К семейству щелочноземельных металлов относится

Обновлено: 30.06.2024

Металлы второй группы Периодической системы, а именно: бериллий, магний, кальций, стронций, барий и радий — называются так потому, что оксиды кальция, стронция и бария ранее были найдены химиками в земле и давали щелочную реакцию.

(Источник: «Металлы и сплавы. Справочник.» Под редакцией Ю.П. Солнцева; НПО "Профессионал", НПО "Мир и семья"; Санкт-Петербург, 2003 г.)

Смотреть что такое "Щелочноземельные металлы" в других словарях:

ЩЕЛОЧНОЗЕМЕЛЬНЫЕ МЕТАЛЛЫ — ЩЕЛОЧНОЗЕМЕЛЬНЫЕ МЕТАЛЛЫ, двухвалентные металлы, составляющие вторую группу периодической таблицы: БЕРИЛЛИЙ, МАГНИЙ, КАЛЬЦИЙ, СТРОНЦИЙ, БАРИЙ и РАДИЙ. Все они отличаются легкостью, мягкостью и сильной реактивностью. Все эти металлы, кроме… … Научно-технический энциклопедический словарь

ЩЕЛОЧНОЗЕМЕЛЬНЫЕ МЕТАЛЛЫ — ПОДГРУППА IIA БЕРИЛЛИЙ, МАГНИЙ И ЩЕЛОЧНОЗЕМЕЛЬНЫЕ МЕТАЛЛЫ КАЛЬЦИЙ, СТРОНЦИЙ, БАРИЙ, РАДИЙ Строго говоря, эта подгруппа состоит из двух типов элементов. Бериллий и магний элементы коротких периодов более сходны между собой, чем с другими четырьмя… … Энциклопедия Кольера

щелочноземельные металлы — [alkali earth metals] группа, включающая Са, Sr, Ba и Ra; первые три применяются в металлургии в качестве раскислителей; Смотри также: Металлы щелочные металлы чистые металлы ультрачистые металлы … Энциклопедический словарь по металлургии

Щелочноземельные металлы — Щёлочноземельные металлы химические элементы: кальций Ca, стронций Sr, барий Ba, радий Ra (иногда к щёлочноземельным металлам ошибочно относят также бериллий Be и магний Mg). Названы так потому, что их оксиды «земли» (по терминологии алхимиков)… … Википедия

ЩЕЛОЧНОЗЕМЕЛЬНЫЕ МЕТАЛЛЫ — хим. элементы II гр. периодич. системы Менделеева: кальций, стронций, барий и радий. Назв. связано с тем, что их оксиды ( земли по терминологии алхимиков) сообщают воде щелочную реакцию. Химически Щ. м. весьма активны, причём их активность… … Большой энциклопедический политехнический словарь

МЕТАЛЛЫ — МЕТАЛЛЫ, химические элементы, обладающие высокой тепло и электропроводностью, атомы которых связаны в кристаллические решетки единственным в своем роде способом. Смеси таких элементов (СПЛАВЫ) также являются металлами. Около трех четвертей всех… … Научно-технический энциклопедический словарь

Щелочные и щелочноземельные металлы — (хим.), или металлы щелочей и щелочных земель. Нерастворимые в воде окислы металлов, а также и некоторых неметаллов прежде называли землями за их порошковый вид. Среди этих земель легко отличить такие, которые хотя и мало растворимы, но образуют… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Металлы как горючие — Металлы как ракетное горючие, используемые в ракетных топливах, относятся в основном ко второму периоду периодической системы элементов, и только некоторые из них к третьему. Добавка циркония приводит к большой плотности топлива, но уменьшает… … Википедия

Металлы как горючее — Металлы как ракетное горючее, используемые в ракетных топливах, относятся в основном ко второму периоду периодической системы элементов, и только некоторые из них к третьему. Добавка циркония приводит к большой плотности топлива, но… … Википедия

Щелочноземельные металлы

К щелочноземельным металлам относятся металлы IIa группы: бериллий, магний, кальций, стронций, барий и радий. Отличаются легкостью, мягкостью и сильной реакционной способностью.

Общая характеристика

От Be к Ra (сверху вниз в периодической таблице) происходит увеличение: атомного радиуса, металлических, основных, восстановительных свойств, реакционная способность. Уменьшается электроотрицательность, энергия ионизация, сродство к электрону.

Щелочноземельные металлы

  • Be - 2s 2
  • Mg - 3s 2
  • Ca - 4s 2
  • Sr - 5s 2
  • Ba - 6s 2
  • Ra - 7s 2
Природные соединения
  • Be - BeO*Al2O3*6SiO2 - берилл
  • Mg - MgCO3 - магнезит, MgO*Al2O3 - шпинель, 2MgO*SiO2 - оливин
  • Ca - CaCO3 - мел, мрамор, известняк, кальцит, CaSO4*2H2O - гипс, CaF2 - флюорит

Кальцит, берилл, магнезит

Получение

Это активные металлы, которые нельзя получить электролизом раствора. С целью их получения применяют электролиз расплавов, алюминотермию и вытеснением их из солей другими более активными металлами.

MgCl2 → (t) Mg + Cl2 (электролиз расплава)

CaO + Al → Al2O3 + Ca (алюминотермия - способ получения металлов путем восстановления их оксидов алюминием)

Алюминотермия

Химические свойства

Все щелочноземельные металлы (кроме бериллия и магния) реагируют с холодной водой с образованием соответствующих гидроксидов. Магний реагирует с водой только при нагревании.

Гашение извести

Щелочноземельные металлы - активные металлы, стоящие в ряду активности левее водорода, и, следовательно, способные вытеснить водород из кислот:

Хорошо реагируют с неметаллами: кислородом, образуя оксиды состава RO, с галогенами (F, Cl, Br, I). Степень окисления у щелочноземельных металлов постоянная +2.

Mg + O2 → MgO (оксид магния)

При нагревании реагируют с серой, азотом, водородом и углеродом.

Mg + S → (t) MgS (сульфид магния)

Ca + H2 → (t) CaH2 (гидрид кальция)

Ba + C → (t) BaC2 (карбид бария)

Барий

Ba + TiO2 → BaO + Ti (барий, как более активный металл, вытесняет титан)

Оксиды щелочноземельных металлов

Имеют общую формулу RO, например: MgO, CaO, BaO.

Оксиды щелочноземельных металлов можно получить путем разложения карбонатов и нитратов:

Рекомендую взять на вооружение общую схему разложения нитратов:

Разложение нитратов

Проявляют преимущественно основные свойства, все кроме BeO - амфотерного оксида.

    Реакции с кислотами и кислотными оксидами

В нее вступают все, кроме оксида бериллия.

Амфотерные свойства оксида бериллия требуют особого внимания. Этот оксид проявляет двойственные свойства: реагирует с кислотами с образованием солей, и с основаниями с образованием комплексных солей.

BeO + NaOH + H2O → Na2[Be(OH)4] (тетрагидроксобериллат натрия)

Если реакция проходит при высоких температурах (в расплаве) комплексная соль не образуется, так как происходит испарение воды:

BeO + NaOH → Na2BeO2 + H2O (бериллат натрия)

Бериллий

Гидроксиды щелочноземельных металлов

Проявляют основные свойства, за исключением гидроксида бериллия - амфотерного гидроксида.

Получают гидроксиды в реакции соответствующего оксида металла и воды (все кроме Be(OH)2)

Основные свойства большинства гидроксидов располагают к реакциям с кислотами и кислотными оксидами.

Известковое молоко

Реакции с солями (и не только) идут в том случае, если соль растворимы и по итогам реакции выделяется газ, выпадает осадок или образуется слабый электролит (вода).

Гидроксид бериллия относится к амфотерным: проявляет двойственные свойства, реагируя и с кислотами, и с основаниями.

Жесткость воды

Жесткостью воды называют совокупность свойств воды, зависящую от присутствия в ней преимущественно солей кальция и магния: гидрокарбонатов, сульфатов и хлоридов.

Различают временную (карбонатную) и постоянную (некарбонатную) жесткость.

Жесткость воды

Вероятно, вы часто устраняете жесткость воды у себя дома, осмелюсь предположить - каждый день. Временная жесткость воды устраняется обычным кипячением воды в чайнике, и известь на его стенках - CaCO3 - бесспорное доказательство устранения жесткости:

Также временную жесткость можно устранить, добавив Na2CO3 в воду:

С постоянной жесткостью бороться кипячением бесполезно: сульфаты и хлориды не выпадут в осадок при кипячении. Постоянную жесткость воды устраняют добавлением в воду Na2CO3:

Жесткость воды можно определить с помощью различных тестов. Чрезмерно высокая жесткость воды приводит к быстрому образованию накипи на стенках котлов, труб, чайника.

Карбонат кальция - накипь в чайнике

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Щёлочноземельные металлы

Erdalkali.jpg

Щё́лочноземе́льные мета́ллы — химические элементы 2-й группы [1] периодической таблицы элементов: бериллий, магний, кальций, стронций, барий и радий [2] [3] . Названы так потому, что их оксиды — «земли» (по терминологии алхимиков) — сообщают в воде щелочную реакцию. Соли щёлочноземельных металлов, кроме радия, широко распространены в природе в виде минералов. Происхождение этого названия связано с тем, что их гидроксиды являются щелочами, а оксиды по тугоплавкости сходны с оксидами алюминия и железа, носившими ранее общее название "земли

Содержание

Физические свойства

Все щёлочноземельные металлы — серые, твёрдые при комнатной температуре вещества. В отличие от щелочных металлов, они существенно более твёрдые, и ножом преимущественно не режутся (исключение — стронций). Плотность щёлочноземельных металлов с порядковым номером растёт, хотя явно рост наблюдается только начиная с кальция, который имеет минимальную среди них плотность (ρ = 1,55 г/см³), самый тяжёлый — радий, плотность которого примерно равна плотности железа.

Химические свойства

Щёлочноземельные металлы имеют электронную конфигурацию внешнего энергетического уровня ns², и являются s-элементами, наряду с щелочными металлами. Имея два валентных электрона, щёлочноземельные металлы легко их отдают, и во всех соединениях имеют степень окисления +2 (очень редко +1).

Химическая активность щёлочноземельных металлов растёт с ростом порядкового номера. Бериллий в компактном виде не реагирует ни с кислородом, ни с галогенами даже при температуре красного каления (до 600 °C, для реакции с кислородом и другими халькогенами нужна ещё более высокая температура, фтор — исключение). Магний защищён оксидной плёнкой при комнатной температуре и более высоких (до 650 °C) температурах и не окисляется дальше. Кальций медленно окисляется и при комнатной температуре вглубь (в присутствии водяных паров), и сгорает при небольшом нагревании в кислороде, но устойчив в сухом воздухе при комнатной температуре. Стронций, барий и радий быстро окисляются на воздухе, давая смесь оксидов и нитридов, поэтому их, так же и как щелочные металлы (и кальций), хранят под слоем керосина.

Оксиды и гидроксиды щёлочноземельных металлов имеют тенденцию к усилению основных свойств с ростом порядкового номера: Be(OH)2 — амфотерный, нерастворимый в воде гидроксид, но растворим в кислотах (а также проявляет кислотные свойства в присутствии сильных щелочей), Mg(OH)2 — слабое основание, нерастворимое в воде, Ca(OH)2 — сильное, но малорастворимое в воде основание, Sr(OH)2 — лучше растворимо в воде, чем гидроксид кальция, сильное основание (щёлочь) при высоких температурах, близких к точке кипения воды (100 °C), Ba(OH)2 — сильное основание (щёлочь), по силе не уступающее KOH или NaOH, и Ra(OH)2 — одна из сильнейших щелочей, очень коррозионное вещество.

Нахождение в природе

Все щёлочноземельные металлы имеются (в разных количествах) в природе. Ввиду своей высокой химической активности все они в свободном состоянии не встречаются. Самым распространённым щёлочноземельным металлом является кальций, количество которого равно 3,38 % (от массы земной коры). Немногим ему уступает магний, количество которого равно 2,35 % (от массы земной коры). Распространены в природе также барий и стронций, которых соответственно 0,05 и 0,034 % от массы земной коры. Бериллий является редким элементом, количество которого составляет 6·10 −4 % от массы земной коры. Что касается радия, который радиоактивен, то это самый редкий из всех щёлочноземельных металлов, но он в небольшом количестве всегда содержится в урановых рудах. В частности, он может быть выделен оттуда химическим путём. Его содержание равно 1·10 −10 % (от массы земной коры) [4] .

ЩЕЛОЧНОЗЕМЕЛЬНЫЕ МЕТАЛЛЫ
ПОДГРУППА IIA
БЕРИЛЛИЙ, МАГНИЙ И ЩЕЛОЧНОЗЕМЕЛЬНЫЕ МЕТАЛЛЫ КАЛЬЦИЙ, СТРОНЦИЙ, БАРИЙ, РАДИЙ
Строго говоря, эта подгруппа состоит из двух типов элементов. Бериллий и магний элементы коротких периодов более сходны между собой, чем с другими четырьмя элементами, которые собственно и образуют семейство щелочноземельных металлов. Фактически, бериллий и в меньшей степени магний более сходны с первыми элементами подгруппы IIIA. Особенностью электронного строения любого элемента подгруппы IIA является наличие двух электронов на внешнем слое и внутренняя электронная структура по типу предыдущего благородного газа. Способность отдавать два внешних валентных электрона возрастает в подгруппе с увеличением атомного радиуса и атомного номера элемента. Максимальная степень окисления составляет II, но имеются сведения о существовании соединений со степенью окисления I. Такие соединения неустойчивы и диспропорционируют с образованием свободного металла и иона М(II).
Физические и химические свойства. Все элементы подгруппы IIA химически активны и поэтому в свободном состоянии в природе не существуют. Щелочноземельные металлы энергично реагируют с водой, вытесняя водород и образуя гидроксиды, как и щелочные металлы. Магний взаимодействует только с кипящей водой, а бериллий не реагирует даже с парами при высокой температуре. Бериллий отличается от остальных элементов подгруппы и даже от магния по химическим и многим физическим свойствам. Такое отличие характерно для всех элементов, начинающих подгруппы А, что объясняется малым радиусом иона и соответственно высокой зарядовой плотностью. Особенности и отличия свойств бериллия приведены ниже.
Физические свойства. Бериллий очень твердый материал и способен оставлять царапины на стекле; твердость других элементов подгруппы уменьшается, и барий по твердости близок к свинцу (табл. 3).
Кристаллическая структура. Различие в физических свойствах всех металлов этой подгруппы объясняется различием их кристаллической структуры, а кальций имеет две модификации.
Взаимодействие с кислотами. Все эти элементы реагируют с разбавленными растворами минеральных кислот (типа HCl), а бериллий растворяется менее энергично. Соли бериллия (продукты реакций бериллия с кислотами, например, BeCl2) имеют более ковалентную связь, чем соли других металлов этой подгруппы, и поэтому обладают в растворе меньшей электропроводностью. В водных растворах соли бериллия гидратированы благодаря малому радиусу иона Be2+ и сильному взаимодействию с дипольными молекулами воды. Бериллий в отличие от других металлов плохо реагирует с азотной кислотой, так как на поверхности образуется защитная пассивирующая пленка BeO.
Карбонаты. Невозможно образование BeCO3 в растворе из-за сильного взаимодействия иона Be2+ c кислородом воды или OH. По той же причине и карбонат магния MgCO3, образующийся в растворе, содержит некоторую долю ассоциированного с ним основания Mg(OH)2. Другие металлы образуют в этих условиях средние карбонаты. Связь BeO в карбонате бериллия BeОCO2 настолько прочна, что эта соль способна разлагаться на BeO и CO2.
Оксиды и гидроксиды. При взаимодействии с кислородом Be и Mg образуют оксиды МО, а другие, более активные металлы, могут образовывать и пероксиды, например BaO2. Пероксиды могут образовываться и по реакции гидроксидов Ca, Sr и Ba с H2O2. Растворимость гидроксидов возрастает по мере увеличения радиуса иона и ослабления притяжения между ионом металла и гидроксид-ионом.
Комплексообразование. Ион Be2+ обладает высоким химическим сродством к ионам или молекулам, имеющим электронную пару. Например, 2 иона :Cl:предоставляют две электронные пары для образования химической связи в :Cl:Be:Cl:, 4 электрона распределяются на 2s- и 2p-гибридизованных орбиталях, формируя линейное строение молекулы BeCl2 с ковалентными свойствами. Be2+ способен удерживать большее число электронных пар, образуя различные комплексные ионы с координационным числом 4 (наиболее стабильные лиганды гидроксид-ион, альдегид, эфир, дикарбоновые кислоты, дикетоны). Be2+, как и другие члены подгруппы IIA, образует устойчивые комплексы с этилендиаминтетрауксусной кислотой (ЭДТА). Благодаря прочности комплексов с ЭДТА эта кислота часто используется для анализа содержания кальция и магния
см. также ХИМИЯ АНАЛИТИЧЕСКАЯ.
Источники сырья и применение. Все металлы подгруппы и их соединения находят различное промышленное применение. Бериллий получают из минерала берилла, отделяя гидроксид от сопутствующего алюминия. Гидроксид переводят в хлорид или фторид, и металл получают электролизом расплава галогенида. Добавки бериллия к меди приводят к получению твердого, не искрящего, прочного сплава, который широко используется в специальных пружинах и инструментах для работы во взрывоопасной атмосфере. Металл прозрачен для рентгеновского излучения и поэтому из него изготовляют окна в рентгеновских трубках. Ядро бериллия имеет низкое поперечное сечение захвата нейтронов, поэтому бериллий используется как оболочка урановых стержней в ядерных реакторах. Получение металлического магния важный технологический процесс. Металл трудно обрабатывать и сваривать из-за его воспламеняемости. Многие сплавы магния находят применение в промышленности. Чистый металл получают из морской воды или богатых рассолов осаждением в виде Mg(OH)2. Гидроксид прокаливают, образующийся оксид переводят в хлорид MgCl2, который подвергают электролизу, выделяя чистый магний. Для этих же целей можно получать оксид магния прокаливанием доломита, содержащего MgCO3. Во время Второй мировой войны был разработан процесс получения Mg восстановлением MgO угольной пылью и парами нефти.
См. также МАГНИЕВАЯ ПРОМЫШЛЕННОСТЬ.
Остальные металлы этой подгруппы получают электролизом расплавов их солей, они также имеют несколько крупных областей применения. Так, прокаливание известняка (минерал, содержащий CaCO3, MgCO3 и силикаты) с целью получения оксида кальция негашеной извести является многотоннажным производством. При частичной гидратации получается гашеная известь. Оба продукта применяются в производстве цемента, штукатурки и строительного раствора. Сульфат кальция соcтава CaSO4Ч0,5H2O известен как гипс, который при смешении с водой затвердевает с небольшим расширением в результате образования CaSO4*2H2O. См. также КАЛЬЦИЙ.
Радий. Радий существенно отличается от остальных элементов подгруппы IIA: он радиоактивен, при его распаде испускаются a- и g-частицы. По свойствам он близок к барию, особенно по растворимости (кроме растворимости хлоридов), химической активности и физическим свойствам. Радий и его соединения применяются в промышленности светящихся красок. Урановая смолка (урановая руда) содержит следы радия и служит основным источником мировой добычи радия, всего несколько сот граммов.

Энциклопедия Кольера. — Открытое общество . 2000 .

Полезное

Щелочноземельные металлы — Alkaline earth metals Щелочноземельные металлы. Металлы второй группы Периодической системы, а именно: бериллий, магний, кальций, стронций, барий и радий называются так потому, что оксиды кальция, стронция и бария ранее были найдены химиками в… … Словарь металлургических терминов

Щелочноземельные металлы

К щелочноземельным металлам относятся бериллий Be, магний Mg, кальций Ca, стронций Sr, барий Ba, радий Ra.

Щелочноземельные металлы:

Щелочноземельные металлы – это элементы 2-й группы периодической таблицы химических элементов Д.И. Менделеева (по устаревшей классификации – элементы главной подгруппы II группы):

– бериллий Be,

– магний Mg,

– кальций Ca,

– стронций Sr,

– барий Ba,

– радий Ra.

Строение атомов щелочноземельных металлов:

Особенность строения атомов щелочноземельных металлов заключается в том, что они содержат два электрона на внешнем энергетическом уровне: их электронная конфигурация ns 2 . Поэтому щелочноземельные металлы проявляют валентность II и степень окисления +2.

Щелочноземельные металлы относятся к элементам s-семейства.

Так, электронная конфигурация атома бериллия 1s 2 2s 2 . Атом бериллия состоит из положительно заряженного ядра (+4), вокруг которого по двум оболочкам движутся 4 электрона. При этом 2 электрона находятся на внутреннем уровне, а 2 электрона – на внешнем. Поскольку бериллий расположен во втором периоде, оболочек всего две. Первая – внутренняя оболочка представлена s-орбиталью. Вторая – внешняя оболочка также представлена s-орбиталью. На внешнем энергетическом уровне атома бериллия – на 2s-орбитали находятся два спаренных электрона. В свою очередь ядро атома бериллия состоит из 4 протонов и 5 нейтронов.

Радиус атома бериллия составляет 112 пм. Потенциал ионизации атома бериллия равен 9,32 эВ (898,8 кДж/моль). Электроотрицательность атома бериллия равна 1,57 (шкала Полинга).

Электронная конфигурация атома магния 1s 2 2s 2 2p 6 3s 2 . Атом магния состоит из положительно заряженного ядра (+12), вокруг которого по трем атомным оболочкам движутся 12 электронов. При этом 10 электронов находятся на внутреннем уровне, а 2 электрона – на внешнем. Поскольку магний расположен в третьем периоде, оболочек всего три. Первая – внутренняя оболочка представлена s-орбиталью. Вторая – внутренняя оболочка представлена s- и р-орбиталями. Третья – внешняя оболочка представлена s-орбиталью. На внешнем энергетическом уровне атома магния – на 3s-орбитали находится два спаренных электрона. В свою очередь ядро атома магния состоит из 12 протонов и 12 нейтронов.

Радиус атома магния составляет 160 пм. Потенциал ионизации атома магния равен 7,64 эВ (737,3 кДж/моль). Электроотрицательность атома магния равна 1,31 (шкала Полинга).

Электронная конфигурация атома кальция 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 . Атом кальция состоит из положительно заряженного ядра (+19), вокруг которого по четырем оболочкам движутся 20 электронов. При этом 18 электронов находятся на внутреннем уровне, а 2 электрона – на внешнем. Поскольку кальций расположен в четвертом периоде, оболочек всего четыре. Первая – внутренняя оболочка представлена s-орбиталью. Вторая и третья – внутренние оболочки представлена s- и р-орбиталями. Четвертая – внешняя оболочка представлена s-орбиталью. На внешнем энергетическом уровне атома кальция – на 4s-орбитали находится два спаренных электрона. В свою очередь ядро атома кальция состоит из 20 протонов и 20 нейтронов.

Радиус атома кальция составляет 197 пм. Потенциал ионизации атома кальция равен 6,11 эВ (589,4 кДж/моль). Электроотрицательность атома кальция равна 1,00 (шкала Полинга).

Электронная конфигурация атома стронция 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 2 . Атом стронция состоит из положительно заряженного ядра (+38), вокруг которого по пяти оболочкам движутся 38 электронов. При этом 36 электронов находятся на внутреннем уровне, а 2 электрона – на внешнем. Поскольку стронций расположен в пятом периоде, оболочек всего пять. Первая – внутренняя оболочка представлена s-орбиталью. Вторая и четвертая – внутренние оболочки представлены s- и р-орбиталями. Третья – внутренняя оболочка представлена s-, р- и d-орбиталями. Пятая – внешняя оболочка представлена s-орбиталью. На внешнем энергетическом уровне атома стронция на 5s-орбитали находятся два спаренных электрона. В свою очередь ядро атома стронция состоит из 38 протонов и 50 нейтронов.

Радиус атома стронция составляет 215 пм. Потенциал ионизации атома стронция равен 5,69 эВ (549,0 кДж/моль). Электроотрицательность атома стронция равна 0,95 (шкала Полинга).

Электронная конфигурация атома бария 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 4f 14 5s 2 5p 6 5d 10 6s 2 . Атом бария состоит из положительно заряженного ядра (+56), вокруг которого по шести атомным оболочкам движутся 56 электронов. При этом 54 электрона находятся на внутреннем уровне, а 2 электрона – на внешнем. Поскольку барий расположен в шестом периоде, оболочек всего шесть. Первая – внутренняя оболочка представлена s-орбиталью. Вторая – внутренняя оболочка представлена s- и р-орбиталями. Третья и пятая – внутренние оболочки представлена s-, р- и d-орбиталями. Четвертая – внутренняя оболочка представлена s-, р-, d- и f-орбиталями. Шестая – внешняя оболочка представлена s-орбиталью. На внешнем энергетическом уровне атома бария – на 6s-орбитали находится два спаренных электрона. Поэтому барий проявляет валентность II и степень окисления +2. В свою очередь ядро атома бария состоит из 56 протонов и 81 нейтрон.

Радиус атома бария составляет 222 пм. Потенциал ионизации атома бария равен 5,21 эВ (502,5 кДж/моль). Электроотрицательность атома бария равна 0,89 (шкала Полинга).

С увеличением порядкового номера у щелочноземельных металлов увеличиваются радиус атома, способность отдавать валентные электроны и восстановительная активность, уменьшается электроотрицательность и энергия ионизации.

Физические свойства щелочноземельных металлов:

Все щёлочноземельные металлы серые или серебристо-белые, твёрдые при комнатной температуре вещества. В отличие от щелочных металлов, они существенно более твёрдые, и ножом преимущественно не режутся (исключение – стронций).

Общими физическими свойствами щелочноземельных металлов являются: их металлический блеск, ковкость, пластичность, высокая тепло- и электропроводность.

Вместе с тем указанные металлы имеют разные значения температуры плавления, кипения, плотности и другие физические свойства.

При этом с увеличением порядкового номера у щелочноземельных металлов каких-либо закономерностей в изменении физических свойств не проявляется.

Химические свойства щелочноземельных металлов:

Все щелочноземельные металлы обладают высокой химической активностью. Они проявляют высокую химическую активность при взаимодействии с водой, кислородом , галогенами, водородом, оксидами, кислотами, солями и другими соединениями. Поэтому ввиду своей высокой химической активности все щелочноземельные металлы в свободном состоянии в природе не встречаются.

В соединениях щелочноземельные металлы проявляют единственную степень окисления +2 (очень редко +1) и валентность II. Они являются сильными восстановителями.

С увеличением порядкового номера у щелочноземельных металлов усиливаются металлические свойства и ослабевают неметаллические свойства, увеличивается восстановительная способность, возрастает химическая активность.

Читайте также: