Габаритные размеры опорной плиты базы колонны зависят металлические конструкции

Обновлено: 05.10.2024

Балки и балочные клетки. Металлические балки являются основным конструктивным элементом при формировании несущих конструкций перекрытий и покрытий. В зависимости от расположения опорных конструкций, расстояния между ними (пролетов), вида настила, характера нагрузки на перекрытие, наличия технологического оборудования и других обстоятельств перекрытие может образовываться как отдельными балками, так и балочными клетками. Отдельные балки применяются при перекрываемых пролетах величиной до 9 метров.

Если перекрытие образовано из отдельных балок, то наиболее приемлемым решением будет применение балок из прокатных профилей швеллерных или двутавровых как обыкновенных, так и широкополочных. Балки из широкополочных двутавров для пролетов свыше 6 м имеют преимущество, так как они более выгодны. При недостаточной прочности или жесткости прокатных балок возможно применение составных сварных балок. При больших нагрузках проектируют двухстенные коробчатые балки.


Рис. 6.1. Типы поперечных сечений стальных балок:

а, б – балки из прокатных двутавров; в, г, д – составные сварные балки;

е, ж – балки на высокопрочных болтах или заклепках

Типы сечений стальных балок приведены на рис.6.1.

При пролетах более девяти метров применяются перекрытия в виде балочной клетки, см. рис. 6.2. Основой балочной клетки являются главные балки, опирающиеся

на колонны или стены. Пролет их составляет от 9 до 24 м, шаг от 6 до 9 метров.

На них опираются второстепенные балки пролетом 6 – 9 м с шагом от 1,5 до 3 м.

Настил перекрытия опирается или непосредственно на второстепенные балки или на балки настила. Пролет балок настила равен шагу второстепенных балок, а шаг зависит от конструкции настила. Балки под листовой настил проектируются с шагом 0,5 – 1,2 метра, В зависимости от конструкции перекрытия балки настила могут отсутствовать и тогда шаг второстепенных балок составляет те же 1,5 – 3 метра, а при железобетонных плитах перекрытия до 6 метров.


Рис. 6.2. Балочная клетка:

1 – балки настила, пролетом b; 2 – второстепенные, балки, пролетом B;

3 – главные балки пролетом L

Оптимальная высота главных балок зависит от многих факторов и лежит в пределах от 1 / 10 до 1 /15 пролета. Во второстепенных балках высота сечения может быть уменьшена до 1 / 20 пролета. Второстепенные балки могут располагаться поверх главных балок или крепиться к ним в пределах их высоты. В первом случае экономятся трудозатраты, во втором толщина перекрытия. Основные типы конструкций балочных клеток приведены на рис. 6.3.

При подборе балок из прокатных профилей можно воспользоваться методом прямого проектирования и обеспечить по заданным усилиям требования по прочности

и жесткости. По условию прочности из формулы ( 4.4 ) получим выражения для необходимого момента сопротивления Wn,min . При работе материала в упругой стадии

где M - расчетный изгибающий момент; Ry - расчетное сопротивление металла по пределу текучести, Ύc - коэффициент условий работы.


Рис. 6.3. Основные типы конструкций балочных клеток:

а – с этажным расположением второстепенных балок; б – с второстепенными балками в уровне верха главной балки; в – с пониженным расположением второстепенных балок; г – усложненный вариант;

1 – главная балка; 2 – второстепенная балка; 3 – балки настила; 4 - настил

С учетом работы металла в упруго-пластической стадии Wn,min определяем по соотношению Wn,min = M / ( C Ry Ύc ) , ( 6.2 )

где M - изгибающий момент от действия нормативных нагрузок; C – коэффициент учитывающий развитие пластических деформаций.

Мерой жесткости балки служит относительный прогиб - f / ℓ, отношение прогиба к длине пролета балки. Величина относительного прогиба нормируется, например, для главных балок f / ℓ ≤ 1/400 , а для второстепенных f / ℓ ≤ 1/250 . Если принять, что на балку действует равномерно распределенная нагрузка g , то относительный прогиб равен f / ℓ = 5/(384) g ℓ 3 / (E J) . ( 6.3 )

Отсюда можно получить выражение для требуемого момента инерции Jmin

Jmin = 5/(384) g ℓ 3 (ℓ / f) / E . ( 6.4 )

В выражениях ( 6.3 ) и ( 6.4 ) E – модуль упругости стали; ℓ - пролет балки. Имея значения требуемых момента сопротивления Wn,min и момента инерции Jmin ,

по сортаменту можно выбрать ближайший больший двутавр отвечающий условиям прочности и жесткости. Если ни один из прокатных профилей не может удовлетворить требованиям по прочности и жесткости необходимо переходить к балкам из развитого двутавра или к балкам составного сечения.

Балки из развитого двутавра (балки с перфорированной стенкой) являются одним из эффективных типов балочных конструкций, рис. 6.4. Такие балки получают путем разрезания стенки исходного прокатного двутавра, причем разрез выполняется в виде ломаной линии с последующей сваркой половин со сдвигом по длине на половину шага и раздвижкой по высоте. Можно варьировать при этом как формой отверстий, так и их высотой. Несущую способность и жесткость по сравнению с исходным двутавром можно значительно увеличить. Наилучшей областью применения для таких конструкций является случай больших пролетов при малой нагрузке. Расчет балок из развитого двутавра производится по аналогии с расчетом безраскосной фермы. Здесь отметим только, что проверяются напряжения в характерных точках 1 и 2 (рис. 6.4, в) при учете изгибающего момента и перерезывающей силы.

Составные балки в простейшем случае свариваются из трех листовых элементов: стенки и поясов. Высота балки задается первоначально в пределах от 1/12 до 1/15 пролета, толщина стенки от 1/100 до 1/200 высоты. Толщина полок обычно принимается равной двум толщинам стенки. Оптимальной считается балка у которой площадь сечения поясов равна площади поперечного сечения стенки. Приняв таким образом первоначальную геометрию составной балки, переходят к ее расчету. Во-первых, проверяют прочность по соотношению ( 4.4 ) или ( 4.7 ) и прогиб по формуле ( 6.3 ). Далее, так как у составной балки отношение высоты стенки к ее толщине по сравнению с прокатными двутаврами значительно больше, необходимо проверить стенку балки на


Рис. 6.4. Балки из развитого двутавра:

а – роспуск исходного двутавра; б – сварка развитого двутавра;

в – к расчету сечения равитого двутавра

действие сдвигающих напряжений. Проверяется сечение с наибольшей перерезывающей силой Q ( для однопролетной балки обычно это приопорное сечение ) по соотношению

Это известная формула Н.Г. Журавского, где S - статический момент половины сечения балки относительно нейтральной оси; J - момент инерции сечения; t - толщина стенки; Rs - расчетное сопротивление стали на сдвиг; γc - коэффициент условий работы. Если по проверенным критериям принятое сечение не проходит или выявляется значительный запас, производится корректировка геометрии балки и повторный расчет.

Для балок, как составных, так иногда и для прокатных, проверок только на прочность и жесткость может оказаться недостаточно. Возможны еще как минимум четыре критических состояния которые необходимо проверить.

Если на стенку балки через полку передается сосредоточенная нагрузка, например

в месте опирания второстепенной балки на главную или в опорном сечении при отсутствии опорного ребра стенка балки может смяться. На местное смятие проверка производится по формуле σoc = F / ( twef ) ≤ Ry Ύc , ( 6.6 ) где σoc - напряжение местного смятия; F сосредоточенная нагрузка; tw - толщина стенки балки; ℓef - условная длина приложения нагрузки, определяемая по нормам.

Балка может потерять устойчивость плоской формы изгиба, см. рис. 6.5 а, если не выполняется условие Mmax / ( φb Wn ) ≤ R γc , ( 6.7)

где φb - коэффициент общей устойчивости балок, вычисляемый по нормам в зависимости от расстояния между поперечными раскрепляющими опорами балки. Проверку на общую устойчивость можно не производить если выполняется условие

где ℓf - расчетная длина балки между закреплениями в поперечном направлении;

bf - ширина полки балки. По конструктивным соображениям ширину пояса следует принимать не менее 180 мм, не менее 1/10 высоты балки и не более 30 tf .


Рис. 6.5. Формы потери устойчивости балок:

а – форма потери плоской формы изгиба; б – потеря устойчивости сжатой полки;

в – потеря местной устойчивости стенки

Сжатый пояс балки сжимается под действием изгиба с напряжением

и под действием этого сжимающего напряжения он может потерять устойчивость, если полка балки будет иметь слишком широкие свесы, рис. 6.5 б. Предельная ширина полки балки bf , при которой ее не требуется проверять на устойчивость определяется из соотношения bf ≤ tf w , ( 6.9 )

где tf - толщина полки балки.

Стенка балки может потерять устойчивость от действия главных сжимающих напряжений. Для исключения этого явления стенку балки укрепляют поперечными и иногда продольными ребрами, рис. 6.6. Поперечные ребра ставят, начиная от опоры

с шагом не большим чем удвоенная высота балки.


Рис. 6.6. Конструкция ребер жесткости составных балок:

а = поперечных; б – поперечных и продольных; в – то же с поперечными дополнительными ребрами в сжатой зоне; 1 – опорное ребро; 2 – рядовое поперечное ребро; 3 – продольное ребро жесткости; 4 – дополнительное поперечное ребро

Колонны и стойки. Колонной называют такой элемент конструктивного комплекса, который будучи сжатым, передает нагрузку от вышележащих элементов на нижележащие или фундамент. Колонна состоит из трех частей: оголовка, стержня и базы. В зависимости от характера геометрии стержня по высоте различают колонны постоянного сечения, переменного (ступенчатые) и раздельного типа, когда ветви колонн работают независимо друг от друга в части восприятия нагрузки. Наиболее употребительными являются колонны постоянного сечения. Ступенчатые колонны применяются в промышленных зданиях при наличии мостовых кранов, колонны с раздельными ветвями применяются в тех случаях, когда имеются тяжелые мостовые краны на небольшой высоте. По виду поперечного сечения различают колонны сплошностенчатые и сквозные.

Сплошностенчатые колонны бывают с простым и составным сечением. Простые колонны выполняются из прокатных двутавров и труб (при двутаврах предпочтение отдается широкополочным). Составные колонны формируются из сварных профилей, комбинированных или листовых, рис. 6.7. При центральном приложении нагрузки сечение лучше проектировать равноустойчивым в двух плоскостях, при внецентренной нагрузке или при действии изгибающего момента, сечение должно быть развито в плоскости изгиба, рис. 6.7 - ж, з.


Рис.6.7. Типы сечений колонн:

а, б – простые сплошностенчатые; в : е – составные; ж, з – с несимметричным сечением

Сквозная колонна может состоять из двух ветвей, образованных прокатными двутаврами или швеллерами, связанных между собой решетками или из четырех ветвей, связанных решетками в двух плоскостях, продолжение рис. 6.7. Решетки бывают


Рис. 6.7, продолжение:

и : м – сечения сквозных центрально сжатых колонн; н, о – внецентренно сжатых;

1 – несущие элементы колонн; 2 – планки; 3 – стержни решетки

раскосными и безраскосными, рис. 6.8 . Раскосные решетки обычно выполняются из уголков, безраскосные из полосовой стали в виде планок, рис. 6.8 - в. Такие решетки рекомендуется применять когда расстояние между ветвями не превышает 600 мм.


Рис. 6.8. Типы решеток сквозных колонн:а

а – треугольная; б – раскосная; в – с планками;

При расчете колонн применим только способ прямого проектирования. Расчет сплошной центрально сжатой колонны начинают с определения необходимой площади поперечного сечения A . Для этого задают предварительно величину коэффициента продольного изгиба, например φ = 0.8, и определяют требуемую площадь сечения колонны по формуле, полученной из соотношения ( 4.2 )

По найденному значению площади с помощью сортамента подбирают подходящий профиль и проводят повторную проверку.

При расчете сквозных колонн необходимо задаться габаритами поперечного сечения. Габарит поперечного сечения предварительно выбирается в зависимости от высоты колонны. При высоте до 10 м ширина поперечного сечения принимается равной 1/15 высоты колонны, при высоте от 10 до 20 м - 1/18 и при высоте до 30 м – 1/20. Далее, как и в предидущем случае вычисляется требуемая площадь поперечного сечения, формируется его геометрия, вычисляются геометрические характеристики сечения: момент инерции, радиус инерции, расчетная длина колонны, ее гибкость. Правило назначения гибкости для колонн простое: чем больше нагрузка, тем меньше гибкость. Для колонн гибкость должна быть примерно в пределах от 60 до 90. Затем снова проверяется выполнение условия прочности ( 4.2 ) при продольном изгибе.

В случае внецентренного сжатия прочность проверяется по соотношению, учитывающему действие сжимающей силы и изгибающего момента известному по лекции 4, как соотношение ( 4.11 )

Необходимо также проверить устойчивость колонны из плоскости действия момента по соотношению ( 4.12 ).

Решетка сквозных колонн конструируется из условия, что гибкость сжатых стержней должна быть не более 40, а растянутых не более 80. Кроме того, гибкость ветвей колонны не должна быть меньше гибкости самой колонны.

Для того чтобы закончить тему колонн, необходимо рассмотреть еще оголовок и базу, рисунки ( 6.9 ) и ( 6.10 ). База передает нагрузку от стержня колонны к фундаменту. Основным элементом базы является опорная плита, которая приваривается к торцу стержня колонны. Размер опорной плиты зависит от величины усилий, передающихся опорным сечением стержня колонны на фундамент и несущей способностью материала фундамента. Если нагрузка от колонны сравнительно небольшая и колонна опирается на фундамент шарнирно, применяют базу в виде толстой стальной плиты, в противном случае применяют тонкую стальную плиту, усиленную вертикальными ребрами.


Рис. 6.9. Базы одноветвевых колонн:

а – центрально сжатых с фрезерованным торцом; б – то же с ребрами жесткости;


в – внецентренно сжатых .

Рис. 6.10. Оголовки колонн и опорные узлы опирания балок:

а, б – оголовки сплошных колонн; в – то же, сквозных; г – опирание балок через опорные ребра жесткости;

д – опирание балок через нижние полки; 1 – стержень колонны; 2 –опорная плита оголовка;

3 – центрирующая планка; 4 – ребро жесткости; 5 – отверстия под анкерные болты

Конструкция базы должна предусматривать соединение базы и фундамента с помощью анкерных болтов, рис. 6.9 б и в. В простейших случаях, при легких стойках колонну приваривают к закладной плите в фундаменте, рис 6.9 а.

Оголовок колонны передает усилие на стержень колонны от вышележащих конструкций (колонн, балок, ферм). Основным элементом оголовка также является опорная стальная плита, приваренная к фрезерованным торцам стержня колонны. Опорную плиту оголовка также усиливают ребрами жесткости для того чтобы обеспечить равномерную передачу усилий на все сечения стержня колонны. Важным элементом оголовка являются центрирующие пластины. Они обеспечивают центральную передачу усилий от вышележащих конструкций, рис. 6.10 а, б, в.

1. Инженерные конструкции. Учебник, под редакцией В.В. Ермолова. – М.:Архитектура-С,2007.

2. Металлические конструкции. Учебник, под редакцией Ю.И. Кудишина, 11-е издание.- М.: «Академия», 2008.

3. Архитектурное конструирование. Учебник, В.А. Пономарев. – М.:

4. СНиП II-23-81*. Стальные конструкции - М.: «Госстрой России»,2001.

5. СНиП 2.01.07-85*. Нагрузки и воздействия – М.: «Госстрой России»,2003.

6. СНиП 2.03.06-85. Алюминиевые конструкции – М.: «Госстрой России»,2002.

Общие требования к базам колонн

База является опорной частью колонны, служит для передачи и распределения сосредоточенного усилия от стержня по определенной площади фундамента, а также обеспечивает закрепление нижнего конца колонны в фундаменте в соответствии с принятой расчетной схемой. База закрепляется с фиксацией проектного положения колонны на фундаменте анкерными болтами.

Размеры опорной плиты в базах внецентренно-сжатых колонн назначаются из расчета ее на нагрузку от отпора фундамента. Наибольшее сжимающее напряжение под плитой определяется от нормальной силы N и изгибающего момента M.

Анкерные болты подлежат расчету от специальной комбинации усилий N и M, вызывающих максимальное растягивающее усилие в анкерных болтах; постоянные нагрузки при этом определяются с коэффициентом надежности по нагрузке равным γf = 0,9, так как они разгружают анкерные болты, прижимая опорную плиту базы колонны к фундаменту. Диаметры анкеров рекомендуется принимать до 76 мм, так как более толстые болты сложны в изготовлении.

Анкерные болты выносятся за опорную плиту, чтобы во время монтажа колонну можно было двигать во все стороны (примерно на 20 мм), устанавливая по оси. Они работают на выдергивание и закрепляются в фундаменте за счет сцепления их с бетоном (чем определяется глубина заделки болта) или с помощью опорных шайб, воспринимающих давление бетона по площади шайбы.

Анкерная пластина принимается толщиной 20 – 40 мм и шириной, равной не менее четырем диаметрам отверстий под болты.

Для сплошных и легких сквозных колонн при ее ширине до 1 м применяют общие базы, если ширина сквозной колонны более 1 м устраивают базы раздельными под каждую ветвь колонны, рассчитывают такие базы аналогично базам центрально-сжатых колонн.

При сравнительно небольших расчетных усилиях в ветвях колонны (до 4000 – 5000 кН) применяются базы с траверсами, передающими усилие от стержня колонны через сварные швы на плиту, опирающуюся непосредственно на фундамент. Для более равномерной передачи давления жесткость плиты при необходимости может быть увеличена постановкой дополнительных ребер и диафрагм.

Пример 8.3.Рассчитать и законструировать базу внецентренно-сжатой сквозной колонны при жестком сопряжении ее с фундаментом (рис. 8.7).

Рис. 8.7. База внецентренно-сжатой сквозной колонны

Размеры сечения колонны и наибольшие сжимающие усилия в ветвях колонны на уровне обреза фундамента приняты по данным прередущего примера: для подкрановой ветви Nв1 = – 2245,6 кН; для наружной – Nв2 = – 2818 кН. Комбинация усилий, вызывающая растягивающее усилие в анкерных болтах: подкрановой ветви N′в1 = – 1081,3 кН и Mв1 = + 2295,1 кН·м; наружной ветви N′в2 = – 189,4 кН и Mв2 = – 637 кН·м.

Материал фундамента – бетон класса В12,5. Материал конструкций –

сталь класса С255 с расчетным сопротивлением Ry = 24 кН/см 2 при толщине листов t до 20 мм и Ry = 23 кН/см 2 при толщине 20 < t ≤ 40 мм.

Сварка механизированная с использованием проволоки Св-08Г2С по ГОСТ 2246-70*: Rwf = 21,5 кН/см 2 ; Rwz = 16,65 кН/см 2 ; βf = 0,9; βz = 1,05; γс = 1,0; γwf = γwz = 1,0.

8.5.2. Определение размеров опорной плиты в плане

Давление под плитой принимается равномерно распределенным. Размеры плиты в плане определяются из условия прочности материала фундамента.

Рассчитываем базу под наиболее нагруженную наружную ветвь колонны.

Требуемая площадь опорной плиты

где y – коэффициент, зависящий от характера распределения напряжений под плитой (при равномерном распределении напряжений y = 1);

Rb,loc – расчетное сопротивление бетона смятию, определяемое по формуле

где a = 1 – для бетона класса ниже B25;

Rb = 7,5 МПа – расчетное сопротивление бетона (см. табл. 4.3);

jb – коэффициент, учитывающий повышение прочности бетона сжатию в стесненных условиях под опорной плитой и определяемый по формуле

здесь Aф – площадь верхнего обреза фундамента, незначительно превышающая площадь опорной плиты Aпл; jb принимается не больше 2,5 для бетонов классов выше B7,5 и не больше 1,5 для бетонов классов B7,5 и ниже.

Предварительно задаемся jb = 1,2.

Размеры плиты (ширина B и длина L) назначаются по требуемой площади Aпл, увязываются с контуром колонны (свесы опорной плиты должны быть не менее 40 мм) и согласуются с сортаментом.

Назначаем ширину плиты конструктивно:

где b2= 300 мм – высота сечения стержня колонны;

tтр = 12 мм – толщина траверсы (принимается в пределах 10…20 мм);

с = 50 мм – вылет консольной части плиты (предварительно принимается равным 40 – 120 мм и уточняется в процессе расчета толщины плиты).

Принимаем B = 450 мм.

Требуемая длина плиты

Принимаем плиту стандартных размеров 700×450 мм с площадью

Aпл = 3150 см 2 . Размеры верхнего обреза фундамента устанавливаем на 20 см больше размеров опорной плиты.

Конструирование и расчет базы колонны

База является опорной частью колонны и служит для передачи усилий с колонны на фундамент. При сравнительно небольших расчетных усилиях в колоннах (до 4000 – 5000 кН) применяют базы с траверсами. Усилие от стержня колонны передается через сварные швы на плиту, опирающуюся непосредственно на фундамент. Для более равномерной передачи давления с плиты на фундамент жесткость плиты при необходимости может быть увеличена постановкой дополнительных ребер и диафрагм.

База закрепляется с фиксацией ее проектного положения на фундаменте анкерными болтами. В зависимости от закрепления осуществляется шарнирное или жесткое сопряжение колонны с фундаментом. В базе с шарнирным сопряжением анкерные болты диаметром 20 – 30 мм крепятся непосредственно за опорную плиту, обладающую определенной гибкостью, обеспечивающей податливость при действии случайных моментов (рис. 4.12).

Рис. 4.12. База колонны при Рис. 4.13. База колонны при

шарнирном сопряжении жестком сопряжении

с фундаментом с фундаментом

Для возможности некоторой передвижки (рихтовки) колонны в процессе ее установки в проектное положение диаметр отверстий в плите для анкерных болтов принимают в 1,5 – 2 раза больше диаметра анкеров. На анкерные болты надевают шайбы с отверстием, которое на 3 мм больше диаметра болта, и после натяжения болта гайкой шайбу приваривают к плите. При жестком сопряжении анкерные болты прикрепляются к стержню колонны через выносные консоли траверс, имеющих значительную вертикальную жесткость, что устраняет возможность поворота колонны на фундаменте. При этом болты диаметром 24 – 36 мм затягиваются с напряжением близким к расчетному сопротивлению материала болта. Анкерная пластина принимается толщиной tap = 20 – 40 мм и шириной bap, равной четырем диаметрам отверстий под болты (рис. 4.13).

Конструкция базы должна отвечать принятому в расчетной схеме колонны способу сопряжения ее с фундаментом. Принята к расчету и конструированию база колонны с жестким закреплением на фундаменте.

4.5.1. Определение размеров опорной плиты в плане

Определяем расчетное усилие в колонне на уровне базы с учетом собственного веса колонны:

где k = 1,2 – конструктивный коэффициент, учитывающий вес решетки, элементов базы и оголовка колонны. Давление под плитой принимается равномерно распределенным. В центрально-сжатой колонне размеры плиты в плане определяются из условия прочности материала фундамента:

где y – коэффициент, зависящий от характера распределения местной нагрузки по площади смятия (при равномерном распределении напряжений y =1);

Rb,loc – расчетное сопротивление бетона смятию под плитой, определяемое по формуле

Rb = 7,5 МПа для класса бетона B12,5 – расчетное сопротивление бетона сжатию, соответствующее его классу и принимаемое по табл. 4.3;

здесь Af1 – площадь верхнего обреза фундамента, незначительно превышающая площадь опорной плиты Af.

Расчетные сопротивления бетона Rb

Класс прочности B5 B7,5 B10 B12,5 B15 B20 B25
Rb, МПа 2,8 4,5 6,0 7,5 8,5 11,5 14,5

Коэффициент jb принимается не больше 2,5 для бетонов классов выше B7,5 и не больше 1,5 для бетонов класса B7,5 и ниже.

Размеры плиты (ширина B и длина L) назначаются по требуемой площади Af, увязываются с контуром колонны (свесы опорной плиты должны быть не менее 40 мм) и согласуются с сортаментом (рис. 4.14).

Рис. 4.14. К расчету опорной плиты

Назначаем ширину плиты:

B = h + 2tt + 2c = 36 + 2 · 1 + 2 · 4 = 46 см,

где h = 36 см – высота сечения стержня колонны;

tt = 10 мм – толщина траверсы (принимают 8 – 16 мм);

с = 40 мм – минимальный вылет консольной части плиты (предварительно принимают равным 40 – 120 мм и при необходимости уточняют в процессе расчета толщины плиты).

Для центрально-сжатой колонны опорная плита должна быть близкой к квадрату (рекомендуемое соотношение сторон L/В ≤ 1,2). Принимаем квадратную плиту с размерами В = L = 480 мм.

Площадь плиты Af = LВ = 48 · 48 =2304 см 2 .

Площадь обреза фундамента (размеры верхнего обреза фундамента устанавливаем на 20 см больше размеров опорной плиты)

Расчетное сопротивление бетона смятию под плитой

Проверяем прочность бетона под плитой:

Уменьшение размеров плиты не требуется, так как она была принята с минимальными размерами в плане.

Расчёт опорной плиты колонны.

Конструкция базы должна отвечать принятому в расчётной схеме способу её сопряжения с основанием. Наиболее простой считается конструкция базы с фрезерованным торцом колонны (рис. 14). В этом случае плита базы должна иметь достаточную толщину для того, чтобы равномерно передать нагрузку на фундамент.

Рис. 14. Схема базы колонны

8.6.1 Исходные данные:

Фундамент выполнен из бетона класса В20. Расчётная прочность бетона на местное сжатие Rb,loc= φRb= 1,0x11,5 МПа = 117 кг/см 2 .

Расчётная нагрузка от колонны составляет N = 58000 кг (см. п. 8.4.1).

Опорная плита из стали С255, расчётное сопротивление Ry= 2395 кг/см 2 .

Расчёт.

При фрезерованном торце колонны плиту обычно принимают квадратной со стороной

То есть минимальная площадь опорной плиты из условия прочности бетона основания Аb,loc= 22,26х22,26 = 495,7 ≈ 500 см 2 .

Из условия расположения сварных швов и фундаментных болтов принимаем размер фундаментной плиты по конструктивным соображениям 40х35 см, площадь плиты Апл = 40х35 = 1400см 2 .

В нашем случае плита работает как пластина на упругом основании, воспринимающая давление, сконцентрированное на участке, ограниченном контуром стержня (рис. 15).

Рис. 15. К расчёту базы колонны

В запас прочности, изгибающий момент в плите по кромке колонны определяется как для консоли по формуле

где σф – напряжение в фундаменте под плитой базы,

А – площадь трапеции (заштрихованная на рис.15);

с =6,7 см – расстояние от центра тяжести трапеции до кромки колонны.

Определяем напряжение в фундаменте:

Определяем площадь трапеции:

Изгибающий момент в плите по кромке колонны

Минимально требуемая толщина опорной плиты

где b­– основание трапеции, примыкающее к колонне (высота сечения колонны).

Принимаем опорную плиту толщиной 3,0 см.

Расчет экономических показателей.

На основании выполненных расчетов для фрагмента здания по схеме на рис. 1 выполним расчет технико-экономических показателей по расходу стали. Поскольку расчет балок покрытия не производился, в целях данной работыпринимаем: главные балки покрытия приняты из двутавра45Б2, прогоны покрытия – из 35Б2.

Наименование Сечение по СТО АСЧМ Длина, м Колич., шт. Вес кг/ пог. м Вес всего, кг В % от общей массы
Главная балка покрытия 45Б2 5,7 76,0 5198,4 20,0
Прогон покрытия 35Б2 6,0 49,6 7440,0 28,5
Главная балка перекрытия 40Б1 5,7 56,6 3871,5 14,8
Прогон перекрытия 30Б2 6,0 36,7 5505,0 21,1
Колонна 20Ш1 7,4 30,6 4076,0 15,6
ВСЕГО: 26090,9 100,0

Для последующих сравнений определяем удельные показатели:

1. Расход стали на 1 кв.м общей площади:

общая площадь (упрощенно) равна 12х30х2 = 720 м 2 ;

удельный расход на 1 кв. м 26090,9/720,0 = 36,24 кг/м 2 .

2. Расход стали на 1 куб м здания:

объем здания 720,0х6,05 = 4356,0 м 3 ;

удельный расход на 1 куб. м 26090,9/4356,0 = 6,0 кг/м 3 .

Для оценки экономической эффективности проектов гаражей стоянок применяется также, показатель расхода стали на 1 машино/место. Для целей нашей работы примем, что на одном уровне располагается 12 машино/мест, всего на фрагменте – 24 машино/места.Расход стали на 1 машино/место:

26090,9/24 = 1087,1 кг на 1 машино/место.

Заключение.

В методических указаниях даны основные теоретические и практические материалы для выполнения расчетно-графической работы по дисциплине "Основы металлических конструкций". Даны примеры расчетов наиболее часто встречающихся отдельных элементов конструкций – балок и колонн.В приложениях к методическим указаниям даны необходимые справочные материалы и пример оформления графической части работы.

В графической части работы следует выполнять узлы конструкций в соответствии с заданием и подобранными в расчетах сечениями балок.

СПИСОК ЛИТЕРАТУРЫ

1 Инженерные конструкции. Учебник под редакцией В.В. Ермолова. – М.:"Архитектура-С",2007.

2 Металлические конструкции. Учебник под редакцией Е.И. Беленя,6-е издание.- М.: "Стройиздат", 1986.

3 Металлические конструкции. Учебник под редакцией Ю.И. Кудишина, 11-е издание.- М.: Издательский центр "Академия", 2008.

4 Металлические конструкции. Файбишенко В.К. Учебное пособие для ВУЗов. - М.: "Стройиздат", 1984.

5 СП 16.13330.2011 Актуализированная редакция "СНиП II-23-81* "Стальные конструкции".

6 СП 53-102-2004 "Общие правила проектирования стальных конструкций".

7 СП 20.13330.2011 Актуализированная редакция "СНиП 2.01.07-85* "Нагрузки и воздействия"

8 Справочник проектировщика промышленных и общественных зданий и сооружений. Расчетно-теоретический. В 2-х кн. Кн. 1. Под ред. А.А. Уманского. Изд. 2-е, перераб. и доп. М., Стройиздат, 1972,

ПРИЛОЖЕНИЯ

к методическим указаниям для выполнения расчётно-графической работы по дисциплине "Основы металлических конструкций"

Приложение 1.

Схемы состава перекрытий


Приложение 2.

Сортамент СТО АСЧМ 20-93.

Двутаврыгорячекатаные с параллельными гранями полок

Про-филь Размеры профиля, мм Площадь сечения, см 2 Масса 1 м длины, кг Справочные величины для осей
h b S t R Ix, см 4 Wx, см 3 Sx, см 3 ix, см Iy, см 4 Wy, см 3 iy, см
10 Б1 4,1 5,7 10,32 8,1 34,2 19,7 4,07 15,9 5,8 1,24
12 Б1 117,6 3,8 5,1 11,03 8,7 43,8 24,9 4,83 22,4 1,43
12 Б2 4,4 6,3 13,21 10,4 30,4 4,9 27,7 8,7 1,45
14 Б1 137,4 3,8 5,6 13,39 10,5 63,3 35,8 5,7 36,4 1,65
14 Б2 4,7 6,9 16,43 12,9 77,3 44,2 5,74 44,9 12,3 1,65
16 Б1 5,9 16,18 12,7 87,8 49,6 6,53 54,4 13,3 1,83
16 Б2 7,4 20,09 15,8 108,7 61,9 6,58 68,3 16,7 1,84
18 Б1 4,3 6,5 19,58 15,4 120,1 67,7 7,37 81,9 2,05
18 Б2 5,3 223,95 18,8 146,3 83,2 7,42 100,8 22,2 2,05
20 Б1 5,5 27,16 21,3 184,4 104,7 8,24 133,9 26,8 2,22
25 Б1 32,68 25,7 285,3 159,7 10,4 254,8 41,1 2,79
25 Б2 37,66 29,6 324,2 182,9 10,37 293,8 2,79
30 Б1 5,5 40,80 424,1 237,5 12,44 441,9 59,3 3,29
30 Б2 6,5 46,78 36,7 480,6 271,1 12,41 507,4 67,7 3,29
35 Б1 52,68 41,4 641,3 358,1 14,51 791,4 3,88
35 Б2 63,14 49,6 774,8 14,65 984,2 112,5 3,95
40 Б1 72,16 56,6 1011,1 16,66 1446,9 145,4 4,48
40 Б2 84,12 1185,3 663,2 16,79 1736,2 173,6 4,54
45 Б1 84,30 66,2 725,1 18,45 1579,7 158,8 4,33
45 Б2 96,76 1486,8 839,6 1871,3 187,1 4,4
50 Б1 8,8 92,38 72,5 1497,8 853,5 19,97 1581,5 158,9 4,14
50 Б2 1011,27 79,5 1688,4 957,3 20,33 1844,4 185,4 4,27
50 Б3 114,23 89,7 1087,7 20,47 2140,3 4,33
55 Б1 9,5 13,5 113,36 2050,9 1165,1 22,16 2404,5 218,6 4,61
55 Б2 15,5 124,75 97,9 2295,8 1301,6 22,44 2760,3 250,9 4,7
60 Б1 120,45 94,6 2306,1 1325,5 23,89 198,9 4,05
60 Б2 134,41 105,5 2587,9 1489,5 24,03 2277,5 227,8 4,12
70 Б0 11,8 15,2 153,05 120,1 3295,5 1913,1 27,31 3097,7 269,4 4,5
70 Б1 15,5 164,74 129,3 3644,9 2094,9 27,65 4556,4 350,5 5,26
70 Б2 12,5 18,5 183,64 144,2 4186,9 2392,8 28,19 5436,7 418,2 5,44

Про­филь Размеры профиля, мм Пло­щадь сече­ния, см 2 Масса 1 м длины, кг Справочные величины для осей
h b S t R Ix, см 4 Wx, см 3 Sx, см 3 ix, см Iy, см 4 Wy, см 3 iy, см
20Ш1 39,01 30,6 277,3 154,3 8,3 507,1 67,6 3,61
25Ш1 56,24 44,1 501,8 279,2 10,43 984,3 112,5 4,18
30 Ш1 72,38 56,8 771,4 429,5 12,52 1602,9 160,3 4,71
30 Ш2 87,38 68,6 947,4 529,9 12,75 2033,8 202,4 4,82
35 Ш1 83,17 65,3 1024,4 563,8 14,34 2834,1 227,6 5,84
35 Ш2 101,51 79,7 1275,2 706,1 14,61 3650,5
40 Ш1 9,5 12,5 112,91 88,6 1595,6 880,8 16,45 5575,4 372,9 7,03
40 Ш2 135,95 106,7 1983,4 16,87 7207,1 480,5 7,28
45 Ш1 157,38 123,5 2548,7 1412,5 18,88 8110,3 540,7 7,18
50 Ш1 145,52 114,2 1395,7 20,37 6762,4 450,8 6,82
50 Ш2 14,5 17,5 176,34 138,4 2951,4 1666,7 20,19 7896,4 526,4 6,69
50 Ш3 15,5 20,5 198,86 156,1 1912,8 20,48 9249,7 616,6 6,82
50 Ш4 16,5 23,5 221,38 173,8 3818,9 2161,5 20,75 10603,4 706,9 6,92
60 Ш1 174,49 3529,8 1981,5 24,26 511,2 6,63
60 Ш2 20,5 217,41 170,7 4285,3 24,09 9257,4 617,2 6,53
60 Ш3 24,5 252,37 198,1 5026,6 2869,9 24,38 11067,3 737,8 6,62
60 Ш4 28,5 287,33 225,6 5767,2 3305,6 24,64 12879,3 858,6 6,7
70 Ш1 211,49 4983,7 2814,6 28,55 9022,9 601,5 6,53
70 Ш2 242,53 190,4 3233,6 28,63 10381,1 692,1 6,54
70 Ш3 27,5 289,09 226,9 6761,9 3867,2 28,76 12422,4 828,2 6,56
70 Ш4 20,5 31,5 329,39 258,6 7696,2 4426,7 28,9 14240,2 949,3 6,58
70 Ш5 36,5 375,69 294,9 8821,9 5099,5 29,18 16512,3 1100,8 6,63
80 Ш1 13,5 209,71 164,6 5254,7 3018,9 31,3 7676,7 511,8 6,05
80 Ш2 243,45 191,1 6405,4 3644,1 32,28 9928,9 661,9 6,39
90 Ш1 18,5 243,96 191,5 6642,1 3861,2 34,63 8278,5 553,7 5,83
90 Ш2 270,87 212,6 7760,3 35,71 10283,3 687,8 6,16
100Ш1 293,8 230,6 9010,9 5234,1 38,96 11517,9 719,9 6,26
100Ш2 328,88 258,2 10348,2 5982,6 39,62 856,9 6,46
100Ш3 363,96 285,7 11684,5 6736,2 40,18 993,9 6,61
100Ш4 19,5 32,5 400,58 314,5 12940,7 40,45 17828,8 1114,3 6,67

Про­филь Размеры профиля, мм Пло­щадь сече­ния, см 2 Масса 1 м длины, кг Справочные величины для осей
h b S t R Ix, см 4 Wx, см 3 Sx, см 3 ix, см Iy, см 4 Wy, см 3 iy, см
20 К1 6,5 52,69 41,4 392,5 216,4 8,54 1314,4 132,1 4,99
20 К2 63,53 49,9 471,6 262,8 8,62 1601,4 160,1 5,02
25 К1 79,72 62,6 745,6 410,7 10,73 3089,9 248,2 6,23
25 К2 92,18 72,4 866,6 480,3 10,84 3648,6 291,9 6,29
25 К3 15,5 102,21 80,2 960,8 535,4 10,9 4088,6 325,8 6,32
30 К1 110,80 1265,1 694,7 13,04 6240,9 417,5 7,51
30 К2 119,78 1360,7 750,6 13,05 6754,5 450,3 7,51
30 К3 134,78 105,8 1433,7 806,9 12,64 7104,4 465,9 7,26
30 К4 134,82 105,8 1538,2 852,8 13,17 7732,3 513,8 7,57
35 К1 139,03 109,1 1827,4 1001,2 14,99 10541,7 605,8 8,71
35 К2 173,87 136,5 2302,6 1272,7 15,22 13585,3 776,3 8,84
40 К1 186,81 146,6 2850,1 1559,3 17,34 18921,9 950,8 10,06
40 К2 218,69 171,7 3331,2 1936,3 17,45 1120,6 10,12
40 К3 254,87 200,1 3844,4 2139,9 17,5 26199,5 1300,2 10,14
40 К4 295,39 231,9 4481,8 2513,2 17,72 31026,2 1532,2 10,25
40 К5 35,5 370,49 290,8 3198,6 18,02 37914,2 1895,7 10,12

Приложение 3.

Справочник проектировщика промышленных и общественных зданий и сооружений. Расчетно-теоретический. В 2-х кн. Кн. 1. Под ред. А.А. Уманского. Изд. 2-е, перераб. и доп.

Подбор толщины опорной плиты баз колонн

Добрый день! Тема заезженная, но все же требует обсуждения. Подбор толщины опорной плиты осуществляется расчетом на изгиб на нагрузку отпора фундамента равномерно распределенной по все площади расчетного участка. Но классическая методика дает завышенные результаты. При расчете численными методами в программных комплексах получаются совершенно другие результаты.
Например в IDEA StatiCa отпор учитывается как реакция упругого основания опорной пластины. Согласно МКЭ расчёту, распределение напряжений существенно отличается от теоретического, используемого в ручном расчёте (равномерного по всей площади опорной плиты – по прямоугольнику), что более соответствует реальной картине.
Все это на простых примерах приводит к другим выводам.

Пример 1. (см. вложение 1)

Шарнирная база. Осевая нагрузка 60 т. Толщина опорной плиты 12 мм. Сталь С345.

При расчете в Комете-2 или при ручном расчете получается, что плита не проходит по прочности опорной плиты по нормальным напряжениям на участке опертом на три канта, причем со значительным перегрузом.
При численном моделировании в IDEA StatiCa в этой зоне напряжения в бетоне минимальны и распределены далеко не равномерно, и при анализе напряжений не возникает вопросов к ее прочности, коэффициент использования по прочности всего около 50%.
Получается такая картина. Что при более толстой плите напряжения в бетоне более равномерно распределены по ее площади и имеют меньшее значение. При более тонкой плите напряжения концентрируются под гранями колонны и повторяют ее контур, но прочность плиты при этом не исчерпывается (даже при опорной плите 3 мм).
И в итоге для шарнирной базы решающим фактором является прочность бетона под опорной плитой. И при более прочном бетоне, мы можем использовать тонкие опорные пластины (назначать чисто конструктивно) и это приведёт к существенной экономии во многих случаях.
Где я не прав?

Пример 2. (см. вложение 2)

Жесткая база. Осевая нагрузка 80т. Момент 9т. Толщина опорной плиты 24 мм. Анкера М30. Сталь С345.

Что нам необходимо для обеспечения требуемой жесткости узла? Чтобы анкера держали момент. И подобрать опорную плиту по прочности.
Такая же ситуация. Определяющим толщину плиты при ручном расчете является участок опертый на три канта (между полок колонны), но распределение напряжений под плитой концентрируется в сжатой зоне под одной из полок колонны. Опять же по прочности при численном моделировании проходит и конструктивно принятая плита t10, и ее толщина влияет только на величину напряжений в бетоне и их распределение.
И в итоге получается, что приняв более прочный бетон, мы можем уменьшить толщину плиты. Анкера держат, плита не ломается. Что еще нужно? Ограничить деформации плиты? Но нет нигде таких требований. Угол поворота сечения? Тоже чем ограничивать.
Где я не прав и какие у вас мысли по этому поводу?
Исходя из чего назначать толщину опорной плиты при шарнирной (пример 1) и жесткой базе (пример 2) при такой картине?

Читайте также: