Физические свойства металлов плотность

Обновлено: 13.05.2024

Плотность. Это - одна из важнейших характеристик металлов и сплавов. по плотности металлы делятся на следующие группы:

легкие (плотность не более 5 г/см 3 ) - магний, алюминий, титан и др.:

тяжелые - (плотность от 5 до 10 г/см 3 ) - железо, никель, медь, цинк, олово и др. (это наиболее обширная группа);

очень тяжелые (плотность более 10 г/см 3 ) - молибден, вольфрам, золото, свинец и др.

В таблице 2 приведен значения плотности металлов. (Это и последующие таблицы характеризуют свойства тех металлов, которые составляют основу сплавов для художественного литья).

Таблица 2. Плотность металла.

Металл Плотность г/см 3 Металл Плотность г/см 3
Магний 1,74 Железо 7,87
Алюминий 2,70 Медь 8,94
Титан 4,50 Серебро 10,50
Цинк 7,14 Свинец 11,34
Олово 7,29 Золото 19,32

Температура плавления. В зависимости от температуры плавления металл подразделяют на следующие группы:

легкоплавкие (температура плавления не превышает 600 o С) - цинк, олово, свинец, висмут и др.;

среднеплавкие (от 600 o С до 1600 o С) - к ним относятся почти половина металлов, в том числе магний, алюминий, железо, никель, медь, золото;

тугоплавкие ( более 1600 o С) - вольфрам, молибден, титан, хром и др.

Ртуть относится к жидкостям.

При изготовлении художественных отливок температура плавления металла или сплава определяет выбор плавильного агрегата и огнеупорного формовочного материала. При введении в металл добавок температура плавления, как правило, понижается.

Таблица 3. Температура плавления и кипения металлов.

Металл Температура, o С Металл Температура, o С
плавления кипения плавления кипения
Олово 232 2600 Серебро 960 2180
Свинец 327 1750 Золото 1063 2660
Цинк 420 907 Медь 1083 2580
Магний 650 1100 Железо 1539 2900
Алюминий 660 2400 Титан 1680 3300

Удельная теплоемкость. Это количество энергии, необходимое для повышения температуры единицы массы на один градус. Удельная теплоемкость уменьшается с увеличением порядкового номера элемента в таблице Менделеева. Зависимость удельной теплоемкости элемента в твердом состоянии от атомной массы описывается приближенно законом Дюлонга и Пти:

где, ma - атомная масса; cm - удельная теплоемкость (Дж/кг * o С).

В таблице 4 приведены значения удельной теплоемкости некоторых металлов.

Таблица 4. Удельная теплоемкость металлов.

Металл Температура, o С Удельная теплоемкость, Дж/кг * o С Металл Температура, o С Удельная теплоемкость, Дж/кг * o С
Магний 0-100
225
1,03
1,18
Цинк 0
св.420
0,35
0,51
Титан 0-100
440
0,47
068
Серебро 0
427
0,23
0,25
Медь 97,5
Св.1100
0,40
0,55
Олово 0
240
0,22
0,27
Алюминий 0-100
660
0,87
1,29
Золото 0-100
1100
0,12
0,15
Железо 0-100
1550
0,46
1,05
Свинец 0
300
0,12
0,14

Скрытая теплота плавления металлов. Это характеристика (таблица 5 ) наряду с удельной теплоемкости металлов в значительной степени определяет необходимую мощность плавильного агрегата. Для расплавления легкоплавкого металла иногда требуется больше тепловой энергии, чем для тугоплавкого. Например, для нагревания меди от 20 до 1133 o С потребуется в полтора раза меньше тепловой энергии, чем для нагревания такого же количества алюминия от 20 до 710 o C.

Таблица 5. Скрытая теплота металла

Металл Скрытая теплота
плавления, Дж/кг
Металл Скрытая теплота
плавления, Дж/кг
Свинец 23,2 Медь 203,7
Олово 60,9 Железо 277,2
Золото 63,0 Магний 369,6
Цинк 101,6 Алюминий 400,7
Серебро 105,0 Титан 436,8

Теплоемкость. Теплоемкость характеризует передачу тепловой энергии от оной части тела к другой, а точнее, молекулярной перенос теплоты в сплошной среде, обусловленный наличием градиента температуры. (таблица 6)

Таблица 6. Коэффициент теплопроводности металлов при 20 o С

Металл Коэффициент теплопроводности, кВт/м * o С Металл Коэффициент теплопроводности, кВт/м * o С
Серебро 0,410 Цинк 0,110
Медь 0,386 Олово 0,065
Золото 0,294 Железо 0,067
Алюминий 0,210 Свинец 0,035
Магний 0,144 Титан 0,016

Качество художественного литья тесно связано с теплопроводностью металла. В процессе выплавке важно не только обеспечить достаточно высокую температуру металла, но и добиться равномерного распределения температуры во всем объеме жидкой ванны. Чем выше теплопроводность, тем равномернее распределена температура. При электродуговой плавке, несмотря на высокую теплопроводность большинства металлов, перепад температуры по сечению ванны достигает 70-80 o С, а для металла с низкой теплопроводностью этот перепад может достигать 200 o С и более.

Благоприятные условия для выравнивания температуры создаются при индукционной плавке.

Коэффициент теплового расширения. Эта величина, характеризующая изменение размеров образца длиной 1 м при нагревании на 1 o С, имеет важное значение при эмальерных работах (таблица 7)

Коэффициенты теплового расширения металлической основы и эмали должны иметь по возможности близкие значения, чтобы после обжига эмаль не растрескивалась. Большинство эмалей, представляющих твердый коэффициент оксидов кремния и других элементов, имеют низкий коэффициент теплового расширения. Как показала практика, эмали очень хорошо держаться на железе, золоте, менее прочно - на меди и серебре. Можно полагать, что титан - весьма подходящий материал для эмалирования.

Таблица 7. Коэффициент теплового расширения металлов.

Металл Температура, o С α*10 -8 o С -1 Металл Температура, o С α*10 -8 o С -1
Титан 27
727
8,3
12,8
Алюминий 27
627
23,3
37,8
Железо 27
727
12,0
14,7
Олово (α- модификация) 27 16,0
Золото 27
727
14,0
17,7
Олово (β-модификации) 27 31,4
Медь 27
727
16,7
21,8
Магний 27 25,8
Серебро 27
727
18,9
25,6
Свинец 27
277
28,5
33,3
Цинк 27
377
63,5
50,3
- - -

Отражательная способность. Это - способность металла отражать световые волны определенной длины, которая воспринимает человеческим глазом как цвет (таблице 8). Цвета металла указаны в таблице 9.

Таблица 8. Соответствие между цветом и длиной волны.

Цвет Длина волны, нм Цвет Длина волны, нм
Фиолетовый 460 Желтый 580
Синий 470 Оранжевый 600
Голубой 480 Красный 640
Зеленый 520 Пурпурный 700

Таблица 9. Цвета металлов.

Металл Цвет Металл Цвет
Магний Бело-серый Цинк Голубовато-белый
Алюминий Серовато-белый Серебро Белый
Титан Серовато-белый Олово Серовато-белый
Железо Голубовато-белый Золото Желтый
Медь Красновато-розоватый Свинец Серовато-белый

Чистые металлы в декоративно-прикладном искусстве практически не применяются. Для изготовления различных изделий используют сплавы, цветовые характеристики которых значительно отличаются от цвета основного металла.

В течении долгого времени накапливался огромный опыт применения различных литейных сплавов для изготовления украшений, бытовых предметов, скульптур и многих других видов художественного литья. Однако до сих пор еще не раскрыта взаимосвязь между строением сплава и его отражательной способностью.

Свойства металлов

Свойства металлов

Металлы, это группа элементов, в виде простых веществ, обладающих характерными металлическими свойствами, такими, как высокие тепло- и электропроводность, положительный температурный коэффициент сопротивления, высокая пластичность, ковкость и металлический блеск. В данной статье все свойства металлов будут представлены в виде отдельных таблиц.

Свойства металлов

Свойства металлов делятся на физические, химические, механические и технологические.

Физические свойства металлов

К физическим свойствам относятся: цвет, удельный вес, плавкость, электропроводность, магнитные свойства, теплопроводность, теплоемкость, расширяемость при нагревании.

Удельный вес металла — это отношение веса однородного тела из металла к объему металла, т.е. это плотность в кг/м 3 или г/см 3 .

Плавкость металла — это способность металла расплавляться при определенной температуре, называемой температурой плавления.

Электропроводность металлов — это способность металлов проводить электрический ток, это свойство тела или среды, определяющее возникновение в них электрического тока под воздействием электрического поля. Под электропроводностью подразумевается способность проводить прежде всего постоянный ток (под воздействием постоянного поля), в отличие от способности диэлектриков откликаться на переменное электрическое поле колебаниями связанных зарядов (переменной поляризацией), создающими переменный ток.

Магнитные свойства металлов характеризуются: остаточной индукцией, коэрцетивной силой и магнитной проницаемостью.

Теплопроводность металлов — это их способность передавать тепло от более нагретых частиц к менее нагретым. Теплопроводность металла определяется количеством теплоты, которое проходит по металлическому стержню сечением в 1см 2 , длиной 1см в течение 1сек. при разности температур в 1°С.

Теплоемкость металлов — это количество теплоты, поглощаемой телом при нагревании на 1 градус. Отношение количества теплоты, поглощаемой телом при бесконечно малом изменении его температуры, к этому изменению единицы массы вещества (г, кг) называется удельной теплоёмкостью, 1 моля вещества — мольной (молярной).

Расширяемость металлов при нагревании.Все металлы при нагревании расширяются, а при охлаждении сжимаются. Степень увеличения или уменьшения первоначального размера металла при изменении температуры на один градус характеризуется коэффициентом линейного расширения.

Химические свойства металлов

К химическим — окисляемость, растворимость и коррозионная стойкость.

Окисление металлов — это реакция соединения металла с кислородом, сопровождающаяся образованием окислов (оксидов). Если рассмотреть окисляемость шире, то это реакции, в которых атомы теряют электроны и образуются различные соединения, например, хлориды, сульфиды. В природе металлы находятся в основном в окисленном состоянии, в виде руд, поэтому их производство основано на процессах восстановления различных соединений.

Растворимость металлов — это их способность образовывать с другими веществами однородные системы — растворы, в которых металл находится в виде отдельных атомов, ионов, молекул или частиц. Металлы растворяются в растворителях, в качестве которых выступают сильные кислоты и едкие щелочи. В промышленности наиболее часто используются: серная, азотная и соляные кислоты, смесь азотной и соляной кислот (царская водка), а также щелочи — едкий натр и едкий калий.

Механические свойства металлов

К механическим — прочность, твердость, упругость, вязкость, пластичность.

Прочностью металла называется его способность сопротивляться действию внешних сил, не разрушаясь.

Твердостью металлов называется способность тела противостоять проникновению в него другого, более твердого тела.

Упругость металлов — свойство металла восстанавливать свою форму после прекращения действия внешних сил, вызвавших изменение формы (деформацию).

Вязкость металлов — это способность металла оказывать сопротивление быстро возрастающим (ударным) внешним силам. Вязкость — свойство обратное хрупкости.

Пластичность металлов — это свойство металла деформироваться без разрушения под действием внешних сил и сохранять новую форму после прекращения действия сил. Пластичность—свойство обратное упругости.

Технологические свойства металлов

К технологическим — прокаливаемость, жидкотекучесть, ковкость, свариваемость, обрабатываемость резанием.

Прокаливаемость металлов – это их способность получать закаленный слой определенной глубины.

Жидкотекучесть металлов — это свойство металла в жидком состоянии заполнять литейную форму и воспроизводить ее очертания в отливке.

Ковкость металлов —это технологическое свойство, характеризующее их способность к обработке деформированием, например, ковкой, вальцеванием, штамповкой без разрушения.

Свариваемость металлов — это их свойство образовывать в процессе сварки неразъемное соединение, отвечающее требованиям, обусловленным конструкцией и эксплуатацией производимого изделия.

Обрабатываемость металлов резанием — это их способность изменять геометрическую форму, размеры, качество поверхности за счет механического срезания материала заготовки режущим инструментом. Обрабатываемость металлов зависит от их механических свойств, в первую очередь прочности и твердости.

Современными методами испытания металлов являются механические испытания, химический анализ, спектральный анализ, металлографический и рентгенографический анализы, технологические пробы, дефектоскопия. Эти испытания дают возможность получить представление о природе металлов, их строении, составе и свойствах, а также определить качество готовых изделий.

Основные сведения о сплавах металлов (основы общей технологии металлов)

Все металлы и сплавы металлов обладают определенными свойствами. Свойства металлов и сплавов разделяют на четыре группы: физические, химические, механические и технологические.

Физические свойства. К физическим свойствам металлов и сплавов относятся: плотность, температура плавления, теплопроводность, тепловое расширение, удельная теплоемкость, электропроводность и способность намагничиваться. Физические свойства некоторых металлов приведены в таблице:

Физические свойства металлов

Температура плавления, °С

Коэффициент линейного расширения, α 10 -6

Удельная теплоемкость С, кал/г-град

Удельное электросопротивление при 20°, Ом мм /м

Плотность. Количество вещества, содержащееся в единице объема, называют плотностью. Плотность металла может изменяться в зависимости от способа его производства и характера обработки.

Температура плавления. Температуру, при которой металл полностью переходит из твердого состояния в жидкое, называют температурой плавления. Каждый металл или сплав имеет свою температуру плавления. Знание температуры плавления металлов помогает правильно вести тепловые процессы при термической обработке металлов.

Теплопроводность. Способность тел передавать тепло от более нагретых частиц к менее нагретым называют теплопроводностью. Теплопроводность металла определяется количеством теплоты, которое проходит по металлическому стержню сечением в 1см 2 , длиной 1см в течение 1сек. при разности температур в 1°С.

Тепловое расширение. Нагревание металла до определенной температуры вызывает его расширение.

Величину удлинения металла при нагревании легко определить, если известен коэффициент линейного расширения металла α. Коэффициент объемного расширения металла ß равен Зα.

Удельная теплоемкость. Количество тепла, которое необходимо для повышения температуры 1г вещества на 1°С, называют удельной теплоемкостью. Металлы по сравнению с другими веществами обладают меньшей теплоемкостью, поэтому их нагревают без больших затрат тепла.

Электропроводность. Способность металлов проводить электрический ток называют электропроводностью. Основной величиной, характеризующей электрические свойства металла, является удельное электросопротивление ρ, т. е. сопротивление, которое оказывает току проволока из данного металла длиной 1м и сечением 1мм 2 . Оно определяется в омах. Величину, обратную удельному электросопротивлению, называют электропроводностью.

Большинство металлов обладает высокой электропроводностью, например серебро, медь и алюминий. С повышением температуры электропроводность уменьшается, а с понижением увеличивается.

Магнитные свойства. Магнитные свойства металлов характеризуются следующими величинами: остаточной индукцией, коэрцетивной силой и магнитной проницаемостью.

Остаточной индукцией r) называют магнитную индукцию, сохраняющуюся в образце после его намагничивания и снятия магнитного поля. Остаточную индукцию измеряют в гауссах.

Коэрцетивной силой (Нс) называют напряженность магнитного поля, которая должна быть приложена к образцу, чтобы свести к нулю остаточную индукцию, т. е. размагнитить образец. Коэрцетивную силу измеряют в эрстедах.

Магнитная проницаемость μ характеризует способность металла намагничиваться под определяется по формуле

Железо, никель, кобальт и гадолиний притягиваются к внешнему магнитному полю значительно сильнее, чем остальные металлы, и постоянно сохраняют способность намагничиваться. Эти металлы называются ферромагнитными (от латинского слова феррум - железо), а их магнитные свойства - ферромагнетизмом. При нагреве до температуры 768°С (температура Кюри) ферромагнетизм исчезает, и металл становится немагнитным.

Химические свойства. Химическими свойствами металлов и сплавов металлов называют свойства, определяющие их отношение к химическим воздействиям различных активных сред. Каждый металл или сплав металла обладает определенной способностью сопротивляться воздействию этих сред.

Химические воздействия среды проявляются в различных формах: железо ржавеет, бронза покрывается зеленым слоем окиси, сталь при нагреве в закалочных печах без защитной атмосферы окисляется, превращаясь в окалину, а в серной кислоте растворяется и т. д. Поэтому для практического использования металлов и сплавов необходимо знать их химические свойства. Эти свойства определяют по изменению веса испытуемых образцов за единицу времени на единицу поверхности. Например, сопротивление стали окалинообразованию (жаростойкость) устанавливают по увеличению веса образцов за 1 час на 1 дм поверхности в граммах (привес получается за счет образования окислов).

Механические свойства. Механические свойства определяют работоспособность сплавов металлов при воздействии на них внешних сил. К ним относятся прочность, твердость, упругость, пластичность, ударная вязкость и др.

Для определения механических свойств сплавов металлов их подвергают различным испытаниям.

Испытание на растяжение (разрыв). Это основной способ испытания, применяемый для определения предела пропорциональности σпц, предела текучести σs, предела прочности σb относительного удлинения σ и относительного сужения ψ.

Для испытания на растяжение изготовляют специальные образцы- цилиндрические и плоские. Они могут быть различных размеров, в зависимости от типа разрывной машины, на которой испытывают металл на растяжение.

Разрывная машина работает следующим образом: испытуемый образец закрепляют в зажимах головок и постепенно растягивают с возрастающей силой Р до разрыва.

В начале испытания при небольших нагрузках образец деформируется упруго, удлинение его пропорционально возрастанию нагрузки. Зависимость удлинения образца от приложенной нагрузки называют законом пропорциональности.

Наибольшую нагрузку, которую может выдержать образец без отклонения от закона пропорциональности, называют пределом пропорциональности:

Fо - начальная площадь поперечного сечения образца, мм 2 .

При увеличении нагрузки кривая отклоняется в сторону, т. е. закон пропорциональности нарушается. До точки Рр деформация образца была упругой. Деформация называется упругой, если она полностью исчезает после разгрузки образца. Практически предел упругости для стали принимают равным пределу пропорциональности.

С дальнейшим увеличением нагрузки (выше точки Ре) кривая начинает значительно отклоняться. Наименьшую нагрузку, при которой образец деформируется без заметного увеличения нагрузки, называют пределом текучести:

Fo - начальная площадь поперечного сечения образца, мм 2 . После предела текучести нагрузка увеличивается до точки Ре, где она достигает своего максимума. Делением максимальной нагрузки на площадь поперечного сечения образца определяют предел прочности:

Fo - начальная площадь поперечного сечения образца, мм 2 . В точке Рк образец разрывается. По изменению, образца после разрыва судят о пластичности металла, которая характеризуется относительным удлинением δ и сужением ψ.

Под относительным удлинением понимают отношение приращения длины образца после разрыва к его начальной длине, выраженное в процентах:

Относительным сужением называется отношение уменьшения площади поперечного сечения образца после разрыва к его начальной площади поперечного сечения

где Fo - начальная площадь сечения образца, мм 2 ;

F1 - площадь поперечного сечения образца в месте разрыва (шейка), мм 2 .

Испытание на ползучесть. Ползучесть - это свойство сплавов металлов медленно и непрерывно пластически деформироваться при постоянной нагрузке и высоких температурах. Основной целью испытания на ползучесть является определение предела ползучести - величины напряжения, действующего продолжительное время при определенной температуре.

Для деталей, работающих длительное время при повышенных температурах, учитывают только скорость ползучести при установившемся процессе и задают граничные условия, например1°/о за 1000 час. или 1°/о за 10 000 час.

Испытание на ударную вязкость. Способность металлов, оказывать сопротивление действию ударных нагрузок называют ударной вязкостью. Испытанию на ударную вязкость в основном подвергают конструкционные стали, так как они должны иметь не только высокие показатели статической прочности, но и высокую ударную вязкость.

Для испытания берут образец стандартной формы и размеров. Образец надрезают посередине, чтобы он в процессе испытания переломился в этом месте.

Образец испытывают следующим образом. На опоры маятникового копра кладут испытуемый образец надрезом к станин. Маятник весом G поднимают на высоту h1. При падении с этой высоты маятник острием ножа разрушает образец, после чего поднимается на высоту h2.

По весу маятника и высоте его подъема до и после разрушения образца определяют затраченную работу А.

Зная работу разрушения образца, вычисляем ударную вязкость:

где А - работа, затраченная на разрушение образца, кгсм;

F - площадь поперечного сечения образца в месте надреза,см 2 .

Способ Бринелля. Сущность этого способа заключается в том, что, используя механический пресс, в испытуемый металл под определенной нагрузкой вдавливают стальной закаленный шарик и по диаметру полученного отпечатка определяют твердост.

Способ Роквелла. Для определения твердости по способу Роквелла применяют алмазный конус с углом при вершине 120°, или стальной шарик диаметром 1,58мм. При этом способе измеряют не диаметр отпечатка, а глубину вдавливания алмазного конуса или стального шарика. Твердость указывается стрелкой индикатора сразу после окончания испытания. При испытании закаленных деталей с высокой твердостью применяют алмазный конус и груз в 150 кгс. Твердость в этом случае отсчитывают по шкале С и обозначают HRC. Если при испытании берется стальной шарик и груз в 100 кгс, то твердость отсчитывают по шкале В и обозначают HRB. При испытании очень твердых материалов или тонких изделий используют алмазный конус и груз в 60 кгс. Твердость при этом отсчитывают по шкале А и обозначают HRA.

Детали для определения твердости на приборе Роквелла должны быть хорошо зачищенными и не иметь глубоких рисок. Способ Роквелла позволяет точно и быстро производить испытание металлов.

Способ Викерса. При определении твердости по способу Викерса в качестве наконечника, вдавливаемого в материал, применяют четырехгранную алмазную пирамиду с углом междугранями 136°. Полученный отпечаток измеряют при помощи микроскопа, имеющегося в приборе. Затем по таблице находят число твердости HV. При измерении твердости применяют одну из следующих нагрузок: 5, 10, 20, 30, 50, 100 кгс. Небольшие нагрузки позволяют определять твердость тонких изделий и поверхностных слоев азотируемых и цианируемых деталей. Прибор Викерса обычно используют в лабораториях.

Способ определения микротвердости. Этим способом измеряют твердость очень тонких поверхностных слоев и некоторых структурных составляющих сплавов металлов.

Микротвердость определяют по прибору ПМТ-3, который состоит из механизма для вдавливания алмазной пирамиды под нагрузкой 0,005-0,5 кгс и металлографического микроскопа. В результате испытания определяют длину диагонали полученного отпечатка, после чего по таблице находят значение твердости. В качестве образцов для определения микротвердости применяют микрошлифы с полированной поверхностью.

Способ упругой отдачи. Для определения твердости способом упругой отдачи применяют прибор Шора, работающий следующим образом. На хорошо зачищенную поверхность испытуемой детали с высоты Н падает боек, снабженный алмазным наконечником. Ударившись о поверхность детали, боек поднимается на высоту h. По высоте отскакивания бойка отсчитывают числа твердости. Чем тверже испытуемый металл, тем больше высота отскакивания бойка, и наоборот. Прибор Шора используют в основном для проверки твердости больших коленчатых валов, головок шатуна, цилиндров и других крупных деталей, твердость которых трудно измерять на других приборах. Прибор Шора позволяет проверять шлифованные детали без нарушения качества поверхности, однако получаемые результаты проверки не всегда точны.

Физические свойства металлов


Металлическая связь и особенности кристаллического строения обуславливают особые физические свойства металлов.

Металлическая связь основана на обобществлении электронов, входящих в состав атомов металла. Все электроны на внешних энергетических уровнях атомов металлов обобществленные, т.е. принадлежат всем атомам вещества. И эти электроны легко отрываются и попадают на энергетические уровни таких же атомов металлов. Постоянно перемещаясь по кристаллической решетке, электроны компенсируют силы электростатического отталкивания между положительно заряженными ионами и тем самым связывают их в устойчивую металлическую решетку.

Содержимое разработки

9. Фи­зические свойства металлов

Металлическая связь основана на обобществлении электронов, входящих в состав атомов металла. Все электроны на внешних энергетических уровнях атомов металлов обобществленные, т.е. принадлежат всем атомам вещества. И эти электроны легко отрываются и попадают на энергетические уровни таких же атомов металлов. Постоянно перемещаясь по кристаллической решетке, электроны компенсируют силы электростатического отталкивания между положительно заряженными ионами и тем самым связывают их в устойчивую металлическую решетку.

Металлическая связь – это связь в металлах и сплавах между атом-ионами посредством обобществленных электронов.

Разобраться в том, какой электрон принадлежал какому атому, просто невозможно, так как все оторвавшиеся электроны становятся общими, соединяясь с ионами. Эти электроны временно образуют атомы, потом снова отрываются и соединяются с другим ионом. Этот процесс продолжается бесконечно. Таким образом, в металлических соединениях атомы непрерывно превращаются в ионы и наоборот.

Именно строением металлической связи обусловлены физические свойства металлов.

К физическим свойствам металлов относятся:

Металлический блеск.

Электропроводность и теплопроводность.

Пластичность.

Высокая плотность и температура плавления.

Рассмотрим каждое из свойств более подробно.

Металлический блеск обусловлен металлической связью между атомами, для которой свойственны обобществленные электроны. Они как раз и испускают под воздействием света свои, вторичные волны излучения, которые мы воспринимаем как металлический блеск.

В порошкообразном состоянии большинство металлов теряют металлический блеск и приобретают серую или черную окраску.

Металлический блеск в порошкообразном состоянии сохраняют алюминий и магний.

Прекрасно отражают свет палладий Pd, ртуть Hg, серебро Ag, медь Cu.

Из алюминия, серебра и палладия, основываясь на их отражательной способности, изготавливают зеркала, в том числе и применяемые в прожекторах.

Все металлы хорошо проводят электрический ток и имеют высокую теплопроводность, также благодаря наличию металлической связи. При нагревании металла, увеличивается скорость движения электронов. Быстро движущиеся по кристаллической решетке электроны выравнивают температуру по всей поверхности металла, проводя тепло. Высокая теплопроводность металлов используется для изготовления из них посуды.

Высокая электропроводность металлов обусловлена направленным движением электронов в кристаллической решетке при воздействии электрического тока. Серебро Ag, медь Cu, золото Au и алюминий Al обладают наибольшей электропроводностью, поэтому медь Cu и алюминий Al используют в качестве материала для изготовления электрических проводов.

Наименьшей электропроводностью обладают марганец Mn, свинец Pb, ртуть Hg и вольфрам W.

Пластичность – это физической свойство вещества изменять форму под внешним воздействием и сохранять принятую форму после прекращения этого воздействия.

Большинство металлов пластично, так как слои атом-ионов металлов легко смещаются относительно друг друга и между ними не происходит разрыва связи.

Наиболее пластичные металлы – золото Au, серебро Ag, медь Cu. Из золота Au можно изготовить тонкую фольгу толщиной 0,003 мм, которую используют для золочения изделий.

Именно на пластичности металлов основано кузнечное дело и возможность изготавливать различные предметы с помощью механического воздействия на металл.

Все металлы (кроме ртути) при нормальных условиях представляют собой твердые вещества. Твердость металлов различна. Наиболее твердыми являются металлы побочной подгруппы шестой группы Периодической системы Д.И. Менделеева. Наименее твердыми являются щелочные металлы.

По плотности металлы классифицируют на легкие (их плотность от 0,53 до 5 г/см 3 ) и тяжелые (плотность этих металлов от 5 до 22,6 г/см 3 ). Самым легким металлом является литий Li, плотность которого 0,53 г/см 3 . Самыми тяжелыми металлами в настоящее время считают осмий Os и иридий Ir (плотность около 22,6 г/см 3 ).

Температура плавления.

Температура плавления металлов находится в диапазоне от 39 (ртуть Hg) до 3410 о С (вольфрам W). Температура плавления большинства металлов высока, однако некоторые металлы, например, олово Sn и свинец Pl, можно расплавить на электрической плите.

Физические свойства металлов и в настоящее время широко используются в промышленности и электронике.

В технике все металлы делятся на черные, к ним относятся железо и его сплавы, и цветные.

Изделия из различных видов металлов используются повсеместно благодаря их пластичности, но чаще всего в сплавах.

К драгоценным металлам относят золото, серебро, платину и некоторые другие редко встречающиеся металлы.


-82%

Читайте также: