Холодное газодинамическое напыление металлов

Обновлено: 26.04.2024

Газодинамическое напыление металла выполняется с целью придания поверхностям металлических и неметаллических изделий необходимых свойств. Это может быть повышение электро- и теплопроводности, прочности, защита от воздействия коррозионных процессов, восстановление геометрических размеров и т. д. При этом в зависимости от конкретной задачи, зависящей от металла изделия, подбирается необходимое оборудование, расходные материалы и технология выполнения напыления. Чаще всего поверхности подлежат металлизации, при этом наносимое покрытие имеет высокую адгезию с материалом, на которую оно наносится, а изделие получается механически прочным. Напыляться могут чисто металлические порошки или смеси, в состав которых, помимо металлической составляющей, вводится керамический порошок в определенных количествах. Это значительно удешевляет технологию получения порошкового покрытия и не сказывается на его свойствах.

Суть и назначение технологии газодинамического напыления

Сущность метода холодного газодинамического напыления заключается в нанесении и закреплении на поверхности изделия или детали твердых частиц металла или смеси материалов размером от 0,01 до 50 мкм, разогнанных до необходимой скорости в воздухе, азоте или гелии. Такой материал называют порошковым. Это частицы алюминия, олова, никеля, баббиты разных марок, смесь алюминиевого порошка с цинком. Среда, с помощью которой осуществляют перемещение материала, может быть холодной или подогреваться до температуры не выше 700 °C.


При контакте с поверхностью изделия происходит трансформация пластического типа, а энергия кинематического вида переходит в адгезионную и тепловую, что способствует получению прочного поверхностного слоя металла. Порошок может наноситься не только на металлические поверхности, но и на выполненные из бетона, стекла, керамики, камня, что значительно расширяет область применения способа создания поверхностей с особыми свойствами.

В зависимости от давления различают такие виды холодного газодинамического напыления:

В первом случае в качестве рабочей среды, перемещающей порошковый материал размером от 5 до 50 мк, используют гелий и азот. Частицы металла, если они движутся, имеют давление больше 15 атм. Во втором случае используется сжатый воздух, который подается под давлением, не превышающим 10 атм. Различаются эти виды еще и такими показателями, как мощность подогрева и расход рабочей среды.

Этапы напыления следующие:

  • подготовка поверхности изделия к напылению механическим или абразивным способом;
  • нагревание рабочей среды (воздух, азот, гелий) до установленной в технологическом процессе температуры;
  • подача нагретого газа в сопло оборудования вместе с порошком под необходимым давлением.

В результате порошок разгоняется в потоке до сверхзвуковых скоростей и соударяется с поверхностью детали или изделия. Происходит напыление слоя металла толщиной, величина которой зависит от температуры нагрева подаваемого газа и давления.

Подготовку поверхности изделия абразивным способом выполняют, применяя само оборудование для нанесения газодинамического напыления простой сменой параметров режима.

Область применения этого вида напыления довольно обширная. С помощью метода осуществляют герметизацию течей в емкостях и трубопроводах, ремонт деталей и отливок из легких сплавов, наносят электропроводящие, антикоррозионные и антифрикционные покрытия, устраняют механические повреждения, восстанавливают посадочные места в подшипниках.












Газодинамическое напыление порошковых материалов

Холодное напыление металлических покрытий

Метод холодного газодинамического напыления (ХГН) используется с целью восстановления поверхности изделий, упрочнения и защиты металлов от коррозии, повышения тепло- и электропроводности и т.д. Технология ХГН расширяет возможности газотермического напыления и позволяет формировать покрытия при пониженных температурах, что весьма важно для изделий и материалов, не допускающих воздействия высоких температур.

Технологии газотермического и газодинамического напыления используются для нанесения покрытий на поверхность металлов и изделий. Объединяет оба этих метода то, что для покрытия используются порошковые материалы. Но, при газотермическом напылении попадающие на подложку частицы имеют высокую температуру, обычно выше температуры плавления материала. В газодинамической технологии на подложку наносятся частицы с более низкой температурой, но имеющие очень высокую скорость (500…1000 м/с).

Распыляемые материалы – полимеры, карбиды, металлы – образуют термобарьерные, износо- и коррозионностойкие покрытия, которые выдерживают воздействия химически активных сред, высокие тепловые нагрузки. В качестве напыляемых (расходных) материалов используются мелко- и ультрадисперсные порошки с размером частиц 0,01-0,5 мкм.

Технология

Суть метода состоит в нанесении на обрабатываемую поверхность порошков металлов (или их смесей с керамическими порошками) с помощью сверхзвуковых потоков воздуха. Частицы напыляемого порошка ускоряются сверхзвуковой струей газа и направляются на покрываемую поверхность. При этом температура процесса существенно меньшей температуры плавления материала частиц.

Путем изменения режимов работы оборудования можно наносить однородные покрытия, либо создавать композиционные покрытия из механической смеси порошков. Можно также менять твердость, пористость и толщину напыляемого покрытия и др.

Покрытия

Структура покрытий представляет собой однородный металлический слой (в случае чисто металлических покрытий, создаваемых из одного металла) или металлический слой, структурированный частицами другого металла или керамики. Возможно нанесение нескольких слоев разнородных покрытий различных (заданных) толщин каждого из слоев.

ХГН обеспечивает получение покрытий высокого качества при использовании относительно легкоплавких материалов (Zn, Al, сплавы карбидов с металлами с большой долей металлической матрицы), что не позволяет использовать ХГН для защиты от износа в условиях эрозии, агрессивных сред при высоких температурах.

Оборудование

Конструкция оборудования обеспечивает создание воздушного сверхзвукового потока, введение в этот поток частиц напыляемого порошкового материала и ускорение этих частиц до скоростей, достаточных для эффективного формирования металлических покрытий с высокими эксплуатационными характеристиками.

К настоящему времени выпускается несколько модификаций оборудования для ручного или автоматизированного нанесения покрытий. Производителем промышленного оборудования для газодинамического напыления является «Обнинский центр порошкового напыления» (Россия).

Оборудованию присвоен товарный знак ДИМЕТ®, оно сертифицировано по системе ГОСТ Р и защищено патентами России, США, Канады и других стран. Для работы оборудования необходим сжатый воздух давлением 0,6-1,0 МПа и расходом 0,3-0,4 м3/мин., и электросеть напряжением 220 В.

На базе этого оборудования выпускаются специализированные комплексы для восстановления радиальных зазоров осевых компрессоров газоперекачивающих аппаратов, и комплексы для нанесения покрытий на малоразмерные плоские изделия.

Преимущества и недостатки газодинамического метода

По сравнению с термическими способами, газодинамический метод обладает рядом преимуществ:

  • Покрытие наносится в воздушной атмосфере при нормальном давлении, при любых значениях температуры и влажности атмосферного воздуха;
  • При нанесении покрытий оказывается незначительное тепловое воздействие на покрываемое изделие (изделие в зоне нанесения покрытия не нагревается выше 100-150 °С), что исключает возникновение внутренних напряжений в изделиях и их деформацию, а также окисление материалов покрытия и детали;
  • Технология нанесения покрытий экологически безопасна (отсутствуют высокие температуры, опасные газы и излучения, нет химически агрессивных отходов, требующих специальной нейтрализации);
  • При воздействии высокоскоростного потока напыляемых частиц происходит очистка поверхности от технических загрязнений, масел, красок и активация кристаллической решетки материала изделия;
  • Поток напыляемых частиц является узконаправленным и имеет небольшое поперечное сечение. Это позволяет, в отличие от традиционных газотермических методов напыления, наносить покрытия на локальные (с четкими границами) участки поверхности изделий;
  • Возможно нанесение многокомпонентных покрытий с переменным содержанием компонентов по его толщине;
  • Возможно нанесение различных типов покрытий с помощью одной установки;
  • Возможно использование оборудования не только в стационарных, но и в полевых условиях.

Единственным недостатком газодинамического напыления является возможность нанесения покрытий только из относительно пластичных металлов, таких как медь, алюминий, цинк, никель и др.

Область применения

Ремонт дефектов деталей из легких сплавов Устранение повреждений деталей из легких сплавов, прежде всего алюминиевых или алюминиевомагниевых сплавов, возникающих как в процессе их производства, так и в процессе эксплуатации, является наиболее эффективным направлением применения этой технологии.

Важно подчеркнуть, что низкая энергетика процесса позволяет устранять дефекты и повреждения даже тонкостенных деталей, восстановление которых другими способами оказывается просто невозможным.

Причина этого – отсутствие нагрева обрабатываемой детали (деталь не нагревается выше 100-150°С), а следовательно, и отсутствие окисления напыляемого материала и подложки, отсутствие тепловых деформаций изделия и внутренних напряжений.

Ремонт отливок В производстве отливок из легких сплавов технология применяется для устранения дефектов литья (свищи, каверны, раковины) в тех случаях, когда они не влияют на прочностные характеристики изделия, но нарушают их герметичность, требуемые геометрические параметры или товарный вид. Экономическая эффективность ремонта возрастает, если дефекты являются скрытыми и обнаруживаются только на этапе механической обработки.

Устранение механических повреждений Повреждения деталей, сопровождающиеся изменением геометрических размеров, возникают как в процессе производства, так и в процессе эксплуатации деталей в составе механизмов. Эти повреждения, связанные с уносом массы металла – коррозионные повреждения, износ, сколы, прогары, трещины, пробоины и др.

Технология газодинамического напыления используется для устранения таких повреждений при выполнении ремонтно-восстановительных работ автотракторной, авиационной, железнодорожной, военной техники, сельскохозяйственных машин, технологического оборудования и т.п. Отдельным направлением применения технологии является восстановление геометрических размеров деталей и узлов газоперекачивающих аппаратов магистральных газопроводов.

Восстановление посадочных мест подшипников Восстановление посадочных мест подшипников позволяет облегчить традиционную технологию ремонта и ее трудоемкость. Покрытия наносятся непосредственно на изношенную поверхность; процесс «наращивания» металла унифицируется в силу того, что покрытия могут наноситься на любые металлы, из которых могут быть изготовлены подшипниковые щиты.

Герметизация течей жидкостей и газов Технология позволяет устранять течи рабочих газов и жидкостей в случаях, когда невозможно использование герметиков: для ремонта сосудов, работающих под давлением или при низких и высоких температурах (элементов криогенных систем, систем охлаждения, трубопроводов, теплообменников и т.п.).

Главные плюсы метода

К преимуществам технологии относят:

  • выполнение работ при любых климатических условиях (давлении, температуре, влажности);
  • возможность применения оборудования стационарного и переносного типа, что в последнем случае позволяет осуществлять работы по месту их проведения;
  • возможность нанесения покрытия на локальные участки (дефектные места);
  • возможность создания слоев с разными свойствами;
  • возможность создания слоя необходимой толщины или разных по толщине в многослойных покрытиях;
  • процесс не оказывает влияния на структуру изделия, на которое наносится напыление, что является важным преимуществом;
  • безопасность;
  • экологичность.

К недостатку этого вида напыления относят только один факт. Слои можно наносить на пластичные металлы, такие как медь, цинк, алюминий, никель и сплавы на их основе.

Производители разных стран выпускают оборудование стационарного и переносного типа для ручного и автоматизированного нанесения покрытий разной производительности на разные металлы.

Принцип действия, плюсы и минусы ХГН

ХГН имеет два основных отличия от газотермического метода реставрации. Во-первых, напыление защитного или восстановительного покрытия происходит при пониженной температуре, не превышающей 150 °С, что в свою очередь не вызывает напряжения в обрабатываемых деталях и их деформации. Во-вторых, «холодная» технология позволяет создавать слой регулируемой толщины и в точно заданных границах. О других плюсах и минусах расскажем чуть позже, а пока об авторах метода и о том, как он работает.

Его разработчиком является «Обнинский центр порошкового напыления» (Россия). Производимое ими оборудование получило название ДИМЕТ®. Оно сертифицировано по системе ГОСТ Р и защищено патентами России, США, Канады и других стран. В основу технологии заложен принцип сверхзвукового воздействия мельчайшими частицами легкоплавких и других материалов на обрабатываемую поверхность. В основном это полимеры или сплавы карбидов с металлами с размером частиц 0,01-0,5 мкм. Смешиваясь с газом они подаются на изделие со скоростью 500-1000 м/с.

В зависимости от состава расходного материала (порошка) и изменения режимов его нанесения можно получить однородное или композиционное покрытие с твердой или пористой структурой и своей функциональной задачей. Это может быть: восстановление геометрии изделия, упрочнение и защита металла от коррозии, повышение тепло- и электропроводности материала, а также образование износостойкого покрытия, выдерживающего воздействие химически активных сред, высоких тепловых нагрузок и т. д.

Кстати, обнинские инженеры разработали уже несколько модификаций установок ДИМЕТ®. Учитывая широкую востребованность данного оборудования, сейчас серийно выпускаются как ручные, так и автоматизированные аппараты холодного газодинамического напыления, что позволяет использовать их в промышленности, нефтегазовой отрасли, а также в малом бизнесе для обработки небольших деталей. Тем более, что ничего особо сложного в самой технологии нет. Для работы комплекса (помимо материала для напыления) необходим только сжатый воздух (подается под давлением 0,6-1,0 МПа и расходом 0,3-0,4 м3/мин.) и электросеть напряжением 220 В. Теперь ещё о преимуществах и недостатках метода. Во-первых, в отличие от газотермического способа ХГН может эффективно применяться при обычном давлении, в любом температурном диапазоне и уровне влажности. В-вторых, он экологически абсолютно безопасен. В-третьих, благодаря большой скорости, может применяться и для абразивной чистки поверхности. Ну, а единственным недостатком технологии является возможность нанесения покрытий только из относительно пластичных металлов, таких как медь, алюминий, цинк, никель и др.

Применяемое оборудование

Аппарат газодинамического напыления металла состоит из таких основных частей:

  • емкости для порошка;
  • системы подачи рабочей среды, включая баллон для сжатого газа и все необходимые комплектующие к нему;
  • сопла (как правило, их несколько, они разной конфигурации и применяются для разных режимов напыления);
  • пульта управления.



В РФ качественное оборудование для напыления газодинамическим способом выпускает центр порошкового напыления в Обнинске под товарным знаком «ДИМЕТ». Оно соответствует требованиям отечественных ГОСТов, сертифицировано и защищено патентами во многих странах, включая Россию.
Процесс ремонта детали газодинамическим напылением показан на видео:

Просим тех, кто работал с разными типами оборудования по газодинамическому напылению и разными металлами и типами порошков поделиться опытом в комментариях к тексту и рассказать, каким способом выполнялись подготовка поверхности и сам процесс напыления.

Сущность и задачи газодинамического напыления

Газодинамическое напыление металла: цель, назначение, разновидности технологии. Преимущества и недостатки метода. Область применения. Оборудование и особенности применения холодного напыления.

Оборудование для газодинамического напыления


Сущность метода холодного газодинамического напыления заключается в нанесении и закреплении на поверхности изделия или детали твердых частиц металла или смеси материалов размером от 0,01 до 50 мкм, разогнанных до необходимой скорости в воздухе, азоте или гелии. Такой материал называют порошковым. Это частицы алюминия, олова, никеля, баббиты разных марок, смесь алюминиевого порошка с цинком. Среда, с помощью которой осуществляют перемещение материала, может быть холодной или подогреваться до температуры не выше 700 °C.

Технология газодинамического напыления

При контакте с поверхностью изделия происходит трансформация пластического типа, а энергия кинематического вида переходит в адгезионную и тепловую, что способствует получению прочного поверхностного слоя металла. Порошок может наноситься не только на металлические поверхности, но и на выполненные из бетона, стекла, керамики, камня, что значительно расширяет область применения способа создания поверхностей с особыми свойствами.

Область применения этого вида напыления довольно обширная. С помощью метода осуществляют герметизацию течей в емкостях и трубопроводах, ремонт деталей и отливок из легких сплавов, наносят электропроводящие, антикоррозионные и антифрикционные покрытия, устраняют механические повреждения, восстанавливают посадочные места в подшипниках.

Оборудование для газодинамического напыления


В РФ качественное оборудование для напыления газодинамическим способом выпускает центр порошкового напыления в Обнинске под товарным знаком «ДИМЕТ». Оно соответствует требованиям отечественных ГОСТов, сертифицировано и защищено патентами во многих странах, включая Россию.

Процесс ремонта детали газодинамическим напылением показан на видео:

Холодное газодинамическое напыление металлов

Метод холодного газодинамического напыления металла (англ. – cold spray , cold gas dynamic spraying ) состоит в том, что твердые частицы металла, температура которых значительно меньше их температуры плавления, разгоняются до сверхзвуковой скорости и закрепляются на поверхности при соударении с нею.

Сущность метода холодного газодинамического напыления металла включает в себя формирование в сопле сверхзвукового газового потока, подачу в этот поток порошкового материала с размерами частиц 0,01-50 мкм, его сверхзвуковое ускорение в сопле и направление частиц порошка на поверхность изделия. Ускорение частиц возможно в среде холодных или подогретых газов, таких как: воздух, гелий, азот. Значения температуры существенно ниже температуры плавления материала порошка (0,4-0,7Тпл). Технология холодного газодинамического напыления позволяет наносить металлические покрытия не только на металлы, но и на стекло, керамику, камень, бетон. Покрытия, нанесенные этим методом, механически прочны и имеют высокую адгезию к подложке.

Явление формирования покрытий методом холодного газодинамического напыления впервые было обнаружено в Институте теоретической и прикладной механики им. С.А. Христиановича Сибирского отделения Российской академии наук (ИТПМ СО РАН) в начале 80-х годов прошлого века. Они показали, что для формирования покрытия необязательно, чтобы частицы находились в расплавленном или предрасплавленном состоянии, а покрытия можно получать из частиц с температурой значительно ниже их температуры плавления, в отличие от традиционных методов напыления.



Рис. 1. Микрофотографии покрытий [1].

Основные экспериментальные факты:

1. Наиболее важным параметром при холодном напылении является скорость частиц, именно от ее величины зависят адгезия, пористость, микротвердость покрытий и др. Для всех частиц с диаметром d £ 50 мкм существует «пороговая» величина скорости взаимодействия их с подложкой (500-600 м/с). Если скорость ниже этого значения, то наблюдается процесс эрозии. При скорости выше «пороговой» процесс эрозии переходит в напыление.

2. Существует критическая величина расхода частиц, при котором напыление не происходит независимо от времени воздействия потока.

3. При расходе частиц выше критической величины частицы прочно сцепляются с поверхностью изделия и между собой, образуя в напыленном слое плотную упаковку. Из рис. 2, а видно, что внешняя часть покрытия представляет собой совокупность деформированных частиц напыляемого материала с характерным размером d =20-40 мкм и следами (кратерами) от ударов бомбардирующих частиц. Поперечный разрез (шлиф) покрытия (рис. 2, б) показывает, что оно отличается малой пористостью и хорошей однородностью по всей толшине слоя. Наличие шероховатой границы между напыленным слоем и поверхностью тела, которая предварительно обрабатывалась по 10 классу чистоты, свидетельствует о том, что перед образованием напыления также имеет место пластическая деформация и эрозия поверхности тела.


Рис. 2. Микрофотографии внешнего слоя (х150) и поперечного шлифа покрытия из частиц алюминия (электронный микроскоп, х300) [1].

4. Только малая доля частиц, разгоняемая сверхзвуковым потоком, в итоге напыляется на изделие, основная же доля отражается и уносится потоком газа. Масса напыленных частиц увеличивается с ростом расхода порошкового материала.

5. При формировании покрытия нагрев поверхности изделия незначителен. Разница температур для поверхности только обтекаемой потоком газа и при напылении покрытия составляет » 45 градусов.

Существует 2 разновидности холодного газодинамического напыления: высокого и низкого давления. Сравнение типичных параметров оборудования для напыления по этим двум способам представлено в табл. 1. В общем, качество покрытий нанесенным методом высокого давления выше и требования к определенному размеру частиц порошка ниже. Главное достоинство метода низкого давления в более низкой стоимости оборудования и его меньших габаритах.

Таблица 1. Сравнение режимов холодного газодинамического напыления высокого (ХГНВД) и низкого давления (ХГННД).

«Оборонка» поделилась методом реставрации металлических изделий


По сути, газодинамическая технология холодного напыления – более продвинутый вариант давно уже зарекомендовавшего себя газотермического способа восстановления различных металлических деталей и поверхностей. Cold Spray или просто ХГН значительно расширяет возможности «горячего» метода обработки изделий.

В настоящее время, бесспорно, это самая передовая технология восстановления и защиты материалов, получившая широкое распространение как в промышленном секторе, так и гражданской сфере.

газодинамическая технология холодного напыления

Его разработчиком является «Обнинский центр порошкового напыления» (Россия). Производимое ими оборудование получило название ДИМЕТ ® . Оно сертифицировано по системе ГОСТ Р и защищено патентами России, США, Канады и других стран. В основу технологии заложен принцип сверхзвукового воздействия мельчайшими частицами легкоплавких и других материалов на обрабатываемую поверхность. В основном это полимеры или сплавы карбидов с металлами с размером частиц 0,01-0,5 мкм. Смешиваясь с газом они подаются на изделие со скоростью 500-1000 м/с.

Кстати, обнинские инженеры разработали уже несколько модификаций установок ДИМЕТ ® . Учитывая широкую востребованность данного оборудования, сейчас серийно выпускаются как ручные, так и автоматизированные аппараты холодного газодинамического напыления, что позволяет использовать их в промышленности, нефтегазовой отрасли, а также в малом бизнесе для обработки небольших деталей. Тем более, что ничего особо сложного в самой технологии нет. Для работы комплекса (помимо материала для напыления) необходим только сжатый воздух (подается под давлением 0,6-1,0 МПа и расходом 0,3-0,4 м3/мин.) и электросеть напряжением 220 В.

ХГН

Теперь ещё о преимуществах и недостатках метода. Во-первых, в отличие от газотермического способа ХГН может эффективно применяться при обычном давлении, в любом температурном диапазоне и уровне влажности. В-вторых, он экологически абсолютно безопасен. В-третьих, благодаря большой скорости, может применяться и для абразивной чистки поверхности. Ну, а единственным недостатком технологии является возможность нанесения покрытий только из относительно пластичных металлов, таких как медь, алюминий, цинк, никель и др.

Область применения ХГН

Более подробно хотелось бы остановиться на сферах использования технологии холодного газодинамического напыления порошковыми материалами, чтобы наглядно показать насколько она сегодня востребована.

Устранение дефектов, восстановление поверхностей и герметизация

газодинамическая технология холодного напыления

Всё это – работа, которой могут заниматься даже малые предприятия. К примеру, в небольших мастерских можно ремонтировать детали из легких сплавов (части автомобильной конструкции, допустим), прежде всего, алюминиевых и алюминиевомагниевых. Причем, легко устраняются дефекты, возникшие как в процессе производства, так и в процессе эксплуатации. А отсутствие сильного нагрева и низкая энергетика метода позволяют чинить даже тонкостенные изделия.

Отлично подходит ХГН и для восстановления изношенных поверхностей. Например, такой трудоемкий процесс, как «наращивание» металла в посадочных местах подшипников, теперь могут осуществлять даже малые предприятия, не говоря уже о восстановлении герметизации (когда применение жидких герметиков невозможно) в трубопроводах, теплообменниках или сосудах для рабочих газов, жидкостей.

Высокоточное восстановление деталей различных механизмов, токопроведение

ХГН очень эффективен в ремонте сложных изделий, где требуется точное восстановление геометрических параметров, устранение скрытых дефектов, но при этом с сохранением всех эксплуатационных характеристик, а также товарного вида. Именно поэтому данный метод активно используется в оборонно-промышленном комплексе, железнодорожной и авиационной промышленности, сельском хозяйстве, газоперекачке и пр.

ХГН

Не обойтись без этой технологии и в создании контактных площадок. Благодаря возможности легкого нанесения покрытий на любые металлические, керамические и стеклянные поверхности ХГН применяется и в производстве электротехнических изделий. Например, в процессах меднения, создании силовых токонесущих сетей, нанесении токовводов, изготовлении подслоев под пайку и т. д.

Антикоррозийная обработка и устранение глубоких дефектов

Напыление так называемого антифрикционного покрытия – высокоэффективный способ избавления от локальных повреждений (глубоких сколов, задиров, царапин). Это позволяет избежать процедуры полной перезаливки или даже замены изделия, что, естественно, экономически не выгодно.

А в антикорроизонной обработке и защите от высокотемпературной коррозии различных коммуникаций данному методу вообще нет равных. К слову, различные модификации оборудования ДИМЕТ ® обеспечивают качественную обработку внутренней поверхности труб диаметром от 100 мм и длиной до 12 м.

Читайте также: