движения зарядов рассеивается на искажениях кристаллической решетки. Исходя из природы электрического сопротивления, следует, что R = ρ*l/S , где l — длина проводника, S — площадь поперечного сечения, ρ — коэффициент пропорциональности, названный удельным сопротивлением материала.

5). Напряжение — U , единица измерения — 1 В.

Напряжение — физическая величина, равная работе, совершаемой сторонними и электрическими силами при перемещении единичного положительного заряда. U = (Aст.+ Аэл.)/q .

Условия, необходимые для возникновения тока.

Под электрическим током понимается упорядоченный перенос или направленное движение заряженных частиц. Электрический ток может течь в твердых телах, жидкостях и газах. Для возникновения тока необходыми следующие условия: - наличие свободных электронов - наличие электрического поля, которое вызывает упорядоченное движение

Электродвижущая сила

Это скалярная физическая величина, характеризующая работу сторонних (непотенциальных) сил в источниках постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль контура.

З акон Ома для участка цепи и для замкнутой цепи. для полной цепи (и т.е. замкнутой):

где: — ЭДС источника напряжения(В), — сила тока в цепи (А), — сопротивление всех внешних элементов цепи(Ом) , — внутреннее сопротивление источника напряжения(Ом)

для участка цепи Сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению данного участка цепи.

2. Основные положения молекулярно-кинетической теории.

1) Все тела остоят из мельчайших частиц – атомов, молекул, в состав которых входят еще более мелкие элементарные частицы (электроны, протоны, нейтроны). Строение любого вещества дискретно (прерывисто).

2) Атомы и молекулы вещества всегда находятся в непрерывном хаотическом движении.

3) Между частицами любого вещества существуют силы взимодействия – притяжения и отталкивания. Природа этих сил электромагнитная.

Эти положения подтверждаются явлениями диффузии, броуновского движения, особенностями строения жидкостей, твердых тел и другими явлениями.

Масса и размеры молекул.

Многие опыты показывают, что размер молекулы очень мал. Линейный размер молекулы или атома можно найти различными способами. Например, с помощью электронного микроскопа, получены фотографии некоторых крупных молекул, а с помощью ионного проектора (ионного микроскопа) можно не только изучить строение кристаллов, но определить расстояние между отдельными атомами в молекуле. Используя достижения современной экспериментальной техники, удалось определить линейные размеры простых атомов и молекул, которые составляют около 10-8 см. Линейные размеры сложных атомов и молекул намного больше. Например, размер молекулы белка составляет 43*10-8 см. Для характеристики атомов используют представление об атомных радиусах, которые дают возможность приближённо оценить межатомные расстояния в молекулах, жидкостях или твёрдых телах, так как атомы по своим размерам не имеют чётких границ. То есть атомный радиус – это сфера, в которой заключена основная часть электронной плотности атома (не менее 90…95%). Размер молекулы настолько мал, что представить его можно только с помощью сравнений. Например, молекула воды во столько раз меньше крупного яблока, во сколько раз яблоко меньше земного шара.

Количество вещества. Моль вещества.

Количество вещества – это физическая величина, характеризующая относительное число молекул и атомов в теле. Количество вещества равно отношению числа молекул (атомов) в данном веществе к числу атомов в 0,012 кг углерода (к постоянной Авогадро) или отношению массы вещества к его молекулярной массе. ν = N / NA = m|M Единица количества вещества - моль.

Моль равен количеству вещества системы, в которой содержится столько же молекул, сколько содержится атомов в 0,012 кг углерода С12. То есть, если у нас есть система с каким-либо веществом, и в этой системе столько же молекул этого вещества, сколько атомов в 0,012 кг углерода, то мы можем сказать, что в этой системе у нас 1 моль вещества.

Постоянная Авогадро

ν = N / NA где ν – количество вещества, N – количество молекул в данном теле, NA – это постоянная Авогадро. Постоянная Авогадро – это количество молекул или атомов в 1 моле вещества. Эта постоянная получила своё название в честь итальянского химика и физика Амедео Авогадро

В 1 моле любого вещества содержится одинаковое количество частиц. NA = 6,02 * 10 23 моль -1

Физические основы проводимости металлов. Постоянный ток. Его характеристики. Закон Ома для участка цепи. Электродвижущая сила. Закон Ома для полной цепи.

1. Металлы проводят электрический ток. Почему? При образовании металла его атомы начинают взаимодействовать друг с другом. Благодаря этому взаимодействию электроны внешних оболочек /т.к. они находятся далеко от ядра атома и связь с ним не очень сильная/ полностью утрачивают связи со своим атомом и становятся свободными. Они могут перемещаться по всему металлу в любом направлении. Именно с их помощью можно создать электрический ток, т.е. заставить заряды служить людям: электрический ток освещает дома, учебные заведения, заставляет работать станки…

2. При движении заряженных частиц в проводнике происходит перенос заряда с одного места в другое. Однако если заряженные частицы совершают беспорядоченное тепловое движение, то переноса заряда не происходит. Электрический заряд будет перемещаться через поперечное сечение проводника лишь в том случае, если электроны движутся упорядоченно. В этом случае в проводнике устанавливается электрический ток.

Электрическим током называется упорядоченное (направленное) движение заряженных частиц. Электрический ток имеет определенное направление. За направление тока принимают направление движения положительно заряженных частиц. Движение частиц в проводнике мы не видим. О наличии в нем тока можем судить по тем явлениям, которые его сопровождают:

1) Проводник по которому течет ток нагревается.

2) Электрический ток может изменять химический состав проводника (выделяемые вещества из растворов)

3) Ток оказывает магнитное действие.

3. Основной количественной характеристикой электрического тока является сила тока.

Сила тока равна отношению заряда, переносимого через поперечное сечение проводника за интервал времени Δ t, к этому интервалу времени.

Если сила тока со временем не меняется, то ток называют постоянным.

Сила тока зависит от величины заряда, переносимого каждой частицей, концентрацией частиц, скорости их направленного движения и площади поперечного сечения проводника:

где q0 – элементарный заряд [Кл]

n – концентрация частиц [м -3 ]

υ – скорость частиц [м/с]

S – площадь поперечного сечения проводника [м 2 ]

Силу тока измеряют амперметром, который включается в цепь последовательно. Электрический ток характеризуется плотностью – это отношение силы тока к площади поперечного сечения проводника

j = , она характеризует быстроту переноса заряда.

Условия, необходимые для существования электрического тока:

а) для возникновения и существования постоянного электрического тока в веществе необходимо наличие свободных заряженных частиц

б) для создания и поддержания упорядоченного движения заряженных частиц необходима сила, действующая на них в определенном направлении

в) необходима разность потенциалов между концами проводника. Если она не меняется о времени, то в проводнике устанавливается постоянный электрический ток.

4. Чем больше разность потенциалов, тем больше сила тока. Следовательно, сила тока будет зависеть от разности потенциалов или напряжения. Эту зависимость установил немецкий ученый Георг Ом, поэтому она носит название закона Ома:

Сила тока в цепи прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению:

Эту зависимость выражают вольтамперной характеристикой. Ее строят, измеряя силу тока в цепи при различных напряжениях.

5. Мы знаем, что работа сил электрического поля при перемещении заряда по замкнутому контуру равно 0. Это значит, что если в замкнутой цепи на заряды действуют только одни электрические силы, то работу с помощью тока получить нельзя. Следовательно, кроме электрических сил должны существовать еще силы, которые называются сторонними.

ЭДС в замкнутом контуре равна отношению работы сторонних сил при перемещении единичного положительного заряда к его величине:

6. Источник тока характеризуется сопротивлением, которое называется внутренним (r). А сопротивление цепи называется внешним (R)

E= U+ I r или т.к. U = I R

E= I (R+r) I = - закон Ома для полной цепи

© 2014-2022 — Студопедия.Нет — Информационный студенческий ресурс. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав (0.011)

Физическая природа электропроводности металлов.

Основные сведения о МЭТ. Материалы- это исходные вещества для производства продукции или вспомогательные вещества для проведения производственных процессов.Материалы делятся на:Сырье - это материалы, которые подлежат дальнейшей обработке (древесина, газ, руда).Полуфабрикаты - это материалы уже обработанные, но которые должны еще пройти стадии обработки для того чтобы стать готовым изделием.По общей специализации материалы делятся на: проводники, полупроводники, диэлектрики, магнитные материалы

Классификация материалов.

Материалы используемые в электронной технике, подразделяют на 1) электротехнические,
2) конструкционные, 3) специального назначения. Электротехническими называют материалы характеризуемые определенными свойствами по отношению к электромагнитному полю и применяемые в технике с учетом этих свойств. По поведению в магнитном поле электротехнические материалы подразделяют на сильномагнитные и слабомагнитные. Большинство этих материалов можно отнести к слабомагнитным. По поведению в электрическом поле материалы подразделяют на
1.Проводниковые– материалы основными свойствами которых является сильно выраженная электропроводность. 2.Полупроводниковые – материалы по удельной проводимости, являющиеся промежуточными между проводниковыми и диэлектрическими материалами отличительными свойствами которых является сильная зависимость удельной проводимости от концентрации примесей и дефектов, и их вида, а также от внешних энергетических воздействий. 3. Диэлектрические– материалы основными электрическими свойствами которых является низкая удельная электропроводность, а также способность к поляризации и в которых может существовать электростатическое поле.

Виды химической связи.

1.Ковалентная связь – химическая связь, образующаяся за счет обобществления электронов соседних атомов в общую электронную пару. При обобществлении электронов, происходит втягивание электронных облаков пространства между ядрами, появление состояния с повышенной плотностью электронного заряда в межъядерном пространстве и приводит к возникновению силы притяжения. Молекулы с ковалентной связью бывают полярными и неполярными. Молекулы, в которых центры полож. и отриц. совпадают называются неполярными, в которых не совпадают, называются полярными.

2.Ионная связь – это химическая связь, возникающая вследствие перехода электрона от металлического атома к металлоидному, и электростатического притяжения, разноименно заряженных ионов друг к другу. Этот вид связи реализуется в ионных кристаллах к которым относятся соли, оксиды, основания.

3.Металлическая связь – это химическая связь характерная для металлов, которая основывается на взаимопритяжении, положительно заряженного остова, образуемого кристаллической решеткой и электронного газа, имеющего отрицательный заряд и образуемого из свободных электронов. Притяжение между положительно заряженным остовом и электронным газом обуславливает целостность металлов. Специфика металлической связи заключается в том, что в обобществлении электронов, участвуют все атомы в кристаллах и обобществленные электроны, не локализуются около своих атомов, а свободно перемещаются вдоль всей решетки, образуя электронный газ.

4. Молекулярная связь или Ван дер Вальса –эта химическая связь образуется за счет межмолекулярного притяжения, при сопоставлении движения валентных электронов в соседних молекулах, при этом в любой момент времени, электроны должны быть максимально удалены друг от друга и максимально приближенны к положительным ядрам, тогда сила притяжения валентных электронов ядром соседней молекулы оказывается сильнее, силы взаимного отталкивания электронных оболочек этих молекул.

Особенности строения твердых тел.

Большинство материалов электронной техники представляют собой твердые тела, основная масса которых имеет кристаллическую решетку, обуславливающую периодическое электростатическое поле. Периодичность структуры является характерным свойством кристаллов. В периодической решетке всегда можно выделить элементарную ячейку, транслируя которую в пространстве легко получить представление о структуре всего кристалла. Кристаллические тела могут быть в виде отдельных кристаллов, монокристаллов или состоять из совокупности большого числа меньших кристалликов, зёрен. В случае поликристалла в пределах каждого зерна, атомы расположены периодически, но при переходе от одного зерна к другому, на границах раздела, регулярное расположение частиц нарушается. Кристаллов с идеальным строением не существует, происходят отклонения из-за дефектов. Их условно подразделяют на динамические или временные, и статические или постоянные. Динамические дефекты возникают при механических, тепловых или электромагнитных воздействиях на кристалл при прохождении через него потока частиц высокой энергии. Среди статических дефектов различают атомные или точечные, протяженные дефекты. Атомные могут проявляться в виде незанятых узлов решеток, называемых вакансиями в виде смещения атома из узла в междоузлие, в виде внедрения в решетку чужеродных атомов иди ионов. К протяженным дефектам относятся дислокации, то есть смещение, поры, трещины, границы зёрен и др. Некоторые твердые вещества обладают способностью образовывать не одну, а две или более кристаллические структуры, устойчивые при различных температурах, называют полиморфизмом.

Зонная теория твердого тела.

Зонная теория ТТ – это теория валентных электронов, движущихся в потенциальном периодическом поле в кристаллической решетке. Отдельные атомы могут иметь отдельный энергетический спектр, то есть электроны могут занимать лишь определенные энергетические уровни. Часть этих уровней, заполнена при нормальном невозбужденном состоянии атома, на других уровнях атомы могут находится лишь тогда, когда атом подвергается внешнему энергетическому воздействию, то есть когда он возбужден. Энергетическая диаграмма атома –эта диаграмма показывает энергетическое состояние валентных электронов в атоме и самого атома. (E – энергия валентных электронов, E0 – основной уровень энергии атома характеризующий минимально возможное значение атома, Ei­ – энергия ионизации) Возбужденное состояние атома – это такое состояние когда атом обладает энергией, большей по сравнению с минимально возможной. При сближении атомов, происходит перекрытие электронных оболочек, а это в свою очередь существенно изменяет характер движения электронов. Благодаря перекрытию оболочек, электроны могут без изменения энергии, посредством обмена, переходить от одного атома к другому. То есть перемещаться по кристаллу и становиться обобществленным, вследствие этого, дискретные энергетические уровни изолированного атома, расщепляются в энергетические зоны. Разрешенные энергетические зоны разделены запрещенными интервалами энергии, каждая из запрещенных энергетических зон, состоит из множества энергетических уровней, их количество определяется числом атомов, составляющих твердое тело, нижнюю заполненную валентными электронами зону, называют валентной, она соответствует энергетическим уровням валентных электронов. Валентную зону называют зоной проводимости, дно этой зоны соответствует энергии ионизации атомов, составляющих твердое тело. В запрещенной зоне, уровни энергии отсутствуют, характер энергетического спектра у проводников, полупроводников, диэлектриков существенно различаются. В проводниках валентная зона перекрывается зоной проводимости, в полупроводниках и диэлектриках, зоны проводимости и валентная зона разделены некоторым энергетическим зазором называемым запрещенной зоной. К полупроводникам относят вещества, у которых запрещенная зона меньше 3-ех ЭВ. С более широкой, относят к диэлектрикам. У реальных диэлектриков ширина ЗЗ может достигать 10 ЭВ.

В полупроводниках и диэлектриках при низких температурах, все электроны находятся в валентной зоне, а зона проводимости абсолютно свободна. Для проявления электропроводности, электроны необходимо перевести из валентной зоны в зону проводимости. Энергии электрического поля недостаточно, для осуществления такого перехода, требуется более сильное энергетическое воздействие. При переходе электронов из валентной зоны в зону проводимости в валентной зоне появляются энергетические вакансии, называемые дырками.

Общие свойства проводников.

К твердым проводникам относят металлы, сплавы и модификации углерода. К жидким проводникам относят расплавы металлов и электролиты. Все проводники делятся на два рода. Механизм протекания токов по металлам обусловлен движением электронов (электронная проводимость, проводники I рода). К проводникам II рода относят растворы кислот, щелочей, солей и ионные растворы (перенос заряда через ионы). Газы в обычных состояниях проводниками не являются, однако в результате ионизации в них может проявляться проводимость. Предельным случаем является плазма – сильно ионизированный газ с квазиравновесием положительных и отрицательных зарядов. Плазма очень хороший проводник – равновесная проводящая среда. В металлах проводимость электронная, электроны имеют маленькую массу (9,1 10 -31 кг)и хорошую подвижность, поэтому они не только переносят энергию, но и выравнивают скорости движения атомов и молекул по объему, сравнивая температуру по образцу. Следовательно, все металлы имеют хорошую теплопроводность. При

Физическая природа электропроводности металлов.

В основу классической электронной теории металлов положено представление об электронном газе, состоящем из свободных коллективизированных электронах. Приложение внешнего напряжения, приводит к увеличению количества электронов в направлении действующих сил поля, то есть, электроны получают некоторую добавочную скорость направленных движений, благодаря чему и возникает электрический ток. Плотность тока в проводнике равна ,l – средняя длина свободного пробега электронов, m0 масса электрона, U – средняя плотность теплового движения. Электроны в металле переносят не только электрический заряд, но и выравнивают в нем температуру. Обеспечивая высокую теплопроводность. Молекулярная теплоемкость, кристаллической решетки любого ТТ составляет 3R, где R- универсальная газовая постоянная. Квантовая статистика базируется на принципе Паули – согласно которому в каждом энергетическом состоянии в атоме может находится только один электрон. В квантовой теории вероятность заполнения энергетических состояний электронами определяется функцией Фирни

F – энергия Фирни, k- постоянная Больцмана, T- температура. Энергия Фирни определяет максимальное значение энергии, которую может иметь электрон в металле при температуре абсолютного нуля, эту энергию называют так же уровнем Фирни. Соответствующий ей потенциал называется электрохимическим потенциалом

Конденсаторы и их соединение. Энергия электрического поля.

Конденсаторы это устройства, служащие для накопления электрических зарядов и электрической энергии, электроемкость которых не зависит от внешних условий, то есть имеет определенную величину.

Конденсатором называется система из двух проводников (обкладок) разделенных слоем диэлектрика, толщина которого мала по сравнению с размерами проводника.

Электроемкость конденсатора определяется формулами: , .

При параллельном соединении конденсаторов общая электроемкость определяется по формуле: .


При последовательном соединении конденсаторов общая электроемкость определяется по формуле:

Энергия электрического поля определяется по формулам: , , .

Вопросы для самопроверки:

Какие вещества называются проводниками?

Что происходит с проводником, если его поместить в электрическое поле?

Что называется электростатической индукцией?

Какие вещества называются диэлектриками?

На чем основана электростатическая защита?

Какие диэлектрики называются полярными?

Какие диэлектрики называются неполярными? Что происходит с диэлектриком, если его поместить в электрическое поле?

Какая физическая величина называется диэлектрической проницаемостью среды?

Какая физическая величина называется электроемкостью проводника?

Чем измеряется электроемкостью проводника?

Чем определяется электроемкостью проводника?

От чего зависит электроемкость проводника?

От чего не зависит электроемкость проводника?

Чему равна электроемкость шара?

Какое устройство называется конденсатором?

Что называется конденсатором?

Как найти емкость конденсатора?

Чума равна общая емкость конденсаторов при их последовательном соединении?

Чему равна общая емкость конденсаторов при их параллельном соединении?

Чему равна энергия электрического поля конденсатора?

Тема: Физические основы проводимости металлов. Постоянный электрический ток, его характеристики. Условия, необходимые для возникновения тока.

Упорядоченное движение электрических зарядов называется электрическим током. В металлах это упорядоченное движение электронов; в электролитах – ионов: в газах – электронов и ионов.

За направление электрического тока принято направление, в котором, упорядоченно движутся положительные заряды.

Условия необходимые для возникновения и существования электрического тока:

1. Наличие свободных носителей тока – заряженных частиц, способных перемещаться упорядоченно;

2. Напряженность электрического поля должна быть отлична от нуля и не изменяется с течением времени;

3. Цепь постоянного тока проводимости должна быть замкнута;

4. На свободное электрические заряды, помимо кулоновских сил, должны действовать не электростатические силы, называемые сторонними силами. Сторонние силы могут быть созданы в источнике тока.

Характеристики электрического тока: сила тока, напряжение и сопротивление.


Силой тока называется скалярная величина, равная отношению заряда, прошедшего сквозь площадь поперечного сечения проводника за промежуток времени, к этому промежутку времени. Постоянным называется электрический ток, сила и направление которого, сохраняется с течением времени неизменным. , где I – сила тока, А; q – заряд, кл; t – время прохождения заряда через поперечное сечение проводника, с.

Сила тока измеряется амперметром, который подсоединяется в цепь последовательно.

Напряжение на участке цепи – физическая величина, определяемая работой, совершаемой суммарным полем кулоновских и сторонних сил при перемещении единичного положительного заряда. U – напряжение, В.

Напряжение измеряется вольтметром, который подсоединяется в цепь параллельно.

Электрическое сопротивление – это свойство проводника, характеризующее противодействие электрическому току в цепи.

Электрическое сопротивление обозначается буквой R, измеряется в Омах (Ом)

Что называется электрическим током?

Что принято за направление электрического тока?

Какие условия необходимы для возникновения и существования электрического тока?

Электропроводность металлов

Электропроводность металлов

Электропроводность металлов и сплавов – физическое свойство, которое учитывается при производстве разных видов изделий. Например, для изготовления электрических кабелей, микросхем используют металлы с высокими показателями электропроводности.

Данный параметр зависит от факторов окружающей среды: температуры, давления, агрегатного состояния, наличия магнитных полей и т. д. Если говорить о чистых металлах и влиянии температуры на их электропроводность, то с ростом она падает. Подробнее о том, что собой представляет электропроводность металлов, вы узнаете из нашего материала.

Природа электропроводности металлов

Электропроводностью называют способность тела, вещества проводить ток. Кроме того, этим термином обозначается физическая величина, которая численно характеризует данную способность. Электропроводность металла определяется числом свободных ионов в проводнике – их движение и является электрическим током. Данный показатель исчисляется в сименсах, а в международной системе единиц для его обозначения используется буква «S».

В зависимости от того, какой электропроводностью обладают металлы и иные вещества, среди них выделяют проводники, диэлектрики и полупроводники. Правда, между данными группами практически не существует четкого разграничения.

Чем обусловлена высокая электропроводность металлов-проводников? Они имеют большое количество свободных ионов. Среди веществ этой группы выделяют два рода, исходя из физической природы протекания тока. К первому относятся металлы с электронной проводимостью, по которым ток проходит благодаря движению свободных электронов.

Ко второму причисляют растворы кислот, щелочей, солей или электролиты, имеющие ионную проводимость. Иными словами, здесь интересующий нас процесс связан с движением положительных и отрицательных ионов. Уровень электропроводности проводников превышает 106(Ом·м)-1.

VT-metall предлагает услуги:

Лазерная резка металла Гибка металла Порошковая покраска металла Сварочные работы

Диэлектрики обладают малым числом свободных ионов, поэтому отличаются низкой электропроводностью, практически не проводят ток. Такими материалами являются дерево, смолы, пластмассы, стекло, пр. Для них данный показатель составляет менее 106(Ом·м)-1.

По своим проводящим свойствам полупроводники занимают промежуточное положение между материалами описанных выше групп. К ним относятся германий, кремний, селен, прочие соединения, получаемые искусственно.

Природа электропроводности металлов

Существует зависимость электропроводности металлов и иных веществ от температуры, но она является индивидуальной для каждого материала. Повышение степени нагрева металлов приводит к сокращению времени свободного пробега электронов. Увеличение температуры влечет за собой возрастание тепловых колебаний кристаллической решетки, на которой рассеиваются электроны, что вызывает уменьшение электропроводности.

Полупроводникам свойственна другая зависимость электропроводности металлов от температуры: ее повышение провоцирует рост электропроводности, поскольку увеличивается число электронов проводимости и положительных носителей заряда. У диэлектриков электропроводность тоже может возрастать, однако для этого требуется очень высокое электрическое напряжение.

Металлы способны проводить ток, поскольку воздействие электромагнитного поля вызывает потерю связи между электроном и атомом из-за высокой степени ускорения.

Электрическое сопротивление металлов

Электрическое сопротивление является частью закона Ома и исчисляется в омах (Ом). Нужно понимать, что электрическое и удельное сопротивление являются разными явлениями. Если первое представляет собой свойство объекта, то второе характеризует материал.

Так, электрическое сопротивление резистора зависит от формы и удельного сопротивления материала, использованного для изготовления данного элемента электрической цепи.

Электрическое сопротивление металлов

Допустим, проволочный резистор состоит из длинной тонкой проволоки и обладает более высоким сопротивлением, чем аналогичный элемент, но выполненный из короткой и толстой проволоки. При этом оба они сделаны из одного металла.

Если сравнить два резистора из проволоки одинаковой длины и диаметра, то большим электрическим сопротивлением будет обладать тот, который состоит из материала с высоким удельным сопротивлением. А его аналогу из материала с низким удельным сопротивлением будет свойственно меньшее электрическое сопротивление.

В этом случае работает тот же принцип, что и в гидравлической системе, прокачивающей воду по трубам:

  • Чем больше длина трубы и меньше ее толщина, тем с более высоким сопротивлением сталкивается жидкость.
  • Вода будет испытывать на себе меньшее сопротивление в пустой трубе, чем в заполненной песком.

Под удельным сопротивлением понимают способность материала препятствовать прохождению электрического тока. В физике существует и обратная величина, известная как проводимость. Она выглядит таким образом:

Σ = 1/ρ, где ρ – удельное сопротивление вещества.

Электропроводность металлов и других веществ зависит от свойств носителей зарядов. В металлах присутствуют свободные электроны – на внешней оболочке их число доходит до трех. Во время химических реакций с элементами из правой части таблицы Менделеева атом металла отдает их. С электропроводностью чистых металлов все несколько иначе. В их кристаллической структуре эти наружные электроны общие и переносят заряд под действием электрического поля.

В случае с растворами в качестве носителей заряда выступают ионы.

Степень электропроводности разных металлов и сплавов

Развитием электронной теории электропроводности металлов занимался немецкий физик Пауль Друде. Именно благодаря его исследованиям стало известно о сопротивлении, наблюдаемом при прохождении электрического тока через проводник. В результате удалось разделить вещества на группы, исходя из степени их проводимости.

Степень электропроводности разных металлов и сплавов

Данная информация необходима, например, чтобы выбрать наиболее подходящий металл для производства кабеля, обладающего определенным набором свойств. Ошибка в этом случае чревата перегревом под действием тока избыточного напряжения и последующим возгоранием.

Серебро – это металл, обладающий самой высокой электропроводностью. При +20 °C этот показатель равен 63,3×104 см-1. Тем не менее, производство серебряной проводки является нерентабельным, поскольку речь идет о достаточно редком металле. В большинстве случаев он идет на изготовление ювелирных изделий, украшений, монет.

Среди неблагородных цветных металлов самая высокая электропроводность характеризует медь – она составляет 57×104 см-1 при +20 °C. Помимо этого, медь хорошо справляется с постоянными электрическими нагрузками, долговечна, надежна, имеет высокую температуру плавления, поэтому может долго работать в нагретом состоянии. Все названные свойства позволяют активно применять данный металл для бытовых целей и на производстве.

Не реже меди используется алюминий, ведь по электропроводности он уступает только серебру, меди и золоту. Его температура плавления практически в два раза ниже, чем у меди, из-за чего алюминий не может выдерживать предельные нагрузки. По этой причине его применяют в сетях с невысоким напряжением. Узнать электропроводность остальных металлов можно в соответствующей таблице.

По проводимости любой сплав значительно уступает чистому металлу, что объясняется слиянием структурной сетки, вызывающим нарушение нормального функционирования электронов. Так, медные провода изготавливают только из металла с максимальной долей примесей 0,1 % или даже 0,05 %, если речь идет об отдельных разновидностях кабеля.

Приведенные показатели – это удельная электропроводность металлов, которая представляет собой отношение плотности тока к величине электрического поля в проводнике.

Опасность металлов с высокой электропроводностью

Щелочные металлы имеют крайне высокую электропроводность, объясняют этот факт тем, что в них электроны практические не привязаны к ядру и могут быть без труда выстроены в требуемой последовательности. Еще одна особенность этих металлов состоит в низкой температуре плавления в сочетании со значительной химической активностью, что обычно не позволяет использовать их в качестве материалов для кабелей.

Находясь в незащищенном виде, металлы с высокой электропроводностью несут в себе большую опасность. Прикосновение к оголенным проводам вызывает электрический ожог, разряд воздействует на внутренние органы, что нередко становится причиной мгновенной смерти человека.

Поэтому металл закрывают специальными изоляционными материалами, которые могут быть жидкими, твердыми, газообразными – конкретный тип подбирается в соответствии со сферой использования изделия. Вне зависимости от агрегатного состояния защиты она призвана изолировать электрический ток в цепи, чтобы не допустить его воздействия на окружающую среду.

Зависимость электропроводности металлов от факторов внешней среды

Проводимость не является постоянной величиной. В таблицах приведены сведения, характерные для нормальных условий или при температуре +20 °С. В реальной жизни сложно обеспечить идеальные условия для работы цепи. Удельное сопротивление, а значит, и проводимость, определяется такими характеристиками:

  • температурой;
  • давлением;
  • наличием магнитных полей;
  • светом;
  • агрегатным состоянием вещества.

Изменения интересующего нас параметра зависят от условий среды и свойств конкретного материала. Электропроводность ферромагнетиков, в число которых входят железо и никель, увеличивается при совпадении направления тока с направлением силовых линий магнитного поля. Зависимость электропроводности от теплопроводности металлов и окружающей температуры практически линейная, даже есть понятие температурного коэффициента сопротивления – данную величину можно уточнить в таблицах.

Правда, направление зависимости определяется конкретным веществом: у металлов оно при увеличении температуры повышается, у редкоземельных элементов и растворов электролитов увеличивается в пределах одного агрегатного состояния.

Полупроводники характеризуются гиперболической и обратной зависимостью электропроводности от температуры: рост степени нагрева приводит к повышению электропроводности металлов. Данная особенность качественно отличает проводники от полупроводников. Зависимость ρ проводников от температуры выглядит следующим образом:

Зависимость электропроводности металлов от факторов внешней среды

На графике отображено удельное сопротивление меди, платины, железа. Некоторые металлы характеризуются иначе: ртуть при понижении температуры до 4°K становится сверхпроводимой, почти полностью теряя удельное сопротивление.

У полупроводников зависимость будет представлена так:

Зависимость полупроводников

Когда металл переходит в жидкое агрегатное состояние, его ρ повышается, а дальнейшее изменение свойств может быть разным. Так, висмут в расплавленном виде имеет более низкое удельное сопротивление, чем при комнатной температуре, а у жидкой меди оно повышается в десять раз. Никелю свойственно выходить из линейного графика уже при достижении температуры +400 °C, но далее ρ падает.

Температурная зависимость вольфрама так высока, что приводит к перегоранию ламп накаливания: ток нагревает спираль, из-за чего ее сопротивление многократно возрастает.

Удельное сопротивление сплавов зависит от задействованной при производстве технологии. Данное свойство простой механической смеси определяется как средний показатель ее компонентов. Тогда как для сплава замещения оно окажется иным и обычно отличается в большую сторону.

Рекомендуем статьи

Стоит пояснить, что под сплавом замещения понимают такой, в котором несколько элементов формируют одну кристаллическую решетку. Данная особенность прослеживается у нихрома, используемого для изготовления спиралей электроплит. Удельное сопротивление, а значит, и электропроводность этого металла совпадает с показателем проводников, а при подключении к сети он нагревается до красноты.

Выше были представлены только основные теории, касающиеся физических свойств металлов, а именно электропроводности, сопротивления. Например, не была затронута квантовая теория проводимости Зоммерфельда. Этого краткого знакомства вполне достаточно, чтобы понять, что сопротивление является сложным и комплексным понятием, которое невозможно полностью разобрать на основе простейшего закона Ома.

Почему следует обращаться именно к нам

Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.

Наши производственные мощности позволяют обрабатывать различные материалы:

  • цветные металлы;
  • чугун;
  • нержавеющую сталь.

При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.

Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.

Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.

Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.

Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.

Читайте также: