Износостойкие металлы и сплавы

Обновлено: 07.07.2024

Специальное назначение конструкционных сталей и сплавов определяется требованием к конкретному комплексу механических, физических, физико-химических и технологических свойств, необхо­димому для эксплуатации изделий в строго определенных условиях, например, при очень высоких напряжениях, низких или повышенных температурах, динамических или гидроабразивных нагрузках, для специального назначения в приборах и аппаратах электро- и радио­технической промышленности.

В зависимости от химического состава сплавы этой группы подразделяют на классы по основному составляющему элементу: сплавы на железоникелевой основе; сплавы на никелевой основе. Классификация машиностроительных сталей и сплавов по ос­новному потребительскому свойству имеет следующие группы: особо высокой прочности и вязкости, коррозионностойкие, износостойкие, пружинные, автоматные, шарикоподшипниковые и литейные.

Стали особо высокой прочности и вязкости (мартенситно-стареющие)по химическому составу являются безуглеродистыми (менее 0,03 % С) и высоколегированными (Ni, Co, Mo, Cr, Ti, Be и др.).

Технологические свойства мартенситно-стареющих сталей по­вышенные: хорошие свариваемость, обрабатываемость резанием и пластичность в закаленном состоянии; незначительная деформация деталей при отпуске, выполняемом после резания и создающем необ­ходимые высокие механические свойства. Мартенситно-стареющим сталям можно придать стойкость против коррозии и теплостойкость. Так, при дополнительном легировании хромом (~12 %) эти стали становятся стойкими против коррозии даже в сильно агрессивных средах (морской воде, кислотах и др.).

Мартенситно-стареющие стали — особо высококачественные и из-за вы­сокой стоимости применяются для изготовления деталей наиболее ответствен­ного назначения: Н18К9М5 — шестерен, валов, корпусов ракет; Н10Х12Д2Т — деталей химической аппаратуры, пружин; Н4Х12К15М4Т — штампов горя­чего деформирования, деталей теплоэнергетических установок и др.

Коррозионностойкие стали и сплавы(ГОСТ 5632—72), в том числе высоколегированные, обладают достаточной стойкостью про­тив коррозии только в ограниченном числе сред. Они обязательно . имеют в своем составе более 12,5 % Сг, роль которого состоит в образовании на поверхности изделия защитной (пассивной) оксидной пленки,прерывающей контакт с агрессивной средой. При этом луч­шей стойкостью против коррозии обладают те стали и сплавы, в ко­торых все содержание хрома приходится на долю твердого раствора. Содержание углерода должно быть небольшим, чтобы уменьшить переходхрома в карбиды, так как это может снизить концентрацию хрома в защитной пленке. Для предотвращения выделений карбидов хрома используют также быстрое охлаждение из области γ-твердого раствора или легирование титаном, ванадием, ниобием или цирконием для связывания углерода в более устойчивые карбиды.

Физико-химические свойства коррозионностойких сталей меняются в довольно широком диапазоне в зависимости от структуры.

Структура для наиболее характерных сплавов этого назначе­ния может быть:

· ферритно-карбидной и мартенситной (12X13, 20X13, 20X17Н2, 30Х13, 40X13, 95X18 - для слабых агрессивных сред (воздух, вода, пар);

· ферритной (15X28) — для растворов азотной и фосфорной кислот;

· аустенитной (12Х18Н10Т) — в морской воде, органических и азотной кислотах, слабых щелочах;

· мартенситно-стареющей (10Х17Н13МЗТ, 09X15Н8Ю) — в фосфорной, уксусной и молочных кислотах. Сплав 06ХН28МТ может эксплуатироваться в условиях горячих (до 60°С) фосфорной и серной (концентрации до 20 %) кислот.

Коррозионная стойкость сталей может быть повышена терми­ческойобработкой (закалкой и высоким отпуском) и созданием шлифованной поверхности.

Коррозионностойкие стали и сплавы классифицируют в зави­симости от агрессивности среды, в которой они используются, и по иx основному потребительскому свойству на собственно коррозионно-стойкие, жаростойкие, жаропрочные и криогенные.

Изделия из собственно коррозионностойких сталей (лопатки турбин, клапаны гидравлических прессов, пружины, карбюраторные иглы, диски, валы, трубы и др.) работают при температуре эксплуатации до 550 °С.

Из жаростойких и жаропрочных машиностроительных сталей исполь­зуются малоуглеродистые (0,1. 0,45 % С) и высоколегированные (Si, Cr, Ni, Со и др.).

Жаростойкиестали и сплавы получают на базе системы Fe + Cr + Ni с небольшим количеством кремния. Основным потребительским свойством этих сталей является температура эксплуатации, которая должна быть бо­лее 550 °С. Жаростойкие стали устойчивы против газовой коррозии до 900. 1200 °С в воздухе, печных газах, в том числе серосодержащих (15X5, 15Х6СМ, 40Х9С2, 30Х13Н7С2, 12X17, 15X28), окислительных и науглераживающих (20Х20Н14С2) средах, но могут проявлять ползучесть при при­ложении больших нагрузок.

Жаростойкие стали характеризуют по температуре начала интенсив­ного окисления. Величина этой температуры определяется содержанием хрома в сплаве. Так, при 15 % Сrтемпература эксплуатации изделий со­ставляет 950°С, а при 25 % Сг — 1300°С. Жаростойкость зависит от химиче­ского состава стали, а не от ее структуры, поэтому жаростойкость ферритных и аустенитных сталей при равном количестве хрома практически одинакова.

Жаростойкие стали и сплавы используются для производства труб, листов, деталей высокотемпературных установок, газовых турбин и порш­невых двигателей, печных конвейеров, ящиков для цементации и др.

Жаропрочные сталидолжны обладать высоким сопротивлением хими­ческой коррозии, но вместе с тем обеспечивать надежную работу под на­грузкой (то есть иметь достаточно высокие пределы ползучести и длитель­ной прочности) при температурах эксплуатации выше 400. 450°С. Темпе­ратурный уровень жаропрочности сплавов, в первую очередь, определяется прочностью межатомной связи, которая может быть оценена рядом физи­ческих констант, в том числе температурой плавления. Однако при данной температуре плавления жаропрочность сильно зависит от температуры рекристаллизации. В связи с этим стали аустенитного класса имеют более высокую жаропрочность по сравнению со сталями перлитного класса.

При таких высоких температурах эксплуатации определяющую роль в разрушении играет не дислокационная структура, а диффузионные про­цессы, имеющие даже при небольших напряжениях направленный характер и способствующие развитию диффузионной ползучести. Так как диффузи­онные процессы легче всего протекают по границам зерен, имеющих повышенное количество дефектов строения, то кроме химического состава на жаропрочность существенное влияние оказывает структура металла. Обычно добиваются получения легированного твердого раствора с вкрап­лениями по границам зерен или внутри них дисперсных карбидных или интерметаллидных фаз. Более крупное зерно способствует повышению жаро­прочности, хотя при этом снижается пластичность. Чрезвычайно важный фактор — стабильность структуры, так как перемещение атомов ведет к увеличению ползучести.

Жаропрочные стали и сплавы в своем составе обязательно содержат никель, который обеспечивает существенное увеличение предела длитель­ной коррозионной прочности при незначительном увеличении предела те­кучести и временного сопротивления, и марганец. Они могут дополнитель­но легироваться молибденом, вольфрамом, ниобием, титаном, бором, ио­дом и др. Так, микролегирование бором, а также редкоземельными и некоторыми щелочноземельными металлами повышают такие характери­стики, как число оборотов при кручении, пластичность и вязкость при вы­соких температурах. Механизм этого воздействия при микролегировании ос­нован на рафинировании границ зерна и повышении межкристаллитной прочности. Химический состав и структура этих сталей весьма разнообразны.

Рабочие температуры современных жаропрочных сплавов составляют примерно 0,45. 0,8 6 tпл. Эти стали классифицируют по температуре эксплуа­тации (ГОСТ 20072—74): при 400. 550 °С — 15ХМ, 12Х1МФ, 25Х2М1Ф, 20ХЗМВФ; при 500. 600 °С — 15Х5М, 40Х10С2М, 20X13; при 600. 650°С — 12Х18Н9Т, 45Х14Н14В2М, 10Х11Н23ТЗМР, ХН60Ю, ХН70Ю, ХН77ТЮР, ХН56ВМКЮ, ХН62МВКЮ.

Жаропрочные стали и сплавы применяются для изготовления труб, клапанных, паро- и газотурбинных деталей (роторы, лопатки, диски и др.).

Криогенные машиностроительные стали и сплавы(ГОСТ 5632—72) по химическому составу являются низкоуглеродистыми (0,10 % С) и высоколе­гированными (Cr, Ni, Mn и др.) сталями аустенитного класса (08Х18Н10, 12Х18Н10Т, 03Х20Н16АГ6, 03Х13АГ19 и др.). Основными потребитель­скими свойствами этих сталей являются пластичность и вязкость, которые с понижением температуры (20. -196°С) либо не меняются, либо мало уменьшаются, т.е. не происходит резкого уменьшения вязкости, характер­ного при хладноломкости. Например, для криогенных сталей (ОН6А, ОН9А) после соответствующей термической обработки (двойная нормали­зация и отпуск или закалка в воде и отпуск) характерно при понижении температуры повышение предела ползучести от 400 до 820 МПа. Криоген­ные машиностроительные стали классифицируют по температуре эксплуа­тации в диапазоне - 196. - 296°С и используют для изготовления деталей криогенного оборудования.

Износостойкие стали(ГОСТ 5632—72) по химическому соста­ву могут быть высокоуглеродистыми (1,1. 1,3 % С) или малоуглеро­дистыми и высоколегированными (Si, Mn, Cr, Ni и др.). Основное по­требительское свойство этих сталей — высокая стойкость деталей при кавитационной коррозии и механическом изнашивании при зна­чительных ударных нагрузках. Эти стали (12Х18Н9Т, 30Х10Г10, ОХ 14АГ 12, 0Х14АГ12М, Г13) применяют чаще в литом или кованом (катаном) состоянии, так как их общее технологическое свойство — пониженная обрабатываемость резанием. Износостойкие стали ис­пользуются для изготовления лопастей гидротурбин и гидронасосов, крестовин рельсов, щек дробилок, черпаков землеройных машин, траков и др.

Пружинные стали и сплавы(ГОСТ 14959—79) — среднеуглеродистые (0,60. 0,80 % С), низколегированные (Mn, Si, Cr, Ni и др.) ста­ли, обладающие высокими механическими свойствами, в первую оче­редь, высокими пределами упругости и прочности, а также повышен­ной релаксационной стойкостью при достаточной вязкости и пластичности. Для получения этих свойств стали должны содержать более 0,5 % С и быть способными к термической обработке — закал­ке и отпуску. Пружинные стали (стали 65Г, 70, 75; 50ХА, 55ХГР, 55С2, 60С2, 50ХФА, 60С2ХФА, 65С2ВА, 70С2ХА) в основном ис­пользуются для изготовления пружин и рессор.

Кроме рассмотренных выше пружинных сталей общего назна­чения в машиностроении широко используются пружинные стали специального назначения, к которым помимо требования высоких ме­ханических свойств могут предъявляться дополнительные требования по физико-химическим свойствам: немагнитность, коррозионная стойкость, низкий или постоянный температурный коэффициент мо­дуля упругости и др.

Автоматные стали(ГОСТ 1414—75) содержат 0,08. 0,45 % уг­лерода и повышенное содержание серы (0,05. 0,3 %), фосфора (0,05. 0,16 %) и часто марганца (0,6 . 1,55 %). Обогащение границ зе­рен феррита растворенным в нем фосфором и образование хрупких включений (MnS и др.) на границах зерен сталей облегчают резание, способствуют дроблению и легкому отделению стружки, обеспечивая чистоту обрабатываемой поверхности. Срок службы режущего инст­румента при обработке автоматных сталей увеличивается. Улучше­ние обрабатываемости стали достигается также микролегированием свинцом, селеном, кальцием. Однако введение этих элементов снижа­ет прочностные характеристики сталей, поэтому их применяют для изготовления малоответственных деталей, от которых не требуется высоких механических свойств.

Автоматные стали получили свое наименование в связи с их обработкой на станках-автоматах с повышенной скоростью резания для изготовления деталей массового спроса (шайбы, болты, гайки, шпильки и некоторые другие детали автомобилестроения). В обозна­чении марки первая буква А указывает, что сталь автоматная; цифры в ней показывают содержание углерода в сотых долях процента (на­пример, A11, А40Г). Присутствие свинца обозначает буква С (напри­мер, АС35Г2), кальция — буква Ц (АЦ45Х, АЦ40Г2 и др.), селена — буква Е (А35Е, А40ХЕ и др.).

Шарикоподшипниковые стали(ГОСТ 801—78) по химическому составу должны быть высокоуглеродистыми (0,95. 1,05 % С), низко­легированными (Cr, Si, Mn и др.). Жесткие требования (ГОСТ 801—78 и ГОСТ 21022—75) предъявляются к чистоте по неметалличе­ским включениям, карбидной сетке, карбидной ликвации, рыхлости и пористости металла. Микроструктура стали в рабочем состоянии — мелкоигольчатый (скрытокристаллический) мартенсит с равномерно распределенными округлыми включениями карбидов. Основные по­требительские свойства этих сталей — повышенные твердость (61. 65 HRС), износостойкость и сопротивление контактной усталости.

Шарикоподшипниковые хромистые стали обозначаются бук­вами ШХ в начале марки; содержание хрома в этих сталях указывает­ся в десятых долях процента после буквенного обозначения (ШХ4, ШХ15, ШХ15СГ и др.). В конце марки может быть указан вид метал­лургического переплава: Ш — электрошлаковый (ШХ15Ш); ВД — вакуумно-дуговой (ШХ15ВД).

Литейные сталисодержат до 0,9 % Мп, до 0,52 % Si и не более 0,06 % S и 0,08 % Р. При твердении отливок формируются крупные зерна аустенита, внутри которых при последующем охлаждении в сталях с содержанием углерода менее 0,4 % образуются направленные пластины избыточного феррита (видманштеттова структура). С увеличением содержания углерода доля феррита, образующего видманштеттову структуру, уменьшается, а доля феррита в виде равно­осных зерен возрастает. Литая сталь с видманштеттовой структурой имеет низкие пластичность и ударную вязкость, и для повышения ве­личин этих свойств отливки из сталей, содержащих менее 0,4% С, подвергают полному отжигу или нормализации.

Литейные свойства сталей значительно хуже, чем чугунов и большинства литейных цветных сплавов. Трудности при литье соз­дают высокая температура плавления, низкая жидкотекучесть, боль­шая линейная усадка (до 2,3 %) и склонность к образованию горячих литейных трещин.

Низкоуглеродистые литейные стали применяют для изготовления де­талей, подвергающихся ударным нагрузкам; арматуры; деталей сварно-литых конструкций. Среднеуглеродистые литейные стали применяют для отливки станин и валков прокатных станов, крупных шестерен, зубчатых колес. Стальные отливки часто подвергают термической обработке для уменьшения литейных напряжений.

Литейные легированные стали по свойствам уступают углеродистым сталям из-за того, что при легировании расширяется интервал кристалли­зации и уменьшается теплопроводность и, следовательно, возрастают тер­мические напряжения. Литейные легированные стали подразделяют на конструкционные (ГОСТ 977—88) и высоколегированные со специальными свойствами.

Многие литейные стали имеют ту же марку, что и деформи­руемые, отличаясь лишь буквой Л в конце марки (15Л, 20Л, 25Л, ЗОЛ, 35Л, 40Л, 45Л, 50Л и 35ХМЛ, 35ХГСЛ, 12Х18Н9ТЛ и др.). В этом случае химический состав литейной стали практически такой же, как деформируемой, и отличается лишь допустимым количеством вред­ных примесей (в литейной стали оно несколько больше). Однако немало легированных сталей разработано специально в качестве литей­ных и не имеют аналога среди деформируемых (например, сталь 20ФЛ, применяемая для отливки крупногабаритных деталей грузовых вагонов, и сталь 08ГДНФЛ — для изготовления ответственных круп­ных деталей в судостроении, работающих до — 60 °С).

Износостойкая сталь

Износостойкая сталь

К износостойким сталям относятся сплавы, предназначенные для использования в экстремальных условиях. Благодаря особому химическому составу, они выдерживают серьезный абразивный износ, исключительные механические и сжимающие нагрузки, воздействие скольжения, трения. На рынке высокопрочных сталей представлено множество производителей и видов проката, разобраться в которых бывает сложно даже профессионалам. Из данной статьи вы узнаете, как правильно выбрать износостойкую сталь, и почему в разных отраслях промышленности просто необходимо использование качественных износостойких сплавов.

Характеристики износостойких сталей

Главное свойство износостойких сталей – повышенная твердость, которая обеспечивается присутствием в составе марганца и других легирующих элементов. Причем чем сильнее нагрузка на элемент, тем более износостойкой и твердой становится деталь, а разрушения поверхности и внутренней структуры не происходит.
При высоких показателях прочности материал остается пластичным, не крошится, поддается сварке. При выборе высокопрочного сплава важно учитывать условия и интенсивность эксплуатации детали или узла. У проката, прошедшего закалку, повышается устойчивость ко всем разновидностям износа.

Сферы применения износостойких сплавов

Использование высокопрочных сталей увеличивает срок эксплуатации оборудования, машин и механизмов, значительно снижает затраты на их ремонт и обслуживание, устраняет простои на производстве. Металлопрокат используется в самых разных отраслях.

  1. Автомобилестроение
    Производство деталей и узлов, подверженных интенсивным нагрузкам и работающих в условиях трения – ролики и шарики подшипников, втулки, сменные накладки, поршневые кольца, коленчатые валы и другие фасонные изделия, бронированные элементы.
  2. Дорожная и строительная техника
    Изготовление экскаваторных ковшей, режущих кромок техники, козырьков землечерпалок, гидравлических молотов, элементов разравнивателя для асфальтоукладочной машины. В качестве футеровки желобов оборудования, дробилок, контейнеров, лопастей барабана, бетономешалок.
  3. Тяжелая карьерная и горнодобывающая техника
    Изготовление режущих кромок оборудования, кузовов для самосвалов, транспортировочных емкостей и желобов, бункеров, футеровка накопителей и других элементов дробилок, режущий инструмент.
  4. Железнодорожная отрасль
    Облицовка вагонов, в качестве элементов железнодорожных полотен, звеньев гусеничных механизмов, крестовин и т. д.
  5. Сельхозтехника и оборудование для лесозаготовки
    Концевые механизмы лесопогрузчика, перегружателя, элементы отжимного пресса, плужного оборудования, оборудования для транспортировки и хранения силоса.
  6. Станкостроение
    В качестве элементов производственного оборудования, подвергающегося серьезным нагрузкам и трению: валы, узлы, агрегаты, детали.
  7. Строительная отрасль
    Изготовление металлоконструкций различного назначения, предполагающих особую прочность строения. Для этих целей используются конструкционные марки.

Виды и марки износостойких сталей

При изучении классификации и выборе износостойких сплавов необходимо учесть, что ряд марок отечественных производителей обозначают индексами, а в зарубежных маркировках нет информации по химическому составу.

Графитизированные марки (У16 (ЭИ336), 60Г, 65Г, 70Г, 40Х, 40ХН, 45ХН и др.) - отличаются высоким содержанием углерода, в состав также входит хром, никель, графит. Прокат упрочняется при динамической нагрузке, плохо поддается обработке.

Шарикоподшипниковые сплавы ГОСТ 801-78 (ШХ20, ШХ15) – относятся к виду инструментальных сталей и обладают высокой прочностью и износостойкостью, твердостью и необходимым уровнем вязкости.

Высокомарганцовистые марки (Г13Л, 110Г13Л) – в состав кроме марганца входят также железо, углерод, хром. Обладают самой высокой износостойкостью, которая сочетается с низкой твердостью и высокой прочностью. Согласно отечественной стандартизации, сплавы соответствуют ГОСТ 977-88.

Как можно убедиться, высокое качество и надежность высокопрочных сталей делают их использование обоснованным во многих отраслях промышленности и машиностроения. Эти сплавы прочно завоевали позиции на рынке металлопроката и пользуются большой популярностью.

Твердые сплавы: их свойства и характеристики

Твердые сплавы: их свойства и характеристики

К твердым сплавам относят отдельную группу чрезвычайно износостойких металлических соединений, которые сохраняют свои физические и рабочие характеристики при интенсивном механическом и термическом воздействии. Твердые стали производятся из твердых тугоплавких титановых, вольфрамовых, хромистых, танталовых соединений. Связующим звеном является кобальт, железоникелевые составляющие.

Основные характеристики

К основным характеристикам, определяющим свойства сталей и их назначение, относятся:

  • процентное значение входящих в состав химических элементов (определяется в соответствии с ГОСТ);
  • физико-механические свойства (допустимая прочность на изгиб, твердость, плотность, теплопроводные параметры, коррозийная устойчивость, жаропрочность);
  • технология изготовления (литые или спеченные составы).

Карбиды, используемые в производстве, не подвергаются растворению и разрушению при чрезмерных температурах. Но они хрупки, поэтому, для формирования необходимого уровня твердости изделия, их связывают другими металлами.

Классификация

  1. По составу
    • Вольфрамокобальтовые (ВК) – марки ВК3М, ВК3, ВК8, ВК6М и др.
      Внутри группы марки отличаются разным процентом кобальта, типом производства, величиной зерна карбида вольфрама (мелкозернистая и крупнозернистая структура). Для режущих инструментов подходят марки с процентным содержанием кобальта до 12%. При повышении процента кобальта устойчивость состава при резании понижается, но увеличивается его эксплуатационная прочность. Инструменты, изготовленные из сталей данной группы, используются для работы с чугунными, конструкционными сталями, хрупкими материалами при ударной обработке, прерывистом технологическом цикле, в процессе которого температура в зоне резки не поднимается до значительных уровней.
    • Титановольфрамокобальтовые (ТК) – марки Т14К8, Т5К10 и др.
      В химический состав этого типа твердых сплавов входят следующие компоненты: карбид титана, вольфрама и кобальт в виде связующего звена. Если сравнивать данные сплавы с марками ВК, можно отметить у них высокие показатели твердости и жаропрочности, устойчивости к окислению, но они менее упруги, электро- и теплопроводность материалов ниже. Предназначаются для работы с металлами, которые эксплуатируются при более интенсивных скоростях резки.
    • Титанотанталовольфрамокобальтовые (ТТК) – ТТ8К6, ТТ7К12, ТТ10К8Б и др.
      Добавление в структуру тантала значительно улучшает эксплуатационные возможности получаемых сплавов, повышая их устойчивость к высоким температурным воздействиям и увеличивая прочность. Они используются для резки тяжело обрабатываемых материалов, когда инструмент в процессе работы подвергается серьезной нагрузке.
    • Безвольфрамовые (БВТС) – КНТ16, ТН20 и др.
      Изготавливаются без использования вольфрама и кобальта, на базе титановых соединений, с добавлением никеля и молибдена в качестве связующих элементов. По твердости данные составы аналогичны маркам вольфрамовой группы, они почти не окисляются, а по упругости и прочности им уступают. Подходят для оборудования, которое работает при прерывистом резании.
  2. По технологии получения
    • Литые стали – изготавливаются по классической технологии литья, с последующей механической и термической обработкой.
    • Спекаемые составы (однокарбидные, двухкарбидные, трехкарбидные) – производятся методами порошковой металлургии, с дальнейшей шлифовкой, лазерной, ультразвуковой, химической обработкой.
  3. По области применения
    • Инструментальные – используются для резания, штамповки, давления, бурения обрабатываемых материалов.
    • Конструкционные – применяются для производства деталей, к которым предъявляются высокие требования износоустойчивости, сопротивления большим нагрузкам.
    • Жаростойкие и жаропрочные – подходят для инструментария, подвергающегося в процессе эксплуатации температурным воздействиям.
  4. По группе резки материалов
    • Группа P – для материалов, образующих сливную стружку.
    • Группа K – для резки чугуна, цветных металлов, твердых материалов, образующих элементную и стружку надлома.
    • Группа M – для обработки нержавейки, жаропрочных и титановых материалов, образующих сливную и стружку надлома.

Свойства твердых сплавов

Важнейшие свойства твердых сталей – это прочность, износоустойчивость, твердость. Кроме того, практическую роль играют тугоплавкость, жаростойкие и жаропрочные параметры.

Свойства различаются в зависимости от группы, в которую входит сплав, и его марки. Добавление в структуру элементов с нужными свойствами позволяет создавать материал с заданными рабочими параметрами.

Достоинства и недостатки твердых сплавов

Преимущества:

  • Высокая прочностные, износостойкие характеристики и твердость;
  • Отличные параметры жаростойкости и жаропрочности;
  • Тугоплавкость.

Недостатки:

  • Высокая стоимость вольфрамсодержащих марок;
  • Более низкая вязкость и высокая восприимчивость к ударным воздействиям, относительно быстрорежущих видов сталей.

Области применения твердых сплавов

Твердые сплавы металлов активно используются в производстве оснащения оборудования и инструмента для отделки труднообрабатываемых материалов, деталей станков и машин, подвергающихся интенсивным нагрузкам.

Основные сферы использования:

  • производство инструментария для металлообработки резкой: фрез, протяжек, сверл, резцов;
  • оснащение горнодобывающей и лесозаготовительной техники: буры, рабочие поверхности оборудования, приспособления для вырубки;
  • производство прочных подшипников: обойм, шариков, роликов, напыление на корпуса;
  • инструмент и детали станков для волочения, штамповки, калибровки, проката, прессования, клеймения: оснащение рабочей поверхности, матриц и штампов и т. д.;
  • оснащение измерительного оборудования: деталей инструмента, рабочих поверхностей;
  • поверхностное напыление на детали из других материалов для придания им лучшей износостойкости, жаропрочности, твердости, антикоррозийных свойств;
  • производство элементов для бытовых и промышленных приборов: резисторов, реостатов, электронагревателей, деталей для лабораторных и промышленных печей.

Продукция из твердых сплавов

Основной тип изделий, предлагаемый производителями и компаниями по металлообработке, – это режущий инструмент. Сверла, фрезы, пластины, стержни – самая популярная продукция в сегменте твердосплавного металлопроката. Оснащение производства инструментом и оборудованием из высокотвердых сплавов значительно повышает производительность и эффективность технологических процессов, позволяет использовать современные технологии обработки металлов. Это положительно сказывается на качестве и скорости производимой металлопродукции.

Области применения нержавеющей стали

Высокая востребованность нержавеющих сталей объясняется их особыми свойствами, которых лишены стандартные углеродистые сплавы. Огромное разнообразие видов коррозионностойкой стали позволяет подобрать металл для успешного выполнения самых разных технологических задач.

Общие характеристики коррозионностойкой стали

К коррозионностойким сталям относят металлические сплавы, обладающие высокой стойкостью к коррозийным процессам в разных атмосферных и климатических условиях, воде, агрессивных газовых и химических средах. Антикоррозийные свойства обеспечиваются обогащением углеродистой стали специальными элементами, важнейший из них – это хром. Его минимальное содержание в структуре сплавов составляет 10,5%.

В данный момент существует около 250 марок нержавейки. Самые используемые легирующие элементы – это никель, кобальт, титан, молибден, ниобий. Углерод, в обязательном порядке входящий в состав, придает готовым изделиям нужную прочность и твердость. Изменение пропорций химических элементов дает металл с различными свойствами, предназначенный для определенных сфер использования.

Характеристики нержавеющих сталей и области их применения

Все виды нержавеющих составов можно условно разделить на несколько групп. Каждая объединяет материалы с определенными химическими свойствами и внутренней структурой.

    Аустенитные (высоколегированные хромоникелевые металлы, маркировка А)

Один из самых распространенных и востребованных видов. Высокое содержание никеля и хрома (до 33%) обеспечивает исключительную стойкость к коррозии и непревзойденную прочность изделиям. Важное преимущество – технологичность. Материал хорошо сваривается, более вязок и пластичен, чем ферритный, не магнитен.
К маркам аустенитного класса относятся: 04Х18Н10, 12Х18Н10Т, 12Х18Н9Т, 12Х18Н9, 08Х18Н10, AISI 304, AISI 316 и др.
Сфера их использования широка. Аустенитные типы сплавов используются в качестве конструкционного материала, из которого изготавливаются изделия методом холодной штамповки и сварки. Это могут быть различные емкости, обшивка, трубопроводы, оборудование для переработки и хранения продуктов питания, фармакологическое, медицинское, лабораторное оборудование, детали для машиностроительной, автомобилестроительной, самолетостроительной отрасли, технологические агрегаты для химической отрасли.

Марки: 15Х28, 08Х18Т и др.
В данной группе металлов повышенное содержание хрома (до 20%). Он обеспечивает устойчивость изделий к чрезвычайно агрессивным химическим средам, высокие магнитные свойства. Антикоррозийная стойкость ниже, чем у металлов аустенитной группы, поэтому ферритные виды используются в тех сферах, где требования по данному параметру не так значительны.
Основные потребители хромистых ферритных сталей – производственные предприятия химической отрасли, тяжелого машиностроения, энергетической сферы. Их используют для производства оборудования и деталей, работающих в кислотных и щелочных растворах, бытовом приборостроении, пищевой промышленности.

Марки: 20Х13, 40Х13, 30Х13 и др.
Благодаря высокому содержанию углерода, это наиболее прочные сплавы среди нержавеющей стали. Металлические изделия этой группы чрезвычайно износостойки, хорошо эксплуатируются в условиях высоких температур, но больше подвержены коррозийным процессам. Данный вид металла может быть подвержен термической закалке, именно к этому типу относится коррозионностойкая жаропрочная сталь, успешно противостоящая окислению и пригодная для использования при высоких температурах. Металлопродукция сохраняет свои первоначальные свойства даже при постоянном термическом воздействии, материал характеризуется минимальным содержанием вредных примесей.

Примеры марок: 08Х22Н6Т, 12Х21Н5Т и др.
Комбинированные марки могут обладать аустенитно-мартенситной или аустенитно-ферритной структурой и органично сочетают положительные свойства сплавов данных типов.

Основные марки нержавеющих сталей

Для лучшего понимания состава и основных свойств нержавеющих сплавов важно знать принцип их маркировки. Принцип расшифровки марки следующий:

  • первый числовой показатель обозначает количество углерода в сотых долях процентов;
  • обозначения Х – хром, М – молибден, Н – никель показывают содержание данных элементов, исчисляемых в процентах.

Наиболее популярные марки:

ГОСТ 20Х13 (AISI 420, DIN 1.4021) – нержавейка с мартенситной структурой, не поддается свариванию, не склонна к отпускной хрупкости, в процессе производства не образует внутренних дефектов. Используется для изготовления измерительного, режущего инструмента, пружин, рессор.

ГОСТ 12Х17 (AISI 430, DIN 1.4016) – ферритная нержавеющая жаропрочная марка, не содержит в составе никеля. Характеризуется хорошей антикоррозийной сопротивляемостью в средне-агрессивных химических средах и высоких температурах.

ГОСТ 12Х18Н9 (AISI 304, DIN 1.4301) – жаропрочный коррозионностойкий сплав, используемый в сварных конструкциях, контактирующих с агрессивными средами. Применяется для листовых деталей, сварной аппаратуры, теплообменников, аппаратов, работающих под давлением.

ГОСТ 08Х18H10 (AISI 304H, DIN 1.4948) – аустенитный тип жаропрочного коррозионноустойчивого сплава, применяемый для производства трубного проката, узлов и агрегатов для химической и машиностроительной сферы, теплообменников, промышленных емкостей.

ГОСТ 03Х18H11 (AISI 304L, DIN 1.4306) – хромоникелевая марка используется для производства оборудования, емкостей и трубопроводов для химической промышленности, в производстве азотной кислоты и других агрессивных веществ.

ГОСТ 08Х18H10Т (AISI 321, DIN 1.4541) – нержавеющий жаростойкий и жаропрочный сплав, немагнитный, устойчивый к окислению и обладающий хорошей свариваемостью без предварительного нагрева. Используется в качестве пищевой и технической нержавейки для производства листового и трубного проката, сварной аппаратуры, изготовления емкостей, цистерн, резервуаров и оборудования в химической и нефтегазовой промышленности.

ГОСТ 03Х17H14М2, 03Х17H14М3, (AISI 316, 316S, 316L) – незакаливаемая аустенитная марка, области применения – сварные детали, оборудование для целлюлозно-бумажной и химической промышленности, корпусы котлов, емкости и установки для угольной промышленности.

ГОСТ 08Х17H13М2Т (AISI 316Ti, DIN 1.4571) – конструкционный жаростойкий жаропрочный нержавеющий сплав применяется для крепежных деталей и сварных конструкций в разных отраслях промышленности.

ГОСТ 20Х23H18 (AISI 310S, DIN 1.4845) – жаропрочная и жароустойчивая аустенитная стальная нержавейка, применяемая для изготовления поковок, хомутов, камер сгорания, крепежных деталей и элементов котлов, б/ш труб, муфтелей.

При выборе нержавеющей стали следует учитывать условия эксплуатации металла, предполагаемую нагрузку, необходимые дополнительные свойства изделия. Если вы сомневаетесь, как правильно выбрать нержавеющую сталь, лучше обратиться к специалистам. Оставляйте заявку на сайте, и наши менеджеры дадут рекомендации по подбору оптимальных марок нержавеющих сплавов для заданных условий эксплуатации.

Износостойкие стали и сплавы

Износостойкость – свойство материала оказывать сопротивление процессу изнашивания, под которым подразумевается постепенное разрушение поверхностных слоев материала путем отделения его частиц под влиянием сил трения. Под действием этих сил происходит многократное деформирование участков контактной поверхности, их упрочнение и разупрочнение, выделение теплоты, изменение структуры, развитие процессов усталости, окисления и др. Различают абразивный, окислительный, адгезионный, усталостный и другие виды изнашивания.

Высокая твердость поверхности – необходимое условие обеспечения износостойкости при большинстве видов изнашивания. При абразивном, окислительном, усталостных видах изнашивания наиболее износостойкими являются стали с высокой исходной твердостью поверхности, структура которых состоит из частиц твердой карбидной фазы и удерживающей их высокопрочной матрицы.

Цементуемые низкоуглеродистые и среднеуглеродистые стали, упрочненные азотированием или поверхностной закалкой, а также белые чугуны обеспечивают необходимую работоспособность узлов трения, в которых материал должен хорошо противостоять истиранию частицами, являющимися продуктами изнашивания или попадающими в смазочный материал извне.

В условиях ударного износа в абразивной струе (например, работа основных рабочих узлов мельниц для измельчения песка) наиболее износостойкими материалами являются твердые сплавы, структура которых состоит из карбидов вольфрама, титана и тантала, связанных кобальтом, а также высокоуглеродистые стали типа Х12, Х12М, Р18, Р6М5 с мартенситной матрицей и карбидами.

Карбидные сплавы применяют при наиболее тяжелых условиях работы в виде литых и наплавочных материалов. Они представляют собой сплавы с высоким содержанием углерода (до 4%) и карбидообразующих элементов (Cr, W, Ti). Для наплавки используются прутки из этих сплавов, которые расплавляются кислородно-ацетиленовым пламенем или электрической дугой и в жидком состоянии наносят на поверхность детали. Широкое распространение получили сплавы «сормайт» (1,7…3% С, 15…30% Сr, 2…5% Ni, 2…3% Si) с твердостью до 50 НRС и «сталинит» (» 10% С, » 20% Сr, » 15% Мn, » 3% Si) с твердостью до 65 НRС.

Для работы в условиях износа, который сопровождается большими ударными нагрузками, широко используется высокомарганцевая сталь 110Г13Л (сталь Гадфильда), содержащая 0,9…1,4% С, 11,5…15,0% Mn, 0,5…1,0% Si.

Сталь плохо обрабатывается резанием, поэтому детали получают литьем или ковкой. После литья структура состоит из аустенита и избыточных карбидов марганца в железе (FeMn)3C. При нагревании карбиды растворяются в аустените и после закалки в воде с 1100 о С сталь имеет аустенитную структуру и низкую твердость 200..250 НВ.

В условиях только абразивного износа такая сталь оказывается неизносостойкой, но при воздействии на деталь больших ударных нагрузок, которые вызывают в материале напряжения выше предела текучести, проходит интенсивный наклеп стали 110Г13Л и рост ее твердости и износостойкости. При этом сталь приобретает высокую твердость до 600 HВ. Сталь 110Г13Л широко используется для изготовления корпусов шаровых мельниц, железнодорожных крестовин, гусеничных траков, козырьков землечерпалок и др.

Читайте также: