Генетическая связь между классами веществ генетические ряды металлов

Обновлено: 01.05.2024

I. Учебный видео-фильм: “Генетическая связь между отдельными классами неорганических соединений”

II. Генетический ряд металлов

Зная классы неорганических веществ, можно составить генетические ряды металлов и неметаллов. В основу этих рядов положен один и тот же элемент.

Генетические связи - это связи между разными классами, основанные на их взаимопревращениях.

Среди металлов можно выделить две разновидности рядов:

1. Генетический ряд, в котором в качестве основания выступает щёлочь. Этот ряд можно представить с помощью следующих превращений:

металл→основный оксид→щёлочь→соль

2. Генетический ряд, где в качестве основания выступает нерастворимое основание, тогда ряд можно представить цепочкой превращений:

металл→основный оксид→соль→нерастворимое основание→

→основный оксид→металл

III. Генетический ряд неметаллов

Среди неметаллов также можно выделить две разновидности рядов:

1. Генетический ряд неметаллов, где в качестве звена ряда выступает растворимая кислота. Цепочку превращений можно представить в следующем виде:

неметалл→кислотный оксид→растворимая кислота→соль

2. Генетический ряд неметаллов, где в качестве звена ряда выступает нерастворимая кислота:

неметалл→кислотный оксид→соль→кислота →кислотный оксид→неметалл

IV. Закрепление

Осуществите превращения по схеме, укажите типы реакций, назовите вещества

V. Тренажёры

Прочитайте отрывок из романа Л. Буссенара «Похитители бриллиантов» и выполните задания:
«Пожар пылал несколько часов подряд. Пещера превратилась в настоящую печь по обжигу извести. Неслыханной силы пламя обожгло весь известковый пласт, который представляет собой углекислую соль кальция. Под действием огня известняк разложился, угольная кислота выделилась, и получилось именно, то, что называется негашеной известью. Оставалось только, чтобы на нее попало известное количество воды.
Так и случилось. Ливень, который последовал за грозой, залил всю эту огромную массу негашеной извести, она разбухла, стала с непреодолимой силой распирать сжимавший её уголь и выталкивать его по направлению к пропасти… Скалы, деревья, клад, мумии – все исчезло в мгновение ока вместе с презренными негодяями».
Задания:

  1. Составить и осуществить цепочку превращений.
  2. Решить задачу.
  3. Определить массу негашеной извести, образующейся при разложении известняка массой 300г., в котором массовая доля некарбонатной примеси составляет 20%.

Лабиринт

Пять человек отправляются в путешествие в царство Солей. Если формула вещества соответствует приведенному под ней названию, то вы переходите к следующему пункту по стрелке «да», если не соответствует – по стрелке «нет». Можно войти в любой «вход». Но правильный «выход» только один – «пункт Г».

Взаимосвязь различных классов неорганических веществ

Как уже известно, существует четыре класса неорганических соединений. К ним относятся оксиды, основания, кислоты и соли. При подробном изучении способов получения каждого класса соединений можно проследить определенную взаимосвязь между всеми классами. Например, из кислот можно получить соли, из оксидов основания и так далее. Такая связь называется генетической.

Следовательно, генетическая связь – это связь между классами неорганических соединений, которая основана на получении веществ одного класса из веществ другого класса, а также их химических свойств.

На основании данной связи составляют генетические ряды, которые включают в себя представителей разных классов, но состоящие из одного элемента.

Генетическую связь можно представить в виде схемы.

Взаимосвязь различных классов неорганических веществ

Из данной схемы видно, что существует определенная взаимосвязь между классами. Основополагающими элементами генетического ряда являются либо металл, либо неметалл.

  • Для получения оксида необходимо осуществить взаимодействие металла либо неметалла с кислородом.
  • При взаимодействии с водой из основного оксида можно получить основание, а из кислотного – кислоту.
  • Соль образуется при различных реакциях между всеми классами неорганических соединений. Например, металл + неметалл, основный оксид + кислотный оксид, основание + кислота и так далее.

Можно выделить два типа генетических рядов, которые мы и рассмотрим.

1. Генетический ряд металла

Металл → Основный оксид → Основание → Соль

  • Ряд кальция: Ca → CaO → Ca(OH)2 → Ca Cl2;
  • Ряд натрия: Na → Na2O → NaOH → Na3PO4;
  • Ряд магния: Mg → MgO → Mg(OH)2 → Mg(NO3)2;
  • Ряд железа: Fe → FeO → Fe(OH)2 → FeSO4.

Рассмотрим взаимосвязь в данных рядах на примере магния.

  • Для получения оксида магния из чистого металла, осуществим реакцию взаимодействия с кислородом.
  • При взаимодействии основного оксида с водой, в частности оксида магния, получим основание – гидроксид магния.
  • Для получения соли из нерастворимого основания, необходимо добавить кислоту.

2. Генетический ряд неметалла

Неметалл → Кислотный оксид → Кислота → Соль

Рассмотрим взаимосвязь в данных рядах на примере углерода.

  • Для получения оксида углерода осуществим реакцию взаимодействия с кислородом – горение. Протекает с выделением энергии.
  • При взаимодействии кислотного оксида с водой, в частности оксида углерода, получим угольную кислоту.
  • Для получения соли из кислоты, необходимо добавить основание.

Для составления генетических цепочек необходимо знать химические свойства каждого класса неорганических соединений, а также валентные возможности того элемента, который лежит в основе генетического ряда.

Генетическая связь между классами неорганических веществ


Родство и взаимосвязь химических превращений подтверждается генетической связью между классами неорганических веществ. Одно простое вещество в зависимости от класса и химических свойств образует цепочку превращений сложных веществ – генетический ряд.

Неорганические вещества

Соединения, не имеющие углеродного скелета, характерного для органических веществ, называются неорганическими или минеральными веществами. Все минеральные соединения классифицируются на две обширные группы:

К простым соединениям относятся:

  • металлы (K, Mg, Ca);
  • неметаллы (O2, S, P);
  • инертные газы (Kr, Xe, Rn).

Сложные вещества имеют более разветвлённую классификацию, приведённую в таблице.

Класс

Подкласс

Примеры

Классификация сложных веществ

Рис. 2. Классификация сложных веществ.

Амфотерные металлы образуют соответствующие оксиды и гидроксиды. Амфотерные соединения проявляют свойства кислот и оснований.

Генетические ряды

Простые вещества – металлы и неметаллы – образуют цепочки превращений, отражающие генетическую связь неорганических веществ. Посредством химических реакций присоединения, замещения и разложения образуются новые более простые или сложные соединения.

Каждое звено цепочки связано с предыдущим наличием простого вещества. Различие между двумя типами генетических рядов заключается в реакции с водой: металлы образуют растворимые и нерастворимые основания, неметаллы – кислоты.

Основные цепочки превращений описаны в таблице.

Вещество

Генетический ряд

Активный металл → основный оксид → щёлочь → соль

Малоактивный металл → основный оксид → соль → нерастворимое основание → основный оксид → металл

→ кислотный оксид → растворимая (сильная) кислота → соль

→ кислотный оксид → соль → нерастворимая (слабая) кислота → кислотный оксид → неметалл

– SiO2 + 2Zn → 2ZnO + Si

Схема генетической связи между классами

Рис. 3. Схема генетической связи между классами.

С помощью цепочки превращения можно получить средние (нормальные) или кислые соли. Комплексные соли могут включать несколько атомов металлов и неметаллов.

Что мы узнали?

Генетическая связь показывает взаимосвязь между классами неорганических веществ. Она характеризуется генетическим рядом – чередой превращений простых веществ. К простым веществам относятся металлы и неметаллы. Металлы образуют растворимые и нерастворимые основания в зависимости от активности. Неметаллы превращаются в сильные или слабые кислоты. Новые сложные вещества ряда образуются реакциями присоединения, замещения и разложения.

Генетическая связь между классами веществ генетические ряды металлов

Внимательно прочитайте теорию:

Давайте рассмотрим генетические связи и генетические ряды:

1. Все вещества этого ряда должны быть образованы одним химическим элементом. Например, ряд, записанный с помощью следующих формул:

нельзя считать генетическим, так как в последнем звене элемент бром отсутствует, хотя реакция для перехода от NaBr к NaNO3 легко осуществима:


Этот ряд мог бы считаться генетическим рядом элемента брома, если бы его завершили, например, так:

3. Вещества, образующие генетический ряд одного элемента, должны быть связаны взаимопревращениями. По этому признаку можно различать полные и неполные генетические ряды.

Например, приведенный выше генетический ряд брома будет неполным, незавершенным. А вот следующий ряд:


уже можно рассматривать как полный: он начинается простым веществом бромом и им же заканчивается.

Обобщая сказанное выше, можно дать следующее определение генетического ряда:

Генетическим называют ряд веществ — представителей разных классов, являющихся соединениями одного химического элемента, связанных взаимопревращениями и отражающих общность происхождения этих веществ или их генезис.

Генетическая связь — понятие более общее, чем генетический ряд, являющийся пусть и ярким, но частным проявлением этой связи, которая реализуется при любых взаимных превращениях веществ. Тогда, очевидно, под это определение подходит и первый приведенный в тексте ряд веществ.

Для характеристики генетической связи неорганических веществ мы рассмотрим три разновидности генетических рядов: генетический ряд элемента-металла, генетический ряд элемента-неметалла, генетический ряд элемента-металла, которому соответствуют амфотерные оксид и гидроксид.

I. Генетический рад элемента-металла. Наиболее богат веществами ряд металла, у которого проявляются разные степени окисления. В качестве примера рассмотрим генетический ряд железа со степенями окисления +2 и +3:


Напомним, что для окисления железа в хлорид железа (II) нужно взять более слабый окислитель, чем для получения хлорида железа (III):


II. Генетический ряд элемента-неметалла. Аналогично ряду металла более богат связями ряд неметалла с разными степенями окисления, например генетический ряд серы со степенями окисления +4 и +6:

Затруднение может вызвать лишь последний переход. Если вы выполняете задания такого типа, то руководствуйтесь правилом: чтобы получить простое вещество из окисленного соединения элемента, нужно взять для этой цели самое восстановленное его соединение, например летучее водородное соединение неметалла. В нашем примере:

По этой реакции в природе из вулканических газов образуется сера.

Аналогично для хлора:


III. Генетический ряд элемента-металла, которому соответствуют амфотерные оксид и гидроксид, очень богат связями, так как они проявляют в зависимости от условий то свойства кислоты, то свойства основания. Например, рассмотрим генетический ряд алюминия:


В органической химии также следует различать более общее понятие — «генетическая связь» и более частное понятие — «генетический ряд». Если основу генетического ряда в неорганической химии составляют вещества, образованные одним химическим элементом, то основу генетического ряда в органической химии (химии углеродных соединений) составляют вещества с одинаковым числом атомов углерода в молекуле.

Рассмотрим генетический ряд органических веществ, в который включим наибольшее число классов соединений:


Каждой цифре соответствует определенное уравнение реакции:



Под определение генетического ряда не подходит последний переход — образуется продукт не с двумя, а с множеством углеродных атомов, но зато с его помощью наиболее многообразно представлены генетические связи. И наконец, приведем примеры генетической связи между классами органических и неорганических соединений, которые доказывают единство мира веществ, где нет деления на органические и неорганические вещества. Например, рассмотрим схему получения анилина — органического вещества из известняка — неорганического соединения:


Воспользуемся возможностью повторить названия реакций, соответствующих предложенным переходам:




    Запишите уравнения реакций, иллюстрирующих следующие переходы:



Домашняя работа (сделать в тетради, посмотрю в школе, высылать не нужно)

Читайте также: