Как дислокации влияют на прочность металла

Обновлено: 27.09.2024

Из жидкого расплава можно вырастить монокристалл. Их обычно используют в лабораториях для изучения свойств того или иного вещества.

Металлы и сплавы, полученные в обычных условиях, состоят из большого количества кристаллов, то есть, имеют поликристаллическое строение. Эти кристаллы называются зернами. Они имеют неправильную форму и различно ориентированы в пространстве. Каждое зерно имеет свою ориентировку кристаллической решетки, отличную от ориентировки соседних зерен, вследствие чего свойства реальных металлов усредняются, и явления анизотропии не наблюдается

В кристаллической решетке реальных металлов имеются различные дефекты (несовершенства), которые нарушают связи между атомами и оказывают влияние на свойства металлов. Различают следующие структурные несовершенства:

точечные – малые во всех трех измерениях;

линейные – малые в двух измерениях и сколь угодно протяженные в третьем;

поверхностные – малые в одном измерении.

Точеные дефекты

Одним из распространенных несовершенств кристаллического строения является наличие точечных дефектов: вакансий, дислоцированных атомов и примесей. (рис. 2.1.)


Рис.2.1. Точечные дефекты

Вакансия – отсутствие атомов в узлах кристаллической решетки, «дырки», которые образовались в результате различных причин. Образуется при переходе атомов с поверхности в окружающую среду или из узлов решетки на поверхность (границы зерен, пустоты, трещины и т. д. ), в результате пластической деформации, при бомбардировке тела атомами или частицами высоких энергий (облучение в циклотроне или нейтронной облучение в ядерном реакторе). Концентрация вакансий в значительной степени определяется температурой тела. Перемещаясь по кристаллу, одиночные вакансии могут встречаться. И объединяться в дивакансии. Скопление многих вакансий может привести к образованию пор и пустот.

Дислоцированный атом – это атом, вышедший из узла решетки и занявший место в междоузлие. Концентрация дислоцированных атомов значительно меньше, чем вакансий, так как для их образования требуются существенные затраты энергии. При этом на месте переместившегося атома образуется вакансия.

Примесные атомы всегда присутствуют в металле, так как практически невозможно выплавить химически чистый металл. Они могут иметь размеры больше или меньше размеров основных атомов и располагаются в узлах решетки или междоузлиях.

Точечные дефекты вызывают незначительные искажения решетки, что может привести к изменению свойств тела (электропроводность, магнитные свойства), их наличие способствует процессам диффузии и протеканию фазовых превращений в твердом состоянии. При перемещении по материалу дефекты могут взаимодействовать.

Линейные дефекты:

Основными линейными дефектами являются дислокации. Априорное представление о дислокациях впервые использовано в 1934 году Орованом и Тейлером при исследовании пластической деформации кристаллических материалов, для объяснения большой разницы между практической и теоретической прочностью металла.

Дислокация – это дефекты кристаллического строения, представляющие собой линии, вдоль и вблизи которых нарушено характерное для кристалла правильное расположение атомных плоскостей.

Простейшие виды дислокаций – краевые и винтовые.

Краевая дислокация представляет собой линию, вдоль которой обрывается внутри кристалла край “лишней“ полуплоскости (рис. 2.2)


Рис. 2.2. Краевая дислокация (а) и механизм ее образования (б)

Неполная плоскость называется экстраплоскостью.

Большинство дислокаций образуются путем сдвигового механизма. Ее образование можно описать при помощи следующей операции. Надрезать кристалл по плоскости АВСD, сдвинуть нижнюю часть относительно верхней на один период решетки в направлении, перпендикулярном АВ, а затем вновь сблизить атомы на краях разреза внизу.

Наибольшие искажения в расположении атомов в кристалле имеют место вблизи нижнего края экстраплоскости. Вправо и влево от края экстраплоскости эти искажения малы (несколько периодов решетки), а вдоль края экстраплоскости искажения простираются через весь кристалл и могут быть очень велики (тысячи периодов решетки) (рис. 2.3).

Если экстраплоскость находится в верхней части кристалла, то краевая дислокация – положительная ( ). Дислокации одного знака отталкиваются, а противоположные притягиваются.

Рис. 2.3. Искажения в кристаллической решетке при наличии краевой дислокации

Другой тип дислокаций был описан Бюргерсом, и получил название винтовая дислокация

Винтовая дислокация получена при помощи частичного сдвига по плоскости Q вокруг линии EF (рис. 2.4) На поверхности кристалла образуется ступенька, проходящая от точки Е до края кристалла. Такой частичный сдвиг нарушает параллельность атомных слоев, кристалл превращается в одну атомную плоскость, закрученную по винту в виде полого геликоида вокруг линии EF, которая представляет границу, отделяющую часть плоскости скольжения, где сдвиг уже произошел, от части, где сдвиг не начинался. Вдоль линии EF наблюдается макроскопический характер области несовершенства, в других направлениях ее размеры составляют несколько периодов.

Если переход от верхних горизонтов к нижним осуществляется поворотом по часовой стрелке, то дислокация правая, а если поворотом против часовой стрелки – левая.


Рис. 2.4. Механизм образования винтовой дислокации

Винтовая дислокация не связана с какой-либо плоскостью скольжения, она может перемещаться по любой плоскости, проходящей через линию дислокации. Вакансии и дислоцированные атомы к винтовой дислокации не стекают.

В процессе кристаллизации атомы вещества, выпадающие из пара или раствора, легко присоединяются к ступеньке, что приводит к спиральному механизму роста кристалла.

Линии дислокаций не могут обрываться внутри кристалла, они должны либо быть замкнутыми, образуя петлю, либо разветвляться на несколько дислокаций, либо выходить на поверхность кристалла.

Дислокационная структура материала характеризуется плотностью дислокаций.

Плотность дислокаций в кристалле определяется как среднее число линий дислокаций, пересекающих внутри тела площадку площадью 1 м 2 , или как суммарная длина линий дислокаций в объеме 1 м 3

Плотность дислокаций изменяется в широких пределах и зависит от состояния материала. После тщательного отжига плотность дислокаций составляет 10 5 …10 7 м -2 , в кристаллах с сильно деформированной кристаллической решеткой плотность дислокаций достигает 10 15 …10 16 м –2 .

Плотность дислокации в значительной мере определяет пластичность и прочность материала (рис. 2.5)


Рис. 2.5. Влияние плотности дислокаций на прочность

Минимальная прочность определяется критической плотностью дислокаций

Если плотность меньше значения а, то сопротивление деформированию резко возрастает, а прочность приближается к теоретической. Повышение прочности достигается созданием металла с бездефектной структурой, а также повышением плотности дислокаций, затрудняющим их движение. В настоящее время созданы кристаллы без дефектов – нитевидные кристаллы длиной до 2 мм, толщиной 0,5…20 мкм - “усы“ с прочностью, близкой к теоретической: для железа =30000 МПа. При упрочнении металлов увеличением плотности дислокаций, она не должна превышать значений 10 15 …10 16 м –2 . В противном случае образуются трещины.

Дислокации влияют не только на прочность и пластичность, но и на другие свойства кристаллов. С увеличением плотности дислокаций возрастает внутреннее, изменяются оптические свойства, повышается электросопротивление металла. Дислокации увеличивают среднюю скорость диффузии в кристалле, ускоряют старение и другие процессы, уменьшают химическую стойкость, поэтому в результате обработки поверхности кристалла специальными веществами в местах выхода дислокаций образуются ямки.

Дислокации образуются при образовании кристаллов из расплава или газообразной фазы, при срастании блоков с малыми углами разориентировки. При перемещении вакансий внутри кристалла, они концентрируются, образуя полости в виде дисков. Если такие диски велики, то энергетически выгодно “захлопывание” их с образованием по краю диска краевой дислокации. Образуются дислокации при деформации, в процессе кристаллизации, при термической обработке.

Поверхностные дефекты – границы зерен, фрагментов и блоков (рис. 2.6).


Рис. 2.6. Разориентация зерен и блоков в металле

Размеры зерен составляют до 1000 мкм. Углы разориентации составляют до нескольких десятков градусов (

Граница между зернами представляет собой тонкую в 5 – 10 атомных диаметров поверхностную зону с максимальным нарушением порядка в расположении атомов.

Строение переходного слоя способствует скоплению в нем дислокаций. На границах зерен повышена концентрация примесей, которые понижают поверхностную энергию. Однако и внутри зерна никогда не наблюдается идеального строения кристаллической решетки. Имеются участки, разориентированные один относительно другого на несколько градусов ( фрагментами. Процесс деления зерен на фрагменты называется фрагментацией или полигонизацией.

В свою очередь каждый фрагмент состоит из блоков, размерами менее 10 мкм, разориентированных на угол менее одного градуса ( блочной или мозаичной.

Дефекты кристаллического строения металлов (дислокация) и их влияние на прочность.


В кристаллах всегда имеются дефекты (несовершенства) строения, обусловленные нарушением правильного расположения атомов кристаллической решетки. Де­фекты кристаллического строения подразделяют по геометрическим признакам на точечные, линейные и поверхностные.
Атомы совершают колебательные движений возле узлов решетки, и с повышением температуры амплитуда этих колебаний увеличивается. Большинство атомов данной кристаллической решетки имеют одинаковую (среднюю) энергию и колеблются при данной температуре с одинако­вой амплитудой. Однако отдельные атомы обла­дают энергией, значительно большей средней энер­гии, и перемещаются из одного места в другое. Наиболее легко перемещаются атомы поверх­ностного слоя, выходя на поверхность. Место, где находился такой атом, называется вакансией (рис. 2, а).

Рис. 2. Дефекты в кристаллах:
а - вакансия, б — внедренный атом, в краевая линейная дислокация, г - неправильное расположение атомов на границе зерен 1 и 2
На это место через некоторое время перемещается один из атомов соседнего слоя и т. д. Таким образом вакансия перемещается в глубь кристалла. С повышением температуры ко­личество вакансий увеличивается и они чаще пе­ремещаются из одного узла в другой. В диффу­зионных процессах, протекающих в металлах, ва­кансии играют определяющую роль. К точеч­ным дефектам относят также атом, внед­ренный в междоузлие кристаллической решетки (рис. 2, б), и замещенный атом, когда место ато­ма одного металла замещается в кристалличес­кой решетке другим, чужеродным атомом. Точеч­ные дефекты вызывают местное искажение кри­сталлической решетки.
Линейные дефекты являются другим важнейшим видом несовершенства кристалличе­ской решетки, когда в результате сдвига на одно межатомное расстояние одной части решетки относительно другой вдоль какой-либо плоскости число рядов атомов в верхней части решетки на один больше, чем в нижней. В данном случае в верхней части решетки появилась как бы лиш­няя атомная плоскость (экстраплоскость). Край экстраплоскости, перпендикулярный направле­нию сдвига, называется краевой, или линейной, дислокацией (рис. 2, в), длина которой мо­жет достигать многих тысяч межатомных рас­стояний. Шириной дислокации считают расстоя­ние от центра дефекта до места решетки без ис­кажения. Ширина дислокации мала и составляет несколько атомных расстояний.
Кристаллическая решетка в зоне дислокации упруго искажена, поскольку атомы в этой зоне смещены относительно их равновесного состоя­ния. Для дислокации характерна их легкая по­движность. Это объясняется тем, что атомы, об­разующие дислокацию, стремятся переместиться в равновесное состояние. Дислокации образуют­ся в процессе кристаллизации металлов (см. гл.1, § 2), а также при пластической деформа­ции, термической обработке и других процессах.
Поверхностные дефекты представляют собой границы раздела между отдельными кри­сталлами (рис. 2, г). На границе раздела атомы кристалла расположены менее правильно, чем в его объеме. Кроме того, по границам раздела скапливаются дислокации и вакансии, а также концентрируются примеси, что еще больше наpyшает порядок расположения атомов. При этом сами кристаллы разориентированы, т. е. могут быть повернуты относительно друг друга на де­сятки градусов. Прочность металла может либо увеличиваться вследствие искажений кристалли­ческой решетки вблизи границ, либо уменьшать­ся из-за наличия примесей и концентрации де­фектов. Дефекты в кристаллах существенно вли­яют на свойства металлов.

Анизотропия кристаллов. Неодинаковость фи­зических свойств среды в разных направлениях называют анизотропией. Анизотропия кри­сталлов обусловлена различаем плотности упа­ковки атомов в решетке в различных направле­ниях. Все кристаллы анизотропны, а аморфные тела (стекло, смола) изотропны, т. е. имеют оди­наковую плотность атомов в различных направ­лениях.
Анизотропия свойств важна при использовании монокристаллов — одиночных кристаллов, частицы которых расположены единообразно по всему их объему. Монокристаллы имеют правильную кристаллическую огранку (в форме ес­тественных многогранников), анизотропны по ме­ханическим, электрическим и другим физическим свойствам.
Металлы и сплавы, применяемые в технике, обычно имеют поликристаллическую структуру, т. е. состоят из множества мел­ких и различно ориентированных кристаллов, не имеющих правильной кристаллической огранки и называемых кристаллитами (или зернами). В каждом зерне поликристалла наблюдается анизотропия. Однако вследствие разнообразной, беспорядочной ориентировки кристаллографиче­ских плоскостей в различных зернах поликристалл может иметь одинаковые свойства по раз­ным направлениям и не обнаруживать анизотро­пию (когда размеры зерен значительно меньше размеров пол и кристалла и количество их весьма велико). Это обстоятельство во многих случаях позволяет рассматривать поликристаллическое тело как подобное изотропному, несмотря на ани­зотропию свойств отдельных составляющих его зерен.
9 Упругая и пластическая деформация.

Деформация – это изменение формы и размеров тела, деформация может вызываться воздействием внешних сил, а также другими физико-механическими процессами, которые происходят в теле. К деформациям относятся такие явления, как сдвиг, сжатие, растяжение, изгиб и кручение.

Упругая деформация – это деформация, которая исчезает после снятия нагрузки. Упругая деформация не вызывает остаточных изменений в свойствах и структуре металла; под действием приложенной нагрузки происходит незначительное обратимое смещение атомов.

При растяжении монокристалла возрастают расстояния между атомами, а при сжатии атомы сближаются. При смещении атомов из положения равновесия нарушается баланс сил притяжения и электростатического отталкивания. После снятия нагрузки смещенные атомы из-за действия сил притяжения или отталкивания возвращаются в исходное равновесное состояние и кристаллы приобретают первоначальные размеры форму.

Деформация может быть упругой, исчезающей после снятия нагрузки, и пластической, остающейся после снятия нагрузки.

Самое малое напряжение вызывает деформацию, причем начальные деформации являются всегда упругими и их величина находится в прямой зависимости от напряжения. Основными механическими свойствами являются прочность, пластичность, упругость.

Важное значение имеет пластичность, она определяет возможность изготовления изделий различными способами обработки давлением. Эти способы основаны на пластическом деформировании металла.

Материалы, которые имеют повышенную пластичность, менее чувствительны к концентраторам напряжений. Для этого проводят сравнительную оценку различных металлов и сплавов, а также контроль их качества при изготовлении изделий.

Физическая природа деформации металлов

Под действием напряжений происходит изменение формы и размеров тела. Напряжения возникают при действии на тело внешних сил растяжения, сжатия, а также в результате фазовых превращений и некоторых других физико-химических процессов, которые связанны с изменением объема. Металл, который находится в напряженном состоянии, при любом виде напряжения всегда испытывает напряжения нормальные и касательные, деформация под действием напряжений может быть упругой и пластической. Пластическая происходит под действием касательных напряжений.

Упругая – это такая деформация, которая после прекращения действия, вызвавшего напряжение, исчезает полностью. При упругом деформировании происходит изменение расстояний между атомами в кристаллической решетке металла.

С увеличением межатомных расстояний возрастают силы взаимного притяжения атомов. При снятии напряжения под действием этих сил атомы возвращаются в исходное положение. Искажение решетки исчезает, тело полностью восстанавливает свою форму и размеры. Если нормальные напряжения достигают значения сил межатомной связи, то произойдет хрупкое разрушение путем отрыва. Упругую деформацию вызывают небольшие касательные напряжения.

Пластической называется деформация, остающаяся после прекращения действия вызвавших ее напряжений. При пластической деформации в кристаллической решетке металла под действием касательных напряжений происходит необратимое перемещение атомов. При небольших напряжениях атомы смещаются незначительно и после снятия напряжений возвращаются в исходное положение. При увеличении касательного напряжения наблюдается необратимое смещение атомов на параметр решетки, т. е. происходит пластическая деформация.

При возрастании касательных напряжений выше определенной величины деформация становится необратимой. При снятии нагрузки устраняется упругая составляющая деформации. Часть деформации, которую называют пластической, остается.

При пластической деформации необратимо изменяется структура металла и его свойства. Пластическая деформация осуществляется скольжением и двойникованием.

Скольжение в кристаллической решетке протекает по плоскостям и направлениям с плотной упаковкой атомов, где сопротивление сдвигу наименьшее. Это объясняется тем, что расстояние между соседними атомными плоскостями наибольшее, т. е. связь между ними наименьшая. Плоскости скольжения и направления скольжения, лежащие в этих плоскостях, образуют систему скольжения. В металлах могут действовать одна или одновременно несколько систем скольжения.

Металлы с кубической кристаллической решеткой (ГЦК и ОЦК) обладают высокой пластичностью, скольжение в них происходит во многих направлениях.

Процесс скольжения не следует представлять как одновременное передвижение одной части кристалла относительно другой, оно осуществляется в результате перемещения в кристалле дислокаций. Перемещение дислокации в плоскости скольжения ММ через кристалл приводит к смещению соответствующей части кристалла на одно межплоскостное расстояние, при этом справа на поверхности кристалла образуется ступенька.

Влияние дефектов строения металлов на их прочность

Дислокации.Характеристикой, непосредственно влияющей на сопротивление сплава пластической деформации, является плотность дислокаций, т. е. их суммарная длина, приходящаяся на единицу объема металла. Размерность плотности дислокаций принято выражать в см -2 (см/см 3 ).

Зависимость между прочностью металла σ и плотностью дислокаций ρ может быть представлена графиком (рис. 2.3.1).

В точке Впри плотности дислокаций 10 6 —10 7 см- 2 уменьшение прочности прекращается и начинается ее постепенный рост. Это объясняется тем, что с увеличением ρ перемещение дислокаций затрудняется в связи с тем, что они начинают передвигаться не по параллельным, а по пересекающимся плоскостям других систем скольжения, тем самым препятствуя движению друг друга (участок ВС).


Рис.2.3.1. Зависимость прочности металлов от концентрации дефектов (плотности дислокаций)

Из изложенного выше следует, что от дислокационной структуры существенно зависят прочностные свойства металла и что этими свойствами можно управлять, целенаправленно изменяя дислокационную структуру за счет выбора химического состава сплава, режимов его термической обработки или обработки какими-либо другими специальными методами.

Это достигается путем легирования, закалки или наклепа металла. При этом плотность дислокаций не должна превышать 10 12 - 10 13 см -2 , так как при большей плотности дислокаций металл становится хрупким. На практике обычно следуют по второму пути.

Легирование— это введение в металл небольших количеств специальных примесей, которые приводят к значительным его структурным изменениям. Легирующие добавки сильно взаимодействуют с дислокациями и затрудняют их движение, улучшая тем самым механические характеристики.

Закалка— это термическая обработка, заключающаяся в нагреве металла выше температуры фазового превращения в твердом состоянии, выдерживании при этой температуре и контролируемом ускоренном охлаждении. В результате этих операций в металле увеличи­вается концентрация дефектов, в том числе плотность дислокаций, а также образуется мелкозернистая структура, поэтому протяженность границы между зернами резко возрастает. Сама же граница трудно­проходима для дислокаций, что приводит к затруднению их движения и упрочнению металла.

Наклеп— это обработка металлической заготовки путем прокатки, ковки или волочения. В результате пластической деформации металла увеличивается плотность дислокаций (и концентрация других дефектов), а главное ─дислокации при этой обработке переплетаются, что приводит к затруднению их движения и упрочнению металла. На этом принципе было основано производство дамасской стали.

Указанные технологические операции (легирование, закалка, наклеп) создают оптимальную концентрацию дислокаций. Известно, что наибольшее упрочнение металлов достигается при плотности дислокаций порядка 10 12 —10 13 на 1 см -2 (у совершенных кристаллов Si и Gе – 10 2 —10 3 на 1 см -2 , а у недеформированных металлических кристаллов 10 6 —10 8 на I см -2 ).

Рекристаллизация– это образование новых равноосных зерен из деформированных кристаллов. Рекристаллизацию, например, проводится с целью устранения наклепа холоднодеформированного металла и возвращении стали пластичности. При отжиге стали , начиная от температуры 550 С и выше , вытянутые в результате деформации зерна становятся равноосными.

9. Роль дислокации в упрочнении металлов. Способы повышения прочности металлов и сплавов.

Велико влияние дислокаций на прочность кристаллов. Благодаря дислокациям экспер. Определ предел текучести Ме в 1000 раз больше теоретич значения. При значит увелич плотности дислок и уменьшении их подвижности прочность увел в неск-ко раз по сравнению с отожженным состоянием. Плотность бездефектных участков приближ к теоретич. В полупр дислок влияют на электрические и другие св-ва считают электрич сопротивление. Уменьш время носителей значение дисл особенно возрастает в микроэлектронике, где применяют тонкие пленочные кристаллы, и дисл играют роль тонких проводящих каналлов, вдоль которых легко перемещ-ся атомы примеси. Причины упрочнения:

Увеличение плотности дислок(происходит уменьшение их свободн длины прбега, возник напряж, увелич прочн-и, твердости матер)

Выпадение субмикроскоп элементов по плоскостям скольжения.

ХПД за счет уплотнени дислокаций

Легир-ть (тв раствор внедрения дисл упрочн.)

Линейные дефекты получили название – дислокации.

Дислокации бывают краевые и винтовые.

Краевая дислокация представляет собой локализованное искажение атомной плоскости за счет введения в нее дополнительной атомной полуплоскости – экстра плоскости, расположенной перпендикулярно плоскости чертежа.

Так же есть и винтовая дислокация; искажение происходит по винтовой плоскости.


Важной характеристикой дислокации является плотность дислокации; представляющая собой суммарную длину дислокации в единице объема ()


В наиболее совершенных кристаллах плотность дислокации равна = 10 6 …10 8 см -2 .


В деформированных = 10 6 . 10 8 см -2

10. Понятие о наклепе, текстуре деформации и анизотропии механических свойств.

Упрочнение Ме при деформировании наз-ют наклепом. Наклеп Ме увел-ся до момента разрыва образца, хотя растягивающ. Нагрузка изменяется от Рmax до Рк. Это объясняется появлением местного утонения. В образце участки в которых сосредотачив. пластич. деформация. При значительности деформации в Ме появляется кристаллографическая ориентация зерен, кот наз-ся текстура деформации. Текстура деформации – это результат одновременного деформирования зерен по нескольким системам скольжения. Она зависит от вида деформирования, кристалич стр-ры Ме, наличия примесей и условий деформирования. При прокатке получ-ся более сложная текстура. В этом случае параллельно плоскости прокатки лежит кристаллогафич пл-ть и направление которой образует с напрвлением прокатки опред угол . Текстура деформации делает Ме анизотропным. Анизотропия – различие св-в кристаллов в различн направлениях. Все св-ва, кот зависят от сил в/д атомов спр-ся кристаллограф направл. Анизотропия резче выражена в кристаллах с несиметричной крист решеткой. В этом случае зависит от направления натл-ся для всех св-св. В рез-те ХПД и тех явл происх гуменен .

Наклёп – это совокупность структурных изменений и связанных с ними св-в при холодной пластичной деформации.

В рез-те деф-ции зёрна выстраиваются (вытягиваются в направлении действующей нагрузки. Развивается анизотропия в металле. Под анизотропией понимают различие св-в по различным направлениям в металле. Выше св-ва в направлении пластической деформации (действующей нагрузки).

При холодной пластической деформации прочностные хар-ки (твёрдость, предел прочности и растяжений) увеличиваются в 2-3 раза, тогда как хар-ки пластичности (относит. удлинение, относит. сужение) снижаются 30-40 раз.

Упрочнение металлов при холодной пластической деф-ции обусловлена увелич. дефектов кристаллич. решётки (вакансий, дислакаций), увеличением числа дислокаций одного знака, а также увеличением угла разориентации м/у блоками.

Изменение стр-ры при дорекристаллизационном отжиге.

Пластическая деф-ция приводит к переводу металлов в неравновесное состояние, т.е. с повышенным запасом свободной энергии. Как и любая другая сис-ма металл стремиться к уменьшению свободной энергии. Это уменьшение протекает тем интенсивнее, чем выше тем-ра. В зав-ти от тем-ры отжига различают процессы возврата и процессы рекристаллизации.

Читайте также: