Где расположены металлы в периодической системе менделеева

Обновлено: 16.05.2024

Выдающийся русский учёный, химик, физик и энергетик. Самым значимым его вкладом в науку стало открытие периодического закона, графическое выражение которого получило название Периодической системы химических элементов.

Периодический закон

К середине XIX века учёные располагали множеством сведений о физических и химических свойствах разных элементов и их соединений. Появилась необходимость упорядочить эти знания и представить их в наглядном виде. Исследователи из разных стран пытались создать классификацию, объединяя элементы по сходству состава и свойств веществ, которые они образуют. Однако ни одна из предложенных систем не охватывала все известные элементы.

Пытался решить эту задачу и молодой русский профессор Д.И. Менделеев. Он собирал и классифицировал информацию о свойствах элементов и их соединений, а затем уточнял её в ходе многочисленных экспериментов. Собрав данные, Дмитрий Иванович записал сведения о каждом элементе на карточки, раскладывал их на столе и многократно перемещал, пытаясь выстроить логическую систему. Долгие научные изыскания привели его к выводу, что свойства элементов и их соединений изменяются с возрастанием атомной массы, однако не монотонно, а периодически.

Так был открыт периодический закон, который учёный сформулировал следующим образом: «Свойства элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от их атомного веса».


Своё открытие Менделеев совершил почти за 30 лет до того, как учёным удалось понять структуру атома. Открытия в области атомной физики позволили установить, что свойства элементов определяются не атомной массой, а зависят от количества электронов, содержащихся в нём. Поэтому современная формулировка закона звучит так:

Свойства химических элементов, а также формы и свойства образуемых ими веществ и соединений находятся в периодической зависимости от величины зарядов ядер их атомов.

Этот принцип Менделеев проиллюстрировал в таблице, в которой были представлены все 63 известных на тот момент химических элемента. При её создании учёный предпринял ряд весьма смелых шагов.

Во-первых, многочисленные эксперименты позволили Менделееву сделать вывод, что атомные массы некоторых элементов ранее были вычислены неправильно, и он изменил их в соответствии со своей системой.

Во-вторых, в таблице были оставлены места для новых элементов, открытие которых учёный предсказал, подробно описав их свойства.

Первый вариант Периодической таблицы элементов

Мировое научное сообщество поначалу скептически отнеслось к открытию русского химика. Однако вскоре были открыты предсказанные им химические элементы: галлий, скандий и германий. Это разрушило сомнения в правильности системы Менделеева, которая навсегда изменила науку. Там, где раньше учёному требовалось провести ряд сложнейших (и даже не всегда возможных в реальности) опытов — теперь стало достаточно одного взгляда в таблицу.

Существует легенда, якобы знаменитая таблица явилась Менделееву во сне. Но сам Дмитрий Иванович эту информацию не подтвердил. Он действительно нередко засиживался над работой до поздней ночи и засыпал, продолжая размышлять над решением задачи, однако факт мистического озарения во сне учёный отрицал: «Я над ней, может быть, двадцать лет думал, а вы думаете, сел и вдруг — готово!».

Теперь расскажем, как устроена Периодическая таблица элементов Менделеева и как ею пользоваться.

Структура Периодической системы элементов


На настоящий момент Периодическая таблица Менделеева содержит 118 химических элементов. Каждый из них занимает своё место в зависимости от атомного числа. Оно показывает, сколько протонов содержит ядро атома элемента и сколько электронов в атоме находятся вокруг него. Атом каждого последующего элемента содержит на один протон больше, чем предыдущий.

Периоды — это строки таблицы. На данный момент их семь. У всех элементов одного периода одинаковое количество заполненных электронами энергетических уровней.

Группы — это столбцы. В группы в Периодической таблице объединяются элементы с одинаковым числом электронов на внешнем энергетическом уровне их атомов. В кратком варианте таблицы, используемой в школьных учебниках, элементы разделены на восемь групп. Каждая из них делится на главную (A) и побочную (B) подгруппы, которые объединяют элементы со сходными химическими свойствами.

Каждый элемент обозначается одной или двумя латинскими буквами

Каждый элемент обозначается одной или двумя латинскими буквами. Порядковый номер элемента (число протонов в его ядре) обычно пишется в левом верхнем углу. Также в ячейке элемента указана его относительная атомная масса (сумма масс протонов и нейтронов). Это усреднённая величина, для расчёта которой используются атомные массы всех изотопов элемента с учётом их содержания в природе. Поэтому обычно она является дробным числом.

Чтобы узнать количество нейтронов в ядре элемента, необходимо вычесть его порядковый номер из относительной атомной массы (массового числа).

Свойства Периодической системы элементов

Расположение химических элементов в таблице Менделеева позволяет сопоставлять не только их атомные массы, но и химические свойства.

Вот как они изменяются в пределах группы (сверху вниз):

  • Металлические свойства усиливаются, неметаллические ослабевают.
  • Увеличивается атомный радиус.
  • Усиливаются основные свойства гидроксидов и кислотные свойства водородных соединений неметаллов.

В пределах периодов (слева направо) свойства элементов меняются следующим образом:

  • Металлические свойства ослабевают, неметаллические усиливаются.
  • Уменьшается атомный радиус.
  • Возрастает электроотрицательность.


Элементы Периодической таблицы Менделеева

По положению элемента в периоде можно определить его принадлежность к металлам или неметаллам. Металлы расположены в левом нижнем углу таблицы, неметаллы — в правом верхнем углу. Между ними находятся полуметаллы. Все периоды, кроме первого, начинается щелочным металлом. Каждый период заканчивается инертным газом.

Щелочные металлы

Щелочные металлы в периодической системе

Первая группа главная подгруппа элементов (IA) — щелочные металлы. Это серебристые вещества (кроме цезия, он золотистый), настолько мягкие, что их можно резать ножом. Поскольку на их внешнем электронном слое находится только один электрон, они очень легко вступают в реакции. Плотность щелочных металлов меньше плотности воды, поэтому они в ней не тонут, а бурно реагируют с образованием щёлочи и водорода. Реакция идёт настолько энергично, что водород может даже загореться или взорваться. Эти металлы настолько активно реагируют с кислородом в воздухе, что их приходится хранить под слоем керосина (а литий — под слоем вазелина).

Учите химию вместе с домашней онлайн-школой «Фоксфорда»! По промокоду CHEMISTRY892021 вы получите бесплатный недельный доступ к курсам химии за 8 класс и 9 класс.

Щелочноземельные металлы

Щелочноземельные металлы периодической системы

Вторая группа главная подгруппа (IIА) представлена щелочноземельными металлами с двумя электронами на внешнем энергетическом уровне атома. Бериллий и магний часто не относят к щелочноземельным металлам. Они тоже имеют серебристый оттенок и легко взаимодействуют с другими элементами, хотя и не так охотно, как металлы из первой группы главной подгруппы. Температура плавления щелочноземельных металлов выше, чем у щелочных. Ионы магния и кальция обусловливают жёсткость воды.

Лантаноиды и актиноиды

В третьей группе побочной подгруппе (IIIB) шестого и седьмого периодов находятся сразу несколько металлов, сходных по строению внешнего энергетического уровня и близких по химическим свойствам. У этих элементов электроны начинают заполнять третий по счёту от внешнего электронного слоя уровень. Это лантаноиды и актиноиды. Для удобства их помещают под основной таблицей.

Лантаноиды и актиноиды в периодической системе

‍Лантаноиды иногда называют «редкоземельными элементами», поскольку они были обнаружены в небольшом количестве в составе редких минералов и не образуют собственных руд.

Лантаноиды в периодической системе

‍Актиноиды имеют одно важное общее свойство — радиоактивность. Все они, кроме урана, практически не встречаются в природе и синтезируются искусственно.

Переходные металлы

Переходные металлы в периодической системе

Элементы побочных подгрупп, кроме лантаноидов и актиноидов, называют переходными металлами. Они вполне укладываются в привычные представления о металлах — твёрдые (за исключением жидкой ртути), плотные, обладают характерным блеском, хорошо проводят тепло и электричество. Валентные электроны их атомов находятся на внешнем и предвнешнем энергетических уровнях.

Неметаллы

Неметаллы в периодической системе

Правый верхний угол таблицы до инертных газов занимают неметаллы. Неметаллы плохо проводят тепло и электричество и могут существовать в трёх агрегатных состояниях: твёрдом (как углерод или кремний), жидком (как бром) и газообразном (как кислород и азот). Водород может проявлять как металлические, так и неметаллические свойства, поэтому его относят как к первой, так и к седьмой группе Периодической системы.

Подгруппа углерода

Подгруппа углерода

Четвёртую группу главную подгруппу (IVА) называют подгруппой углерода. Углерод и кремний обладают всеми свойствами неметаллов, германий и олово занимают промежуточную позицию, а свинец имеет выраженные металлические свойства. Углерод образует несколько аллотропных модификаций — вариантов простых веществ, отличающихся по своему строению, а именно: графит, алмаз, фуллерит и другие.

Большинство элементов подгруппы углерода — полупроводники (проводят электричество за счёт примесей, но хуже, чем металлы). Графит, германий и кремний используют при изготовлении полупроводниковых элементов (транзисторы, диоды, процессоры и так далее).

Подгруппа азота

Подгруппа азота

Пятую группу главную подгруппу (VA) называют пниктогенами или подгруппой азота. В ходе реакций эти элементы могут как отдавать электроны, так и принимать их, завершая внешний энергетический уровень.

Физические свойства элементов подгруппы азота различны. Азот является бесцветным газом. Фосфор, мягкое вещество, образует несколько вариантов аллотропных модификаций — белый, красный и чёрный фосфор. Мышьяк — твёрдый полуметалл, способный проводить электрический ток. Висмут — блестящий серебристо-белый металл с радужным отливом.

Азот — основное вещество в составе атмосферы нашей планеты. Некоторые элементы подгруппы азота токсичны для человека (фосфор, мышьяк, висмут). При этом азот и фосфор являются важными элементами почвенного питания растений, поэтому они входят в состав большинства удобрений. Азот и фосфор также участвуют в формировании важнейших молекул живых организмов — белков и нуклеиновых кислот.

Подгруппа кислорода

Подгруппа кислорода

Халькогены или подгруппа кислорода — элементы шестой группы главной подгруппы (VIA). Для завершения внешнего электронного уровня атомам этих элементов не хватает лишь двух электронов, поэтому они проявляют сильные окислительные (неметаллические) свойства. Однако, по мере продвижения от кислорода к полонию они ослабевают.

Кислород образует две аллотропные модификации — кислород и озон — тот самый газ, который образует экран в атмосфере планеты, защищающий живые организмы от жёсткого космического излучения.

Кислород и сера легко образуют прочные соединения с металлами — оксиды и сульфиды. В виде этих соединений металлы часто входят в состав руд.

Галогены

Галогены

Седьмая группа главная подгруппа (VIIA) представлена галогенами — неметаллами с семью электронами на внешнем электронном слое атома. Это сильнейшие окислители, легко вступающие в реакции. Галогены («рождающие соли») назвали так потому, что они реагируют со многими металлами с образованием солей. Например, хлор входит в состав обычной поваренной соли.

Самый активный из галогенов — фтор. Он способен разрушать даже молекулы воды, за что и получил своё грозное имя (слово «фтор» переводится на русский язык как «разрушительный»). А его «близкий родственник» — иод — используется в медицине в виде спиртового раствора для обработки ран.

Инертные газы

Инертные газы

‍Инертные газы, расположенные в последней, восьмой группе главной подгруппе (VIIIA) — элементы с полностью заполненным внешним электронным уровнем. Они практически не способны участвовать в реакциях. Поэтому их иногда называют «благородными», проводя параллель с представителями высшего общества, которые брезгуют контактировать с посторонними.

У инертных газов есть удивительная способность: они светятся под действием электромагнитного излучения, поэтому используются для создания ламп. Так, неон используется для создания светящихся вывесок и реклам, а ксенон — в автомобильных фарах и фотовспышках.

Гелий обладает массой всего в два раза больше массы молекулы водорода, но, в отличие от последнего, не взрывоопасен и используется для заполнения воздушных шаров.

Записали!
Скоро с вами свяжется консультант, расскажет об обучении в нашей онлайн-школе.
Проверьте вашу электронную почту — там письмо о том, что стоит сделать перед консультацией.


У нас вы сможете учиться в удобном темпе, делать упор на любимые предметы и общаться со сверстниками по всему миру.

Попробовать бесплатно

Где расположены металлы в периодической системе менделеева


В процессе изучения химии вы уже ознакомились со многоми неметаллическими элементами и их соединениями. Наиболее известные вам неметаллы – водород, кислород и их уникальное соединение – вода. В 8 классе на примере VII группы главной подгруппы вы познакомились с семейством неметаллов – галогенами, с их свойствами. В новой теме вы получите целостные представления об элементах-неметаллах. Учитывая, что вы имеете некоторый запас знаний о них, умеете использовать ПСХЭ, мы сначала ознакомимся с общими свойствами групп неметаллов, затем и с их конкретными представителями. Такой подход в изучении предмета называется дедуктивным.

I. Положение элементов-неметаллов в ПСХЭ


Неметаллы расположены в правом верхнем углу ПСХЭ (вдоль и над диагональю B-At). Всего 22 элемента-неметалла в Периодической системе. Элементы-неметаллы располагаются только в главных подгруппах ПС.

II. Строение атомов неметаллов


Для атомов-неметаллов характерно:

Небольшой атомный радиус (в сравнении с радиусами атомов-металлов одного с ними периода).

Большее число электронов на внешнем уровне (4-8), исключения Н, Не, В.

Происходит заполнение электронами только внешнего энергетического уровня.

Для элементов-неметаллов характерны высокие значения электроотрицательности.

III. Общие свойства элементов-неметаллов по их положению в ПСХЭ







Своеобразной мерой неметалличности элементов является электроотрицательность (вспомнить понятия электроотрицательности, ряд электроотрицательности). Чем больше ЭО элемента, тем сильней его способность к оттягиванию общих электронных пар, а значит тем сильнее неметаллические, т.е. окислительные способности. Чем ближе в ПС элемент располагается к фтору, тем сильнее проявляются у него окислительные свойства.

III. Неметаллы в природе


Атомы неметаллических элементов составляют подавляющее большинство соединений во Вселенной и верхних слоях Земли. Они более распространены в природе, чем металлы. Некоторые неметаллические элементы встречаются в природе в виде простых веществ: месторождения самородной серы в Прикарпатье; Завальевское месторождение графита; существуют залежи пород, содержащих алмазы. В состав воздуха входят: азот, кислород, инертные газы. Распространенным элементом в космосе является водород. Гораздо больше атомов неметаллических элементов образуют различные сложные вещества. Так, значительную часть литосферы составляет кремнезем SiO2, гидросферы — вода.

Кислород один из самых распространенных элементов на Земле. В земной коре в составе соединений 49% по массе. Он входит в состав воды, горных пород, минералов, солей. Есть обязательной составной частью растительных, животных организмов: входит в состав белков, жиров, углеводов. В воздухе свободного кислорода 21% по объему.

Сера широко распространен в природе как в свободном виде (с примесями горных пород), так и в соединениях с различными металлами (сульфиды), а также в виде солей. Сульфиды: железный колчедан или пирит FeS2, цинковая обманка ZnS, медный блеск CuS, киноварь HgS. Сульфаты: гипс CaSO4 • 2H2O, глауберовая соль Na2SO4 • 10H2O, горькая соль MgSO4 • 7H2O. Содержится в живых организмах, входит в состав белка, в состав органических соединений в нефти.

Элемент Карбон (углерод) входит в состав нефти, газа, угля, сланцев, органических соединений, углекислого и угарного газов. Важный элемент живой природы — входит в состав белков, жиров, углеводов, витаминов, ферментов, гормонов. В виде простых веществ графита и алмаза; сложных веществ: CaCO3 — мел, известняк, мрамор, CaCO3 • MgCO3 — доломит, MgCO3 — магнезит.

Чистый кремний в природе не существует, его добывают химическим способом. По распространенности занимает второе место после кислорода. Оболочка Земли на 97% состоит из соединений кремния. Встречается в виде: SiO2 — песок, кварц, кремнезем; минералов — слюда, асбест, тальк, нефелин, полевой шпат. В стеблях растений (хвощ, бамбук), в теле птиц и животных — перья, глаз, скелет, тело губок.

Фосфор в природе существует только в соединениях в виде фосфатов. Главные минералы в состав которых входит Фосфор — Ca3(PO4)2 — апатиты и фосфориты (0,08%). Элемент Фосфор входит в состав костной, мышечной, нервной тканей человека и животных, многие его в клетках мозга.

IV. Аллотропия неметаллов

Среди неметаллов распространено явление аллотропии. Один элемент может образовывать несколько простых веществ.

Разные типы кристаллических решеток (белый фосфор Р4 – молекулярная, красный фосфор Р – атомная).

Разная структура кристаллической решетки (алмаз – тетраэдрическая, графит – слоистая).

Разный состав молекул аллотропных модификаций (О2 и О3).

1. Общая характеристика элементов металлов

Из \(118\) известных на данный момент химических элементов \(96\) образуют простые вещества с металлическими свойствами, поэтому их называют металлическими элементами .

Металлические химические элементы в природе могут встречаться как в виде простых веществ, так и в виде соединений. То, в каком виде встречаются металлические элементы в природе, зависит от химической активности образуемых ими металлов.

Металлические элементы, образующие химически активные металлы ( Li–Mg ), в природе чаще всего встречаются в виде солей (хлоридов, фторидов, сульфатов, фосфатов и других).

Соли, образуемые этими металлами, являются главной составной частью распространённых в земной коре минералов и горных пород.

shutterstock_499534720.png

calcite-728720_640.png

В растворённом виде соли натрия, кальция и магния содержатся в природных водах. Кроме того, соли активных металлов — важная составная часть живых организмов. Например, фосфат кальция Ca 3 ( P O 4 ) 2 является главной минеральной составной частью костной ткани.

Металлические химические элементы, образующие металлы средней активности ( Al–Pb ), в природе чаще всего встречаются в виде оксидов и сульфидов.

гематит.png

galena-337703_640.png

Металлические элементы, образующие химически неактивные металлы ( Cu–Au ), в природе чаще всего встречаются в виде простых веществ.

Stringer156_nugget.jpg
silver-4437577_640.png
самородная платина.png
Рис. \(7\). Самородное золото Au Рис. \(8\). Самородное серебро Ag Рис. \(9\). Самородная платина Pt

Исключение составляют медь и ртуть, которые в природе встречаются также в виде химических соединений.

1024px-MoreMalachite.png

В Периодической системе химических элементов металлы занимают левый нижний угол и находятся в главных (А) и побочных (Б) группах.

Рис. \(13\). Положение металлов в Периодической системе. Знаки металлических химических элементов расположены ниже ломаной линии B — Si — As — Te

В электронной оболочке атомов металлов на внешнем энергетическом уровне, как правило, содержится от \(1\) до \(3\) электронов. Исключение составляют только металлы \(IV\)А, \(V\)А и \(VI\)А группы, у которых на наружном энергетическом уровне находятся соответственно четыре, пять или шесть электронов.

В атомах металлов главных подгрупп валентные электроны располагаются на внешнем энергетическом уровне, а у металлов побочных подгрупп — ещё и на предвнешнем энергетическом уровне.

Радиусы атомов металлов больше, чем у атомов неметаллов того же периода. В силу отдалённости положительно заряженного ядра атомы металлов слабо удерживают свои валентные электроны.

Рис. \(14\). Характер изменения радиусов атомов химических элементов в периодах и в группах. Радиусы атомов металлов существенно больше, чем радиусы атомов неметаллов, находящихся в том же периоде

Главное отличительное свойство металлов — это их сравнительно невысокая электроотрицательность (ЭО) по сравнению с неметаллами.

Таблица электроотрицательности RU (1).png

Рис. \(15\). Величины относительных электроотрицательностей (ОЭО) некоторых химических элементов (по Л. Полингу). ОЭО металлических химических элементов уступает соответствующей величине неметаллических химических элементов

Атомы металлов, вступая в химические реакции, способны только отдавать электроны, то есть окисляться, следовательно, в ходе превращений могут проявлять себя в качестве восстановителей .

2NaCl – расплав, электр. ток. → 2 Na + Cl2

CaCl2 – расплав, электр. ток. → Ca + Cl2

4NaOH – расплав, электр. ток. → 4Na + O2↑ + 2H2O

2. Восстановление металлов средней активности и неактивных металлов электролизом из растворов их солей.

  • Олово образуется при электролизе раствора хлорида олова(II): Sn +2 Cl2 −1 → (электролиз) Sn 0 +Cl 0 2
  • Алюминий в промышленности получают в результате электролиза расплава оксида алюминия в криолите Na3AlF6 (из бокситов): 2Al2O3 – расплав в криолите, электр. ток. → 4Al + 3O2
  • Электролиз водных растворов солей используют для получения металлов средней активности и неактивных:2CuSO4+2H2O – раствор, электр. ток. → 2Cu + O2 + 2H2SO4

​Электролиз используют для очистки металлов (электролитическое рафинирование).


Для рафинирования (очистки) металла электролизом из него отливают пластины и помещают их в качестве анодов 1 в электролизер 3. При пропускании тока металл, подлежащий очистке 1, подвергается анодному растворению, то есть переходит в раствор в виде катионов. Затем эти катионы металла разряжаются на катоде 2, благодаря чему образуется компактный осадок уже чистого металла. Примеси, находящиеся в аноде, либо остаются нерастворимыми 4, либо переходят в электролит и удаляются.

Большинство металлов переводят в слитки при помощи литья: расплавленный металл заливают в форму, где он и застывает. Однако наиболее тугоплавкие металлы, например, вольфрам, из которого делают нити накаливания элепктроламп, расплавить в печи необычайно трудно. Для получения их слитков применяют порошковую металлургию – особый метод, позволяющий избежать литья. Он основан на спекании предварительно спрессованного порошка металла при температуре выше 1000°C в атмосфере водорода. Затем через брусок из металла пропускают электрический ток, за счет чего он разогревается до температуры плавления, и при этом отдельные его зерна свариваются друг с другом. Полученное изделие подвергают горячей ковке и прокатке.

V. Нахождение металлов в природе

Самый распространённый в земной коре металл – алюминий. Металлы встречаются как в соединениях, так и в свободном виде.

1. Активные – в виде солей (сульфаты, нитраты, хлориды, карбонаты)

2. Средней активности – в виде оксидов, сульфидов (Fe3O4, FeS2)

3. Благородные – в свободном виде (Au, Pt, Ag)

В сво­бод­ном со­сто­я­нии при­сут­ству­ют в при­ро­де ме­тал­лы, ко­то­рые либо плохо окис­ля­ют­ся кис­ло­ро­дом, либо со­всем не окис­ля­ют­ся. На­при­мер, пла­ти­на, зо­ло­то, се­реб­ро. Реже – медь, ртуть и неко­то­рые дру­гие. Са­мо­род­ные ме­тал­лы встре­ча­ют­ся в при­ро­де в неболь­ших ко­ли­че­ствах в виде зерен или вкрап­ле­ний в раз­лич­ных ми­не­ра­лах. Лишь из­ред­ка они об­ра­зу­ют боль­шие куски – са­мо­род­ки. Самый боль­шой са­мо­ро­док зо­ло­та весил 112 кг. Ино­гда ме­тал­лы прак­ти­че­ски в чи­стом виде со­дер­жат­ся в ме­тео­ри­тах. Так, неко­то­рые пред­ме­ты из вы­со­ко­чи­сто­го же­ле­за, най­ден­ные ар­хео­ло­га­ми, объ­яс­ня­ют­ся имен­но тем, что они были из­го­тов­ле­ны из ме­тео­рит­но­го же­ле­за. Но чаще всего ме­тал­лы су­ще­ству­ют в при­ро­де в свя­зан­ном со­сто­я­нии в со­ста­ве ми­не­ра­лов.

Ми­не­рал это хи­ми­че­ски и фи­зи­че­ски ин­ди­ви­ду­а­ли­зи­ро­ван­ный про­дукт при­род­ной фи­зи­ко-хи­ми­че­ской ре­ак­ции, на­хо­дя­щий­ся в кри­стал­ли­че­ском со­сто­я­нии.

Очень часто это ок­си­ды. На­при­мер, оксид же­ле­за (III) Fe2O3 – ге­ма­тит, или крас­ный же­лез­няк. Рис. 1.

Fe3O4 – маг­не­тит, или маг­нит­ный же­лез­няк. Неред­ко ми­не­ра­ла­ми яв­ля­ют­ся суль­фид­ные со­еди­не­ния: га­ле­нит ZnS, ки­но­варь HgS.

Ак­тив­ные ме­тал­лы часто при­сут­ству­ют в при­ро­де в виде солей (суль­фа­ты, нит­ра­ты, хло­ри­ды, кар­бо­на­ты).

Ми­не­ра­лы вхо­дят в со­став гор­ных пород и руд. Ру­да­ми на­зы­ва­ют­ся при­род­ные об­ра­зо­ва­ния, со­дер­жа­щие ми­не­ра­лы в таком ко­ли­че­стве, чтоб из этих руд было вы­год­но по­лу­чать ме­тал­лы. Обыч­но перед по­лу­че­ни­ем ме­тал­ла из руды руду обо­га­ща­ют, уда­ляя пу­стую по­ро­ду и раз­лич­ные при­ме­си. При этом об­ра­зу­ет­ся кон­цен­трат, ко­то­рый и яв­ля­ет­ся ис­ход­ным сы­рьем для ме­тал­лур­ги­че­ской про­мыш­лен­но­сти.

VI. Химические свойства металлов

Общие химические свойства металлов представлены в таблице:


Важно за­пом­нить, что в хи­ми­че­ских ре­ак­ци­ях ме­тал­лы вы­сту­па­ют в ка­че­стве вос­ста­но­ви­те­лей: от­да­ют элек­тро­ны и по­вы­ша­ют свою сте­пень окис­ле­ния. Рас­смот­рим неко­то­рые ре­ак­ции, в ко­то­рых участ­ву­ют ме­тал­лы.

1. Взаимодействие с кислородом

Мно­гие ме­тал­лы могут всту­пать в ре­ак­цию с кис­ло­ро­дом. Обыч­но про­дук­та­ми этих ре­ак­ций яв­ля­ют­ся ок­си­ды, но есть и ис­клю­че­ния, о ко­то­рых вы узна­е­те на сле­ду­ю­щем уроке. Рас­смот­рим вза­и­мо­дей­ствие маг­ния с кис­ло­ро­дом.

Маг­ний горит в кис­ло­ро­де, при этом об­ра­зу­ет­ся оксид маг­ния:

2Mg 0 + O2 0 = 2Mg +2 O -2

Рис. 1. Го­ре­ние маг­ния в кис­ло­ро­де

Атомы маг­ния от­да­ют свои внеш­ние элек­тро­ны ато­мам кис­ло­ро­да: два атома маг­ния от­да­ют по два элек­тро­на двум ато­мам кис­ло­ро­да. При этом маг­ний вы­сту­па­ет в роли вос­ста­но­ви­те­ля, а кис­ло­род – в роли окис­ли­те­ля.

Обратите внимание. Серебро, золото и платина с кислородом не реагируют.

2. Взаимодействие с галогенами, образуются галогениды

Для ме­тал­лов ха­рак­тер­на ре­ак­ция с га­ло­ге­на­ми. Про­дук­том такой ре­ак­ции яв­ля­ет­ся га­ло­ге­нид ме­тал­ла, на­при­мер, хло­рид.

Рис. 2. Го­ре­ние калия в хлоре

Калий сго­ра­ет в хлоре об­ра­зо­ва­ни­ем хло­ри­да калия:

2К 0 + Cl2 0 = 2K +1 Cl -1

Два атома калия от­да­ют мо­ле­ку­ле хлора по од­но­му элек­тро­ну. Калий, по­вы­шая сте­пень окис­ле­ния, иг­ра­ет роль вос­ста­но­ви­те­ля, а хлор, по­ни­жая сте­пень окис­ле­ния,- роль окис­ли­те­ля

3. Взаимодействие с серой

Мно­гие ме­тал­лы ре­а­ги­ру­ют с серой с об­ра­зо­ва­ни­ем суль­фи­дов. В этих ре­ак­ци­ях ме­тал­лы также вы­сту­па­ют в роли вос­ста­но­ви­те­лей, тогда как сера будет окис­ли­те­лем. Сера в суль­фи­дах на­хо­дит­ся в сте­пе­ни окис­ле­ния -2, т.е. она по­ни­жа­ет свою сте­пень окис­ле­ния с 0 до -2. На­при­мер, же­ле­зо при на­гре­ва­нии ре­а­ги­ру­ет с серой с об­ра­зо­ва­ни­ем суль­фи­да же­ле­за (II):

Fe 0 + S 0 = Fe +2 S -2

Рис. 3. Вза­и­мо­дей­ствие же­ле­за с серой

Ме­тал­лы также могут ре­а­ги­ро­вать с во­до­ро­дом, азо­том и дру­ги­ми неме­тал­ла­ми при опре­де­лен­ных усло­ви­ях.

4. Взаимодействие с водой

Металлы по - разному реагируют с водой:

Помните.

Алюминий реагирует с водой подобно активным металлам, образуя основание:

Раскалённое железо реагирует с водяным паром, образуя смешанный оксид — железную окалину Fe3O4 и водород: 3Fe 0 +4H +1 2O −2 → Fe +2 O −2 ⋅Fe +3 2O −2 3 + 4H 0 2

5. Взаимодействие с кислотами

Металлы особо реагируют с серной концентрированной и азотной кислотами:

Читайте также: