Где применяются щелочные металлы

Обновлено: 10.05.2024

Название «щелочные металлы» произошло от их способности в реакциях с водой образовывать щелочи — основания, растворимые в воде. Слово «выщелачивать» славянского происхождения. В переводе оно означает «растворять».

Щелочными называют металлы IA группы таблицы Менделеева. Их шесть: литий, натрий, рубидий, калий, цезий, франций. По внешнему виду они представляют собой металлы серебристо-белого цвета, за исключением цезия — он золотисто-желтый. Основные физические свойства простых веществ:

  • пластичность;
  • мягкость;
  • невысокая плотность;
  • высокая химическая активность;
  • легкая окисляемость;
  • электропроводность;
  • теплопроводность;
  • легкоплавкость.

В связи со способностью быстро окисляться, т.е. вступать в реакцию с кислородом и другими веществами, в природе они встречаются в форме соединений.

Соли щелочных металлов окрашивают пламя спиртовки в различные цвета:

В отличие от этих двух представителей, литий, рубидий, цезий не встречаются в природе часто. Следовательно, они относятся к группе редких металлов. Франций — искусственно полученный элемент, отличающийся радиоактивностью.

Калий и натрий являются участниками водно-солевого, а также кислотно-щелочного баланса организма человека. Эти элементы важны для циркуляторных процессов крови, деятельности энзимов. Для жизнедеятельности растений особенно важен калий.

Щелочные металлы имеют валентность, равную единице (степень окисления +1).

Поскольку данная группа элементов в системе Менделеева следует непосредственно за инертными газами, у атомов щелочных металлов появляется новый энергетический уровень, на котором содержится один электрон. Электронная конфигурация — ns1.

Поскольку любой атом стремится приобрести конфигурацию инертного газа, атомы щелочных металлов способны легко отдать валентные электроны и проявлять восстановительные свойства. Этот факт свидетельствует о невысоких значениях энергии ионизации их атомов, а также о низких значениях электроотрицательности.

Сверху вниз по группе наблюдается увеличение радиуса атомов, снижение электроотрицательности, увеличение восстановительных свойств простых веществ.

Какие элементы относятся к щелочным металлам

Перечень щелочных металлов:

  • литий — Li;
  • натрий — Na;
  • калий — K;
  • рубидий — Rb;
  • цезий — Zs;
  • франций — Fr.

Они занимают IA группу в Периодической системе Д. И. Менделеева.

Электронная формула, в какую группу входят

Строение атомов щелочных металлов, которые расположены в IA группе, можно свести к таблице следующего вида:

В роли окислителей в таких взаимодействиях участвуют простые и сложные вещества. Это могут быть неметаллы, органические соединения, кислоты, соли, оксиды.

Каждый элемент взаимодействует индивидуально.

Оксид в качестве продукта образовывается только в реакциях лития:

4 L i + O 2 = 2 L i 2 O

В случае с натрием в ходе реакции образуется пероксид, а с калием, рубидием, цезием — надпероксид:

2 N a + O 2 = N a 2 O 2

  1. К реакциям с простыми веществами относится образование галогенидов:

2 N a + C l 2 = 2 N a C l

Рассматривая взаимодействие с H2, S, P, C, Si, необходимо знать, что для протекания данных реакций необходимо нагревание.

Литий реагирует с азотом при комнатной температуре.

  1. Реакции с водой протекают у щелочных металлов по-разному: литий — спокойно, всплывая на поверхность жидкости, натрий реагирует более активно с образованием пламени, калий, цезий и рубидий реагируют со взрывом. В общем виде

2 M + 2 H 2 O = 2 M O H + H 2 (М – металл)

  1. В два этапа протекают реакции с кислотами. Металл сначала вступает в реакцию с водой, а после, в момент образования щелочи, она реагирует с разбавленной кислотой и нейтрализуется. Такие реакции часто протекают со взрывом, поэтому на практике проводятся редко.
  2. В результате реакции с аммиаком образуются амиды:

2 L i + 2 N H 3 = 2 L i N H 2 + H 2

  1. Взаимодействие с этанолом, фенолами, в ходе которого щелочные металлы замещают атомы водорода в гидроксильной группе ОН этих соединений:

2 N a + 2 C 2 H 5 O H = 2 C 2 H 5 O N a + H 2

  1. Щелочные металлы могут использоваться для восстановления других металлов, к примеру, алюминия:

3 N a + A l C l 3 = A l + 3 N a C l

Физические свойства щелочных металлов объясняются металлической связью в кристаллической решетке. Для них характерен металлический блеск, отличная ковкость, пластичность, тепло- и электропроводность.

Самым твердым из всей группы является литий, а самая высокая плотность у цезия. Некоторые физические свойства щелочных металлов в сравнении представлены в следующей таблице:

Из таблицы следует, что все элементы получили свое применение благодаря низким температурам плавления (кипения). Их значения снижаются по мере увеличения порядкового номера в Периодической системе Менделеева.

Все металлы, за исключением лития, настолько мягки, что их можно разрезать ножом или на специальном оборудовании раскатать в лист фольги.

Еще одно свойство, которое имеет практическое значение в промышленности — низкая плотность. Плотность лития, натрия и калия ниже плотности воды.

Указанные физические свойства обусловлены слабой связью электронов внешних слоев с атомами щелочных металлов. Поэтому энергия ионизации атомов невысокая, и они при взаимодействии друг с другом образуют металлическую связь.

В периодической таблице в начале каждого периода стоит элемент с низкой температурой плавления (щелочной металл). По мере увеличения порядковых номеров в периоде слева направо этот показатель сначала увеличивается к середине периода (IV А группа), где расположены элементы, образующие преимущественно атомные кристаллические решетки (C, Si).

Затем в конце периода температуры плавления снова уменьшаются, поскольку в VII-VIII группах расположены элементы, простые вещества которых характеризуются молекулярными кристаллическими решетками (галогены, благородные газы).

Меры предосторожности при работе с ними

Из-за высокой химической активности работа со щелочными металлами должна осуществляться с большой осторожностью. Для их хранения выделяются отдельные емкости, которые запаивают и помещают в них слой вазелинового масла или керосина. Тогда предотвращается взаимодействие с воздухом, в частности с кислородом, и исключается горение.

На каждом предприятии, где осуществляются работы с этими химическими элементами и их соединениями, разрабатываются специальные правила безопасности и меры предосторожности, исключающие наступление аварийных ситуаций и производственных травм.

Все сотрудники перед получением допуска к работе должны пройти обязательный производственный инструктаж, который бывает предварительный (перед началом работы) и периодический (через равные промежутки времени — ежеквартально, ежегодно). Они включают качественное изучение требований нормативных документов по безопасности труда и производственному нормированию.

Сотрудники на своих рабочих местах должны находиться в защитной спецодежде, быть оснащены средствами индивидуальной защиты (для органов зрения, дыхания, кожных покровов).

Поскольку растворы щелочных металлов — щелочи, их воздействие на кожу может привести к ожогам и раздражениям. Щелочи при попадании брызг в глаза могут спровоцировать отторжение ветвей глазного нерва и вызвать полную слепоту.

Выше описана возможность бурной реакции металлов с кислородом вплоть до взрыва. Поэтому рабочие места укомплектовываются средствами пожаротушения, которые периодически проходят технические проверки своей исправности. Щелочные металлы нельзя тушить водой, так как они вступают в реакцию с ней.

Натрий и калий можно тушить аргоном и азотом. Аргон эффективнее, поскольку существенно тяжелее воздуха. Литий продолжает гореть в атмосфере азота и диоксида углерода. Для тушения горящего лития разработаны специальные порошковые составы Вексон-D3 на основе различных флюсов и графита с гидрофобизирующими добавками.

С соблюдением техники безопасности проводится и утилизация отходов после работы. Они подвергаются нейтрализации с применением специальных составов, разрешенных для применения компетентными органами.

Получение простых веществ, где применяются

Чистый натрий можно получать путем электролиза расплава хлорида натрия с графитовыми электродами, обладающими инертностью. Поскольку в таком расплаве имеются ионы Na и Cl, в ходе электролиза на катоде восстанавливаются катионы натрия до металлического натрия, а на аноде — окисляются анионы хлора до газообразного хлора.

1. Щелочные металлы: общая характеристика, строение; свойства и получение простых веществ

Щелочными металлами называются химические элементы-металлы \(IA\) группы Периодической системы Д. И. Менделеева: литий \(Li\), натрий \(Na\), калий \(K\), рубидий \(Rb\), цезий \(Cs\) и франций \(Fr\).

Электронное строение атомов. На внешнем энергетическом уровне атомы щелочных металлов имеют один электрон ns 1 . Поэтому для всех металлов группы \(IA\) характерна степень окисления \(+1\).

  • увеличение радиуса атомов;
  • усиление восстановительных, металлических свойств.

Нахождение в природе. Из щелочных металлов наиболее широко распространены в природе натрий и калий. Но из-за высокой химической активности они встречаются только в виде соединений.

  • каменная соль (хлорид натрия \(NaCl\)),
  • глауберова соль, или мирабилит — декагидрат сульфата натрия Na 2 SO 4 \(·\) 10 H 2 O ,
  • сильвин — хлорид калия \(KCl\),
  • сильвинит — двойной хлорид калия-натрия \(KCl\) \(·\)\(NaCl\) и др.

Соединения лития, рубидия и цезия в природе встречаются значительно реже, поэтому их относят к числу редких и рассеянных.


Физические свойства простых веществ. В твёрдом агрегатном состоянии атомы связаны металлической связью. Наличие металлической связи обусловливает общие физические свойства простых веществ-металлов: металлический блеск, ковкость, пластичность, высокую тепло- и электропроводность.

В свободном виде простые вещества, образованные элементами \(IA\) группы — это легкоплавкие металлы серебристо-белого (литий, натрий, калий, рубидий) или золотисто-жёлтого (цезий) цвета, обладающие высокой мягкостью и пластичностью.

shutterstock_1617945619.png

Натрий Nātrījs Sodium (1).png

Наиболее твёрдым является литий, остальные щелочные металлы легко режутся ножом и могут быть раскатаны в фольгу.

Только у натрия плотность немного больше единицы ρ = 1,01 г / см 3 , у всех остальных металлов плотность меньше единицы.

Химические свойства. Щелочные металлы обладают высокой химической активностью, реагируя с кислородом и другими неметаллами.

Поэтому хранят щелочные металлы под слоем керосина или в запаянных ампулах. Они являются сильными восстановителями.

Взаимодействие натрия с водой протекает с выделением большого количества теплоты (т. е. реакция является экзотермической). Кусочек натрия, попав в воду, начинает быстро двигаться по её поверхности. Под действием выделяющейся теплоты он расплавляется, превращаясь в каплю, которая, взаимодействуя с водой, быстро уменьшается в размерах. Если задержать её, прижав стеклянной палочкой к стенке сосуда, капля воспламенится и сгорит ярко-жёлтым пламенем.

Получение. Металлический натрий в промышленности получают главным образом электролизом расплава хлорида натрия с инертными (графитовыми) электродами.

Щелочные металлы – список и особенности взрывоопасных элементов

Продукты на основе этих металлов стали неотъемлемой частью жизни человека. Это и поваренная соль, и пищевая сода, и марганцовка.

Щелочные металлы ценят преподаватели химии: опыты с такими субстанциями способны увлечь химией любого.

Щелочные металлы

Что представляют собой

Щелочные металлы – это элементы, занимающие почти весь первый столбец таблицы Менделеева. Кроме них, там расположился только водород.

К щелочным металлам относятся:

Названы щелочными вследствие растворимости соединений водой.

Результат воздействия воды – гидроксиды. Они также растворимы, потому называются щелочами.

Древние славяне под выщелачиванием подразумевали растворение вещества водой.

Особенности структуры

У атома щелочного металла на внешнем слое один электрон. Степень окисления у металлов группы одна – +1.

Этим обусловлена сходность характеристик элементов щелочного сегмента.

Как представлены в природе

Щелочная группа представлена на планете по-разному:

  • Самые распространенные элементы – натрий с калием.
  • Литий, рубидий, цезий причислены к редким и рассеянным.
  • Самым редкостным щелочным металлом является франций. По редкости этот радиогенный материал – второй на планете: суммарный объем в земной коре не превышает трети килограмма.

Из-за повышенной активности щелочные металлы в природе не встречаются. Лишь как соединения с прочими элементами.

Поставщики натрия с калием:

  • Хлорид натрия – обычная каменная соль. Ее содержит вода морей и океанов.
  • Глауберова соль.
  • Соли калия находят в почвах.

Металлы входят в структуру ряда минералов. Это в основном алюмосиликаты: альбит – натриевый; ортоклаз (полевой шпат) – калийный.

Технология получения

Щелочные металлы получают несколькими способами:

  • Электролиз. Материалом служат расплавы их хлоридов (или других галогенидов) либо гидроксиды. Растворы солей как исходник не годятся: конечным продуктом становятся водород и щелочи.
  • Восстановление из бромида, хромата либо хлорида. Восстановителями выступают магний, цирконий, кальций, кремний. Процесс получения протекает в вакууме при температурах под 1000°С, образующийся металл периодически отгоняется.

Натрий восстанавливают из карбоната. Ингредиенты: уголь, известняк, температура 990°C. Для промышленных нужд синтезируют гидроксид из крепкого раствора поваренной соли.

Физико-химические свойства

Металлы щелочного сегмента наделены общими и оригинальными физическими и химическими свойствами.

Физические характеристики

Элементы группы наделены общими физическими свойствами:

  • Мягкость. Любой (кроме лития) легко режется.
  • Легкость. Плотность лития, натрия, калия меньше единицы. Они не тонут в воде.
  • Серебристо-белый цвет. Только цезий наделен желтоватостью на серебристом фоне.
  • Металлический отблеск.

Оксиды группы обладают типичными для этого вида соединений свойствами: реагируют с водой, кислотами, их оксидами. У каждого свой цвет. Устойчивость и цветность оксидов щелочных элементов увязана с габаритами атома.

Химические параметры

Главная особенность щелочной группы – чрезмерная химическая активность:

  • Разогретые щелочные элементы реагируют с азотом, кремнием, галогенами, серой, фосфором, углеродом. Результат – соответствующие продукты (галогениды, сульфиды, карбиды, силициды, др.)
  • При нагревании с прочими металлами образуются полуметаллы (интерметаллиды).
  • На воздухе сгорают.

При взаимодействии металлов с водой выделяется водород, возможен взрыв.

Окраска пламени щелочными металлами и их соединениями:

Щелочной металл Цвет пламени
Li Карминно-красный
Na Жёлтый
K Фиолетовый
Rb Буро-красный
Cs Фиолетово-красный

Элементы, не тонущие в воде, горят и взрываются в ней:

  • Калий создает пламя фиалковой гаммы, взрыв самый сильный.
  • У натрия пламя желтое, взрыв послабее.
  • Литий просто горит.

Взрывом заканчивается реакция с кислотами.

Все щелочные металлы бурно реагируют на воду. Процесс сопровождается водородным фонтаном, затем пламенем, взрывом.

Мирно протекают реакции со спиртами, карбоновыми кислотами, другими органическими субстанциями.

Формула кислородного соединения Цвет
Li2O Белый
Na2O Белый
K2O Желтоватый
Rb2O Жёлтый
Cs2O Оранжевый
Na2O2 Светло-
жёлтый
KO2 Оранжевый
RbO2 Тёмно-
коричневый
CsO2 Жёлтый

Как опознать щелочной металл

Вид щелочного металла «выдает» окрас пламени:

Натрий либо его соединения делают пламя охристо-желтым.

Где используются

Промышленники оценили утилитарные свойства щелочных металлов. Они легкоплавки, пластичны (раскатываются до фольги), хорошо куются, пропускают тепло и электричество.

Самый известный продукт – поваренная соль (формула NaCl). Ее дополняют кальцинированная сода с едким натром (карбонат, гидроксид натрия), марганцовка (перманганат калия).

Их производят миллионами тонн:

  • Каустическая сода (в просторечии едкий натр) – ингредиент при варке мыла, производстве алюминия, искусственных волокон.
  • Кальцинированная сода – сырье для получения мыла, стекла, заменитель хозяйственного мыла.

Каустическая и кальцинированная сода, глауберова соль несъедобны. Только столовая сода и поваренная соль.

  • Пищевая сода нашла применение как домашнее средство для устранения ангины, обязательный ингредиент выпечки, натуральный консервант.

Альбит и ортоклаз классифицируются как коллекционный и декоративно-поделочный материал.

Техника безопасности

Химически активные элементы требуют осторожности.

При самостоятельной работе соблюдают следующие правила:

  1. Перед началом работы надеть защитные перчатки и очки (маску).
  2. Кусочек отрезают скальпелем от массива, не вытаскивая из керосина.
  3. В емкости, заполненной аргоном, счищают с поверхности остатки оксидов.
  4. Очищенный образец помещают в сосуд, где будет проводиться опыт.
  5. Остатки, не затронутые реакцией, засыпают сухим спиртом.

Аналогичный порядок работы со щелочноземельными элементами. Они так же химически активны.

Щелочные и щелочноземельные металлы хранят притопленными в керосине: контакт с водой, воздухом заканчивается взрывом.

Щелочные металлы

Щелочные металлы — группа неорганических веществ, простых элементов таблицы Менделеева. Все они обладают похожим атомным строением и соответственно, похожими свойствами. В группу входят калий, натрий, литий, цезий, рубидий, франций и теоретически описанный, но еще не синтезированный элемент унуне́нний. Первые пять веществ существуют в природе, франций — искусственно созданный, радиоактивный элемент. Свое название щелочные металлы получили из-за способности образовывать щелочи в реакции с водой.

Вся элементы группы химически активны, поэтому на Земле встречаются только в составе различных минералов, например, каменной, калийной, поваренной соли, буры, полевого шпата, морской воды, подземных рассолов, чилийской селитры. Франций часто сопутствует урановым рудам; рубидий и цезий — минералам с натрием и калием.

Свойства

Все представители группы — мягкие металлы, их можно резать ножом, сгибать руками. Внешне — блестящие, белого цвета (кроме цезия). Цезий отливает золотистым блеском. Легкие: натрий и калий легче воды, литий всплывает даже в керосине. Классические металлы с хорошей электро- и теплопроводностью. Горят, придают пламени характерный цвет, являющийся одним из аналитических способов определить тип металла. Легкоплавкие, самым «тугоплавким» является литий (+180,5 °С). Цезий тает прямо в руках при температуре +28,4 °С.

Активность в группе увеличивается по мере роста атомной массы: Li →Cs. Обладают восстановительными свойствами, в том числе в реакции с водородом. Проявляют валентность -1. Бурно реагируют с водой (все кроме лития — со взрывом); с кислотами, кислородом. Взаимодействуют с неметаллами, спиртами, водным аммиаком и его производными, карбоновыми кислотами, многими металлами.

Калий и натрий являются биогенными элементами, участвуют в водно-солевом и кислотно-щелочном балансе человеческого организма, необходимы для нормальной циркуляции крови и функционирования многих энзимов. Калий важен для растений.

В нашем организме есть и рубидий. Его нашли в крови, костях, головном мозге, легких. Он оказывает противовоспалительное, противоаллергическое действие, притормаживает реакции нервной системы, усиливает иммунитет, положительно влияет на состав крови.

Меры предосторожности

Щелочные металлы очень опасны, способны воспламеняться и взрываться просто от контакта с водой или воздухом. Многие реакции протекают бурно, поэтому работать с ними допускается только после тщательного инструктажа, с применением всех мер предосторожностей, в защитной маске и защитных очках.

Растворы калия, натрия и лития в воде являются сильными щелочами (гидроксиды калия, натрия, лития); контакт с кожей приводит к глубоким болезненным ожогам. Попадание щелочей, даже низкой концентрации, в глаза может привести к слепоте. Реакции с кислотами, аммиаком, спиртами проходят с выделением пожаро- и взрывоопасного водорода.

Щелочные металлы хранят под слоем керосина или вазелина в герметичных емкостях. Манипуляции с чистыми реактивами проводят в аргоновой атмосфере.

Следует тщательно следить за утилизацией остатков после опытов со щелочными металлами. Все остатки металлов предварительно должны быть нейтрализованы.

Применение

  • Цезий и рубидий используются в фотоэлементах, топливных элементах.
  • Цезий применяется в источниках тока, энергоемких аккумуляторах, счетчиках радиоактивных частиц, гамма-спектрометрах для космических аппаратов; приборах ночного видения и оружейных прицелах. Изотопы цезия используются для стерилизации пищевой тары, медицинских инструментов, мясных продуктов, лекарств; они входят в состав некоторых лекарств, применяются для радиотерапии опухолей.
  • Рубидий входит в состав болеутоляющих, снотворных, успокаивающих препаратов. Применяется в телевизионных трубках, оптических приборах, низкотемпературных источниках тока, в смазке для космических аппаратов, высокочувствительных магнитометрах для космических и геофизических исследований. Производные рубидия используются в атомной промышленности, химпроме, вакуумных радиолампах, высокотемпературных термометрах.
  • Калий и натрий применяются в воздухо-восстановительных системах на подводных лодках и батискафах, в автономных противогазах и дыхательных аппаратах.
  • Литий востребован в источниках тока, для производства подшипниковых сплавов и литийорганических соединений, как катализатор в химпроме.
  • Натрий применяется в газоразрядных лампах, в металлургии; как теплоноситель в атомной индустрии; в химической индустрии в процессах орг.синтеза.
  • В разных сферах промышленности и быта используется большое количество производных щелочных металлов, например, пищевая и кальцинированная сода, поваренная соль, натриевая и калийная селитра, нитраты, сульфаты, карбонаты, гидроксиды натрия, калия и лития и пр.

Студенческий проект на тему «Щелочные металлы.»

Щелочны́е мета́ллы — это элементы 1-й группы периодической таблицы химических элементов (по устаревшей классификации — элементы главной подгруппы I группы): литий Li, натрий Na, калий K, рубидий Rb, цезий Cs, франций Fr, унуненний Uue. При растворении щелочных металлов в воде образуются растворимые гидроксиды, называемые щелочами.


Общая характеристика щелочных металлов

В Периодической системе они следуют сразу за инертными газами, поэтому особенность строения атомов щелочных металлов заключается в том, что они содержат один электрон на внешнем энергетическом уровне: их электронная конфигурация ns1. Очевидно, что валентные электроны щелочных металлов могут быть легко удалены, потому что атому энергетически выгодно отдать электрон и приобрести конфигурацию инертного газа. Поэтому для всех щелочных металлов характерны восстановительные свойства. Это подтверждают низкие значения их потенциалов ионизации (потенциал ионизации атома цезия — самый низкий) и электроотрицательности (ЭО). Как следствие, в большинстве соединений щелочные металлы присутствуют в виде однозарядных катионов. Однако существуют и соединения, где щелочные металлы представлены анионами.

ГЛАВА 2. Кто открыл щелочные металлы.

Литий, Lithium, Li (3)

Когда Дави производил свои знаменитые опыты по электролизу щелочных земель, о существовании лития никто и не подозревал. Литиевая щелочная земля была открыта лишь в 1817 г. талантливым химиком-аналитиком, одним из учеников Берцелиуса Арфведсоном.

В 1800 г. бразильский минералог де Андрада е Сильва, совершая научное путешествие по Европе, нашел в Швеции два новых минерала, названных им петалитом и сподуменом, причём первый из них через несколько лет был вновь открыт на острове Уте.

Арфведсон заинтересовался петалитом, произвёл полный его анализ и обнаружил необъяснимую вначале потерю около 4% вещества. Повторяя анализы более тщательно, он установил, что в петалите содержится "огнепостоянная щелочь до сих пор неизвестной природы".

Берцелиус предложил назвать ее литионом (Lithion), поскольку эта щелочь в отличие от кали и натра впервые была найдена в "царстве минералов" (камней); название это произведено от греч.- камень.

Позднее Арфведсон обнаружил литиевую землю, или литину, и в некоторых других минералах, однако его попытки выделить свободный металл не увенчались успехом. Очень небольшое количество металлического лития было получено Дэви и Бранде путем электролиза щелочи.

В 1855 г. Бунзен и Маттессен разработали промышленный способ получения металлического лития электролизом хлорида лития. В русской химической литературе начала XIX в. встречаются названия: литион, литин (Двигубский, 1826) и литий (Гесс); литиевую землю (щёлочь) называли иногда литина.

Натрий, Natrium, Na (11)

Название "натрий" (англ. и франц. Sodium, нем. Natrium) происходит от древнего слова, распространенного в Египте, у древних греков (vixpov) и римлян. Оно встречается у Плиния (Nitron), у других древних авторов и соответствует древнееврейскому нетер (neter).

В древнем Египте натроном, или нитроном, называли вообще щелочь, получаемую не только из природных содовых озер, но и из золы растений. Ее употребляли для мытья, изготовления глазурей, при мумификации трупов. В средние века название нитрон (nitron, natron, nataron), а также борах (baurach), относилось и к селитре (Nitrum).

Арабские алхимики называли щелочи alkali. С открытием пороха в Европе селитру (Sal Petrae) стали строго отличать от щелочей, и в XVII в. уже различали нелетучие, или фиксированные щелочи, и летучую щелочь (Alkali volatile).

Вместе с тем было установлено различие между растительной (Alkali fixum vegetabile - поташ) и минеральной щелочью (Alkali fixum minerale - сода). В конце XVIII в. Клапрот ввел для минеральной щелочи название натрон (Natron), или натр и для растительной - кали (Kali), Лавуазье не поместил щелочи в "Таблицу простых тел", указав в примечании к ней, что это, вероятно, сложные вещества, которые когда-нибудь будут разложены.

Действительно, в 1807 г. Дэви путем электролиза слегка увлажненных твердых щелочей получил свободные металлы - калий и натрий, назвав их потассий (Potassium) и содий (Sodium).

В следующем году Гильберт, издатель известных "Анналов физики", предложил именовать новые металлы калием и натронием (Natronium); Берцелиус сократил последнее название до "натрий" (Natrium). В начале XIX в. в России натрий называли содием (Двигубский, 182i; Соловьев, 1824); Страхов предлагал название содь (1825). Соли натрия назывались, например, сернокислая сода, гидрохлоровая сода и одновременно уксусный натр (Двигубский, 1828). Гесс, по примеру Берцелиуса, ввел название натрий.

Калий, Kalium, К (19)

Калий (англ. Potassium, франц. Potassium, нем. Kalium) открыл в 1807 г. Дэви, производивший электролиз твердого, слегка увлажненного едкого кали. Дэви именовал новый металл потассием (Potassium), но это название не прижилось. Крестным отцом металла оказался Гильберт, известный издатель журнала "Annalen deг Physik", предложивший название "калий"; оно было принято в Германии и России.

Оба названия произошли от терминов, применявшихся задолго до открытия металлического калия. Слово потассий образовано от слова поташ, появившегося, вероятно, в XVI в. Оно встречается у Ван Гельмонта и во второй половине XVII в. находит широкое применение в качестве названия товарного продукта - поташа - в России, Англии и Голландии.

В переводе на русский язык слово potashe означает "горшечная зола или зола, вываренная в горшке"; в XVI - XVII вв. поташ получали в огромных количествах из древесной золы, которую вываривали в больших котлах. Из поташа приготавливали главным образом литрованную (очищенную) селитру, которая шла на изготовление пороха.

Особенно много поташа производилось в России, в лесах вблизи Арзамаса и Ардатова на передвижных заводах (майданах), принадлежавших родственнику царя Алексея Михайловича, ближнему боярину Б.И.Морозову. Что касается слова калий, то оно происходит от арабского термина алкали (щелочные вещества).

В средние века щелочи, или, как тогда говорили, щелочные соли, почти не отличали друг от друга и называли их именами, имевшими одинаковое значение: натрон, боракс, варек т. д.

Слово кали (qila) встречается приблизительно в 850 г. у арабских писателей, затем начинает употребляться слово Qali (al-Qali), которое обозначало продукт, получаемый из золы некоторых растений, с этими словами связаны арабские qiljin или qaljan (зола) и qalaj (обжигать).

В эпоху иатрохимии щелочи стали подразделять на "фиксированные" и "летучие". В XVII в. встречаются названия alkali fixum minerale (минеральная фиксированная щелочь или едкий натр), alkali fixum. vegetabile (растительная фиксированная щелочь или поташ и едкое кали), а также alkali volatile (летучая щелочь или NН3).

Блэк установил различие между едкими (caustic) и мягкими, или углекислыми, щелочами. В "Таблице простых тел" щелочи не фигурируют, но в примечании к таблице Лавуазье указывает, что фиксированные щелочи (поташ и сода), вероятно, представляют собой сложные вещества, хотя природа их составных частей еще не изучена.

В русской химической литературе первой четверти XIX в. калий назывался потассий (Соловьев, 1824), поташ (Страховй, 1825), поташий (Щеглов, 1830); в "Магазине Двигубского" уже в 1828 г. наряду с названием поташ (сернокислый поташ) встречается название кали (едкое кали, кали соляный и др.). Название калий стало общепринятым после выхода в свет учебника Гесса.

Рубидий, Rubidium, Rb (37)

Авторы открытия спектрального анализа (1859) - Бунзен и Кирхгофф -немедленно применили его в качестве вспомогательного метода при химическом анализе минералов и уже через год сообщили об открытии ими цезия. Продолжая исследования, они заинтересовались минералом лепидолитом (фторсиликат лития и алюминия) и, переработав 150 кг саксонского лепидолита, из фракции, содержащей щелочные металлы, выделили с помощью хлорплатиновой кислоты (H2PtCl6) двойные хлорплатинаты калия, цезия и рубидия.

То обстоятельство, что калийные соли лучше растворяются в воде, чем рубидиевые и цезиевые, помогло исследователям отделить последние от калиевых солей. При спектроскопическом анализе остатка после удаления калия обнаружились две новые красные линии в красной части спектра.

Эти линии Бунзен и Кирхгофф правильно отнесли к новому металлу, который назвали рубидием (лат. rubidus - красный) из-за цвета его спектральных линий. Получить рубидий в виде металла Бунзену удалось в 1863 г.

Цезий, Cesium, Сs (55)

Цезий (англ. Cesium, франц. Cesium, нем. Caesium) - первый элемент, открытый с помощью спектрального анализа. Открытие цезия послужило свидетельством широких возможностей этого метода, до применения которого о существовании цезия могли только подозревать.

Так, в 1846 г. немецкий химик Платтнер, произведя анализ минерала поллукса, получил сумму содержавшихся в нем компонентов, на 7% меньшую, чем можно было ожидать. В 1864 г., уже после того, как Бунзен открыл цезий, итальянец Пизани обнаружил его в поллуксе.

Оказывается, Платтнер, получив хлорплатинат, посчитал, что в его составе содержится калий, в то время как это был силикат цезия и алюминия. Бунзен нашел цезий с помощью спектрального анализа.

В 1860 г., изучая спектры щелочных металлов лития, натрия и калия, он пришел к выводу, что, по всей вероятности, должен существовать четвертый металл этой группы, имеющий такой же характерный спектр, что и литий. И действительно, в скором времени он обнаружил спектральные линии нового элемента: одну слабо-голубую, почти совпадающую с delta - линией стронция, и другую ярко-голубую в области фиолетовой части спектра, почти рядом с красной линией лития.

Бунзен назвал вновь открытый металл цезием (Casium) от лат. caesius - голубой, светло-серый; в древности этим словом обозначали голубизну ясного неба. Чистый металлический цезий получен электролитическим путем в 1882 г.

Франций, Francium, Fr (87)

Франций - один из четырех элементов периодической системы элементов Менделеева, которые были открыты "в последнюю очередь". Действительно, к 1925 г. заполнились все клетки таблицы элементов, за исключением 43, 61, 85 и 87.

Многочисленные попытки открыть эти не достающие элементы долгое время оставались безуспешными. Элемент 87 (эка-цезий Менделеева) искали главным образом в цезиевых минералах, надеясь обнаружить его в качестве спутника цезия.

Однако все эти открытия были ошибочными. В 1939 г. Перей из института Кюри в Париже занималась очисткой препарата актиния (Ас-227) от разнообразных продуктов радиоактивного распада. Проводя тщательно контролируемые операции, она обнаружила beta-излучение, которое не могло принадлежать ни одному из известных в то время изотопов актиниевого ряда распада.

Однако более глубокое изучение распада актиния показало, что распад происходит не только по основной цепи Ас- RаАс- АсХ, но и по боковой Ас- АсК-АсХ с образованием неизвестного изотопа с периодом полураспада 21 мин. Изотоп получил временное обозначение АсК. Когда его подвергли химическому исследованию, оказалось, что его свойства соответствуют свойствам эка-цезия.

После второй мировой войны, прервавшей работу Перей, ее выводы были полностью подтверждены. В 1946 г. Перей предложила назвать элемент 87 францием в честь ее родины, а обозначение АсК осталось за соответствующим изотопом в ряду радиоактивного распада актиния.

Некоторое время считалось, что франций образуется только при alfa-распаде актиния. Однако после того как был открыт нептуний и изучен ряд его радиоактивного распада, было доказано образование изотопа франция-221 с периодом полураспада 5 мин. при alfa-распаде изотопа актиния-225. Франций, как и астат, весьма редкий элемент; первоначально он имел символ не Fr, а Fa.

ГЛАВА 3. Электронное строение

Электронное строение щелочных металлов характеризуется наличием на внешней электронной оболочке одного электрона, относительно слабо связанного с ядром. С каждого щелочного металла начинается новый период в периодической таблице. Щелочной металл способен отдавать свой внешний электрон легче, чем любой другой элемент этого периода. Разрез щелочного металла в инертной среде имеет яркий серебристый блеск.

Электронное строение щелочных металлов сведено в табличную информационную модель типа «объекты-свойства». В качестве объектов взяты названия щелочных металлов, справа указаны свойства этих объектов - схематическое электронное строение и электронная формула.

http://festival.1september.ru/articles/584890/presentation/4.JPG

ГЛАВА 4. Физические и химические свойства

4.1 Физические свойства

Литий, натрий, калий, рубидий в свободном состоянии серебристо-белые металлы, цезий имеет золотисто-желтый цвет. Все металлы очень мягкие и пластичные. Наибольшей твердостью обладает литий, остальные металлы легко режутся ножом и могут быть раскатаны в фольгу.

В кристаллическом состоянии все они имеют объёмно-центрированную кристаллическую решётку с металлическим типом химической связи, что обуславливает их высокую тепло- и электропроводность.

Все щелочные металлы имеют небольшую плотность, самый легкий металл – литий, его плотность составляет всего 0,53 г/см3.

Металлы имеют достаточно низкие температуры плавления и кипения, причем с увеличением порядкового номера элемента температура плавления металла понижается.

Все металлы очень активны, поэтому их хранят в запаянных ампулах, под слоем вазелинового масла или керосина.

Читайте также: