Химические свойства фосфорной кислоты с металлами

Обновлено: 15.05.2024

Наведите курсор на ячейку элемента, чтобы получить его краткое описание.

Чтобы получить подробное описание элемента, кликните по его названию.

H + Li + K + Na + NH4 + Ba 2+ Ca 2+ Mg 2+ Sr 2+ Al 3+ Cr 3+ Fe 2+ Fe 3+ Ni 2+ Co 2+ Mn 2+ Zn 2+ Ag + Hg 2+ Pb 2+ Sn 2+ Cu 2+
OH - РРРРРМНМНННННННН--ННН
F - РМРРРМННММНННРРРРР-НРР
Cl - РРРРРРРРРРРРРРРРРНРМРР
Br - РРРРРРРРРРРРРРРРРНММРР
I - РРРРРРРРРР?Р?РРРРНННМ?
S 2- МРРРР---Н--Н-ННННННННН
HS - РРРРРРРРР?????Н???????
SO3 2- РРРРРННМН?-Н?НН?ММ-Н??
HSO3 - Р?РРРРРРР?????????????
SO4 2- РРРРРНМРНРРРРРРРРМ-НРР
HSO4 - РРРРРРРР-??????????Н??
NO3 - РРРРРРРРРРРРРРРРРРРР-Р
NO2 - РРРРРРРРР????РМ??М????
PO4 3- РНРР-ННННННННННННННННН
CO3 2- РРРРРНННН??Н?ННННН?Н?Н
CH3COO - РРРРРРРРР-РР-РРРРРРР-Р
SiO3 2- ННРР?НННН??Н???НН??Н??
Растворимые (>1%)Нерастворимые (

Спасибо! Ваша заявка отправлена, преподаватель свяжется с вами в ближайшее время.

Вы можете также связаться с преподавателем напрямую:


Скопируйте эту ссылку, чтобы разместить результат запроса " " на другом сайте.

Изображение вещества/реакции можно сохранить или скопировать, кликнув по нему правой кнопкой мыши.

Внимание, если вы не нашли в базе сайта нужную реакцию, вы можете добавить ее самостоятельно.

На данный момент доступна упрощенная авторизация через VK.
В будущем добавлю авторизацию через Гугл и Яндекс.

Здесь вы можете выбрать параметры отображения органических соединений.

Эти параметры действуют только для верхнего изображения вещества и не применяются в реакциях.

Размер шрифта
Отображение гетероатомов

Корректная работа сайта обеспечена на всех браузерах, кроме Internet Explorer.

Если вы пользуетесь Internet Explorer, смените браузер.

На сайте есть сноски двух типов:

Подсказки - помогают вспомнить определения терминов или поясняют информацию, которая может быть сложна для начинающего.

Дополнительная информация - такие сноски содержат примечания или уточнения, выходящие за рамки базовой школьной химии, нужны для углубленного изучения.

Фосфор. Химия фосфора и его соединений


Фосфор расположен в главной подгруппе V группы (или в 15 группе в современной форме ПСХЭ) и в третьем периоде периодической системы химических элементов Д.И. Менделеева.

Электронное строение фосфора

Электронная конфигурация фосфора в основном состоянии :


Атом фосфора содержит на внешнем энергетическом уровне 3 неспаренных электрона и одну неподеленную электронную пару в основном энергетическом состоянии. Следовательно, атом фосфора может образовывать 3 связи по обменному механизму. Однако, в отличие от азота, за счет вакантной 3d орбитали атом фосфора может переходить в возбужденное энергетическое состояние.

Электронная конфигурация фосфора в возбужденном состоянии:


При этом один электрон из неподеленной электронной пары на 3s-орбитали переходит на переходит на 3d-орбиталь. Для атома фосфора в возбужденном энергетическом состоянии характерна валентность V.

Таким образом, максимальная валентность фосфора в соединениях равна V (в отличие от азота). Также характерная валентность фосфора в соединениях — III.

Степени окисления атома фосфора – от -3 до +5. Характерные степени окисления -3, 0, +1, +3, +5.

Физические свойства и нахождение в природе

Фосфор образует различные простые вещества (аллотропные модификации).

Белый фосфор — это вещество состава P4. Мягкий, бесцветный, ядовитый, имеет характерный чесночный запах. Молекулярная кристаллическая решетка, а следовательно, невысокая температура плавления (44°С), высокая летучесть. Очень реакционно способен, самовоспламеняется на воздухе.



Покрытие бумаги раствором белого фосфора в сероуглероде. Спустя некоторое время, когда сероуглерод испаряется, фосфор воспламеняет бумагу (процесс лег в основу различных фокусов с самовозгоранием или получением огня из ничего):

Белый фосфор можно расплавить в ёмкости с тёплой водой, поскольку он имеет температуру плавления в 44,15 °C.

Красный фосфор – это модификация с атомной кристаллической решеткой . Формула красного фосфора Pn, это полимер со сложной структурой. Твердое вещество без запаха, красно-бурого цвета, не ядовитое. Это гораздо более устойчивая модификация, чем белый фосфор. В темноте не светится. Образуется из белого фосфора при t=250-300 о С без доступа воздуха.



Черный фосфор – то наиболее стабильная термодинамически и химически наименее активная форма элементарного фосфора. Чёрный фосфор — это чёрное вещество с металлическим блеском, жирное на ощупь и весьма похожее на графит, полностью нерастворимое в воде или органических растворителях.


Известны также такие модификации, как желтый фосфор и металлический фосфор. Желтый фосфор – это неочищенный белый фосфор. При очень высоком давлении фосфор переходит в новую модификацию – металлический фосфор , который очень хорошо проводит электрический ток.


В природе фосфор встречается только в виде соединений. В основном это апатиты (например, Ca3(PO4)2), фосфориты и др. Фосфор входит в состав важнейших биологических соединений —фосфолипидов.

Кислоты. Химические свойства и способы получения


Перед изучением этого раздела рекомендую прочитать следующую статью:

Кислоты – сложные вещества, которые при взаимодействии с водой образуют в качестве катионов только ионы Н + (или Н3О + ).

По растворимости в воде кислоты можно поделить на растворимые и нерастворимые . Некоторые кислоты самопроизвольно разлагаются и в водном растворе практически не существуют (неустойчивые) . Подробно про классификацию кислот можно прочитать здесь.



Получение кислот

1. Взаимодействие кислотных оксидов с водой. При этом с водой реагируют при обычных условиях только те оксиды, которым соответствует кислородсодержащая растворимая кислота.

кислотный оксид + вода = кислота

Например , оксид серы (VI) реагирует с водой с образованием серной кислоты:

При этом оксид кремния (IV) с водой не реагирует:

2. Взаимодействие неметаллов с водородом. Таким образом получают только бескислородные кислоты.

Неметалл + водород = бескислородная кислота

Например , хлор реагирует с водородом:

H2 0 + Cl2 0 → 2 H + Cl —

3. Электролиз растворов солей. Как правило, для получения кислот электролизу подвергают растворы солей, образованных кислотным остатком кислородсодержащих кислот. Более подробно этот вопрос рассмотрен в статье Электролиз.

Например , электролиз раствора сульфата меди (II):

4. Кислоты образуются при взаимодействии других кислот с солями. При этом более сильная кислота вытесняет менее сильную.

Например: карбонат кальция CaCO3 (нерастворимая соль угольной кислоты) может реагировать с более сильной серной кислотой.

5. Кислоты можно получить окислением оксидов, других кислот и неметаллов в водном растворе кислородом или другими окислителями.

Например , концентрированная азотная кислота окисляет фосфор до фосфорной кислоты:

Химические свойства кислот

1. В водных растворах кислоты диссоциируют на катионы водорода Н + и анионы кислотных остатков. При этом сильные кислоты диссоциируют почти полностью, а слабые кислоты диссоциируют частично.

Например , соляная кислота диссоциирует почти полностью:

HCl → H + + Cl –

Если говорить точнее, происходит протолиз воды, и в растворе образуются ионы гидроксония:

HCl + H2O → H3O + + Cl –

Многоосновные кислоты диссоциируют cтупенчато.

Например , сернистая кислота диссоциирует в две ступени:

HSO3 – ↔ H + + SO3 2–

2. Кислоты изменяют окраску индикатора. Водный раствор кислот окрашивает лакмус в красный цвет, метилоранж в красный цвет. Фенолфталеин не изменяет окраску в присутствии кислот.

3. Кислоты реагируют с основаниями и основными оксидами .

С нерастворимыми основаниями и соответствующими им оксидами взаимодействуют только растворимые кислоты.

нерастворимое основание + растворимая кислота = соль + вода

основный оксид + растворимая кислота = соль + вода

Например , гидроксид меди (II) взаимодействует с растворимой бромоводородной кислотой:

При этом гидроксид меди (II) не взаимодействует с нерастворимой кремниевой кислотой.

С сильными основаниями (щелочами) и соответствующими им оксидами реагируют любые кислотами.


Щёлочи взаимодействуют с любыми кислотами — и сильными, и слабыми . При этом образуются средняя соль и вода. Эти реакции называются реакциями нейтрализации . Возможно и образование кислой соли, если кислота многоосновная, при определенном соотношении реагентов, либо в избытке кислоты. В избытке щёлочи образуется средняя соль и вода:

щёлочь(избыток)+ кислота = средняя соль + вода

щёлочь + многоосновная кислота(избыток) = кислая соль + вода

Например , гидроксид натрия при взаимодействии с трёхосновной фосфорной кислотой может образовывать 3 типа солей: дигидрофосфаты, фосфаты или гидрофосфаты.

При этом дигидрофосфаты образуются в избытке кислоты, либо при мольном соотношении (соотношении количеств веществ) реагентов 1:1.

При мольном соотношении количества щелочи и кислоты 1:2 образуются гидрофосфаты:

В избытке щелочи, либо при мольном соотношении количества щелочи и кислоты 3:1 образуется фосфат щелочного металла.


4. Растворимые кислоты взаимодействуют с амфотерными оксидами и гидроксидами.

Растворимая кислота + амфотерный оксид = соль + вода

Растворимая кислота + амфотерный гидроксид = соль + вода

Например , уксусная кислота взаимодействует с гидроксидом алюминия:


5. Некоторые кислоты являются сильными восстановителями. Восстановителями являются кислоты, образованные неметаллами в минимальной или промежуточной степени окисления, которые могут повысить свою степень окисления (йодоводород HI, сернистая кислота H2SO3 и др.).

Например , йодоводород можно окислить хлоридом меди (II):

4H I — + 2 Cu +2 Cl2 → 4HCl + 2 Cu + I + I2 0

6. Кислоты взаимодействуют с солями.

Кислоты реагируют с растворимыми солями только при условии, что в продуктах реакции присутствует газ, вода, осадок или другой слабый электролит . Такие реакции протекают по механизму ионного обмена.

Кислота1 + растворимая соль1 = соль2 + кислота2/оксид + вода


Например , соляная кислота взаимодействует с нитратом серебра в растворе:

Ag + NO3 — + H + Cl — → Ag + Cl — ↓ + H + NO3

Кислоты реагируют и с нерастворимыми солями. При этом более сильные кислоты вытесняют менее сильные кислоты из солей .

Например , карбонат кальция (соль угольной кислоты), реагирует с соляной кислотой (более сильной, чем угольная):

7. Кислоты взаимодействуют с кислыми и основными солями. При этом более сильные кислоты вытесняют менее сильные из кислых солей. Либо кислые соли реагируют с кислотами с образованием более кислых солей.

кислая соль1 + кислота1 = средняя соль2 + кислота2/оксид + вода

Например , гидрокарбонат калия реагирует с соляной кислотой с образованием хлорида калия, углекислого газа и воды:

KHCO3 + HCl → KCl + CO2 + H2O

Ещё пример : гидрофосфат калия взаимодействует с фосфорной кислотой с образованием дигидрофосфата калия:

При взаимодействии основных солей с кислотами образуются средние соли. Более сильные кислоты также вытесняют менее сильные из солей.

Например , гидроксокарбонат меди (II) растворяется в серной кислоте:

Основные соли могут взаимодействовать с собственными кислотами. При этом вытеснения кислоты из соли не происходит, а просто образуются более средние соли.

Например , гидроксохлорид алюминия взаимодействует с соляной кислотой:

Al (OH) Cl2 + HCl → AlCl3 + H2O

8. Кислоты взаимодействуют с металлами.

При этом протекает окислительно-восстановительная реакция. Однако минеральные кислоты и кислоты-окислители взаимодействуют по-разному.

К минеральным кислотам относятся соляная кислота HCl, разбавленная серная кислота H2SO4, фосфорная кислота H3PO4, плавиковая кислота HF, бромоводородная HBr и йодоводородная кислоты HI и др.

Такие кислоты взаимодействуют только с металлами, расположенными в ряду активности до водорода:


При взаимодействии минеральных кислот с металлами образуются соль и водород:

минеральная кислота + металл = соль + H2

Например , железо взаимодействует с соляной кислотой с образованием хлорида железа (II):

Fe + 2 H + Cl → Fe +2 Cl2 + H2 0

Кислоты-окислители (азотная кислота HNO3 любой концентрации и серная концентрированная кислота H2SO4(конц)) при взаимодействии с металлами водород не образуют, т.к. окислителем выступает не водород, а азот или сера. Продукты восстановления азотной или серной кислот бывают различными. Определять их лучше по специальным правилам. Эти правила подробно разобраны в статье Окислительно-восстановительные реакции . Я настоятельно рекомендую выучить их наизусть.

9. Некоторые кислоты разлагаются при нагревании.

Угольная H2CO3, сернистая H2SO3 и азотистая HNO2 кислоты разлагаются самопроизвольно, без нагревания:

Кремниевая H2SiO3, йодоводородная HI кислоты разлагаются при нагревании:

Формула фосфорной кислоты

Фосфорная кислота – это неорганическая кислота, которая является производным фосфорного ангидрида .

Химическая и структурная формула фосфорной кислоты

Химическая формула –

Молярная масса равна г/моль.

Физические свойства – при комнатной температуре это бесцветные гигроскопичные кристаллы с температурой плавления , температурой кипения , растворимость в воде составляет 5,48 г/мл.

Химические свойства фосфорной кислоты

\[ 3Mg + 2H_3PO_4 = Mg_3(PO_4)_2 \downarrow + 3H_2 \uparrow \]

\[ Fe_2O_3 + 2H_3PO_4 = 2FePO_4 \downarrow + 3H_2O \]

\[ H_3PO_4 + 3NaOH = Na_3PO_4 + 3H_2O \]

\[ 2H_3PO_4 + 3CaCl_3 = Ca_3(PO_4)_2 \downarrow + 6HCl \]

\[ H_3PO_4 + HClO_4 = [P(OH)_4]ClO_4 \]

\[ 2H_3PO_4 = H_4P_2O_7 + H_2O \]

\[ H_3PO_4 = HPO_3 + H_2O \]

Получение фосфорной кислоты

  • Фосфорную кислоту можно получить из фосфата кальция:

\[ Ca_3(PO_4)_2 + 3H_2SO_4 = 3CaSO_4 + 2H_3PO_4 \]

\[ PCl_5 + 4H_2O = H_3PO_4 + 5HCl \]

\[ P_2O_5 + 3H_2O = 2H_3PO_4 \]

\[ 3P + 5HNO_3 + 2H_2O = 3H_3PO_4 + 5NO \]

Применение

Ортофосфорная кислота используется для очищения от ржавчины металлических поверхностей,

как пищевая добавка E338 (регулятор кислотности),

применяется в производстве удобрений,

в текстильной промышленности для крашения тканей,

в органическом синтезе в качестве катализатор,

в стоматологии для получения зубного цемента.

Качественная реакция

Качественной реакцией на фосфорную кислоту является образование ярко-жёлтого осадка молибденофосфата аммония:

\[ H_3PO_4 + 12[NH_4]2MoO_4 + 21HNO_3 = [NH_4]_3PMo_{12}O_{40} \cdot 6H_2O \downarrow + 21NH_4NO_3 + 6H_2O \]

и жёлтого осадка с нитратом серебра

\[ H_3PO_4 + 3AgNO_3 = Ag_3PO_4 \downarrow + 3HNO_3 \]

Примеры решения задач

Задание Рассчитайте концентрацию (массовую долю) раствора , полученного смешением г раствора и г раствора .
Решение Вычислим массовую долю конечного раствора по формуле смешения растворов:

\omega _3 = \frac{\omega _1 \cdot m_1 + \omega _2 \cdot m_2}{m_1 + m_2} = \frac{0,1 \cdot 10 + 0,01 \cdot 5}{10 + 5} = 0,07

или

и — массовые доли первого и второго растворов.

и — масса первого и второго раствора.

Задание Возможно ли восстановить до фосфора азидом натрия в кислой среде?
Решение Запишем уравнение химического взаимодействия:

\[ H_3PO_4 + NaN_3 + H_2SO_4 \rightarrow P + N_2 \uparrow + Na_2SO_4 + H_2O \]

Уравняем химическую реакцию:

H_3PO_4 + 5H^+ + 5e \rightarrow P + 4H_2O

5e коэффициент 2

наименьшее общее кратное 10

2e коэффициент 5

\[ 2H_3PO_4 + 10H^+ + 10N_3^- \rightarrow 2P + 15N_2 + 8H_2O \]

\[ 2H_3PO_4 + 10NaN_3 + 5H_2SO_4 \rightarrow 2P + 15N_2 + 8H_2O + 5Na_2SO_4 \]

Определим значение стандартной ЭДС .

В

E^0 = E_{H_3PO_4/P}^{0} - E_{N_2/N_3^-}^{0} = -0,41 - (-3,4) = 2,99

В

Читайте также: