Как происходит намагничивание металлов

Обновлено: 20.09.2024

Намагничивание и магнитные материалы

Наличие у вещества магнитных свойств проявляется в изменении параметров магнитного поля по сравнению с полем в немагнитном пространстве. Происходящие физические процессы в микроскопическом представлении связывают с возникновением в материале под воздействием магнитного поля магнитных моментов микротоков , объёмная плотность которых называется вектором намагниченности .

Возникновение намагниченности в веществе при помещении его в магнитное поле объясняется процессом постепенной преимущественной ориентации магнитных моментов циркулирующих в нём микротоков в направлении поля. Подавляющий вклад в создание микротоков в веществе вносит движение электронов : спиновое и орбитальное движение связанных с атомами электронов, спиновое и свободное движение электронов проводимости.

Диамагнетики и парамагнетики относятся к материалам со слабыми магнитными свойствами. Значительно более сильный эффект намагничивания наблюдается у ферромагнетиков.

Магнитная восприимчивость (отношение абсолютных значений векторов намагниченности и напряженности поля) у таких материалов положительная и может достигать нескольких десятков тысяч. У ферромагнетиков образуются области самопроизвольной спонтанной однонаправленной намагниченности - домены.

Ферромагнетизм наблюдается у кристаллов переходных металлов: железа, кобальта, никеля и у ряда сплавов.

Намагничивание и магнитные материалы

При наложении внешнего магнитного поля с возрастающей напряженностью векторы спонтанной намагниченности, изначально ориентированные в разных доменах по-разному, постепенно выстраиваются в одном направлении. Этот процесс называется техническим намагничиванием . Он характеризуется кривой начального намагничивания - зависимостью индукции или намагниченности от напряженности результирующего магнитного поля в материале.

При относительно небольшой напряженности поля (участок I) происходит быстрое возрастание намагниченности преимущественно из-за увеличения размеров доменов, имеющих ориентацию намагниченности в положительной полусфере направлений векторов напряженности поля. Одновременно пропорционально сокращаются размеры доменов в отрицательной полусфере. В меньшей степени изменяются размеры тех доменов, намагниченность которых ориентирована ближе к плоскости, ортогональной вектору напряженности.

При дальнейшем увеличении напряженности преобладают процессы поворота векторов намагниченности доменов по полю (участок II) до достижения технического насыщения (точка S). Последующему возрастанию результирующей намагниченности и достижению одинаковой ориентации всех доменов по полю препятствует тепловое движение электронов. Область III близка по характеру процессов к парамагнетикам, где увеличение намагниченности происходит из-за ориентации немногих спиновых магнитных моментов, дезориентированных тепловым движением. С увеличением температуры дезориентирующее тепловое движение усиливается и намагниченность вещества уменьшается.

Для конкретного ферромагнитного материала существует определенная температура, при которой ферромагнитное упорядочение доменной структуры и намагниченности исчезают. Материал становится парамагнитным. Эта температура носит название точки Кюри. Для железа точка Кюри соответствует 790 °С для никеля - 340 °С, для кобальта - 1150 °С.

Снижение температуры ниже точки Кюри вновь возвращает материалу магнитные свойства: доменную структуру с нулевой результирующей намагниченностью, если при этом отсутствовало внешнее магнитное поле. Поэтому разогрев изделий из ферромагнитных материалов выше точки Кюри используют для их полного размагничивания.

Кривая начального намагничивания

Процессы намагничивания ферромагнитных материалов подразделяются на обратимые и необратимые по отношению к изменению магнитного поля. Если после снятия возмущения внешнего поля намагниченность материала возвращается в исходное состояние, то такой процесс обратимый, в противном случае - необратимый.

Обратимые изменения наблюдаются на малом начальном отрезке участка I кривой намагничивания (зона Релея) при малых смещениях доменных стенок и на участках II, III при повороте векторов намагниченности в доменах. Основная часть участка I относится к необратимому процессу перемагничивания, который в основном определяет гистерезисные свойства ферромагнитных материалов (отставание изменений намагниченности от изменений магнитного поля).

статор электродвигателя

Петлей гистерезиса называют кривые, отражающие изменение намагниченности ферромагнетика под воздействием циклически изменяющегося внешнего магнитного поля.

При испытаниях магнитных материалов петли гистерезиса строятся для функций параметров магнитного поля В (Н) или М (Н), которые имеют смысл результирующих параметров внутри материала в проекции на зафиксированное направление. Если материал предварительно был полностью размагничен, то постепенное увеличение напряженности магнитного поля от нуля до Hs дает множество точек начальной кривой намагничивания (участок 0-1).

Точка 1 - точка технического насыщения (Вs, Hs). Последующее снижение напряженности Н внутри материала до нуля (участок 1-2) позволяет определить предельное (максимальное) значение остаточной намагниченности Br и дальнейшим уменьшением отрицательной напряженности поля добиться полного размагничивания B = 0 (участок 2-3) в точке Н = -НсВ - максимальной коэрцитивной силы по намагниченности.

Далее материал перемагничивается в отрицательном направлении до насыщения (участок 3-4 ) при Н = - Hs. Изменение напряженности поля в положительную сторону замыкает предельный гистерезисный цикл по кривой 4-5-6-1.

Множество состояний материала внутри предельного гистерезисного цикла может быть достигнуто при изменении напряженности магнитного поля , соответствующем частным симметричным и несимметричным гистерезисным циклам .

Магнитный гистерезис: 1 – кривая начального намагничивания; 2 – предельный гистерезисный цикл; 3 – кривая основного намагничивания; 4 – симметричные частные циклы; 5 – несимметричные частные циклы

Частные симметричные гистерезисные циклы опираются вершинами на кривую основного намагничивания , которая и определяется как множество точек вершин этих циклов до совпадения с предельным циклом.

Частные несимметричные гистерезисные циклы образуются, если начальная точка не находится на кривой основного намагничивания при симметричном изменении напряженности поля, а также при несимметричном изменении напряженности поля в положительном или отрицательном направлении.

Магнитомягкие материалы

В зависимости от значений коэрцитивной силы ферромагнитные материалы разделяют на магнитомягкие и магнитотвёрдые .

Магнитомягкие материалы используются в магнитных системах как магнитопроводы . Эти материалы имеют малую коэрцитивную силу, высокую магнитную проницаемость и индукцию насыщения.

Магнитотвёрдые материалы имеют большую коэрцитивную силу и в предварительно намагниченном состоянии используются как постоянные магниты – первичные источники магнитного поля .

Существуют материалы, которые по магнитным свойствам относятся к антиферромагнетикам . У них оказывается энергетически более выгодным антипараллельное расположение спинов соседних атомов. Созданы антиферромагнетики, обладающие значительным собственным магнитным моментом из-за асимметрии кристаллической решётки . Такие материалы называются ферримагнетиками (ферритами) . В отличие от металлических ферромагнитных материалов, ферриты – полупроводники и в них значительно меньшие потери энергии на вихревые токи в переменных магнитных полях.

Кривые намагничивания различных ферромагнитных материалов


Кривые намагничивания различных ферромагнитных материалов

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Магнетизм и его практическое применение

Огромный круг явлений природы определяется магнитными силами. Современная наука достаточно глубоко проникла в сущность магнитных явлений и вскрыла их основные закономерности.

Научные и технические применения магнетизма в наши дни столь обширны и многообразны, что делают физику магнитных явлений одним из важных разделов естествознания.

Магнитные свойства обнаруживаются во всем окружающем мире, от мельчайших элементарных частиц до безграничных космических просторов, заполненных магнитными полями.

Магнетизм и его практическое применение

Что такое магнетизм

Магнетизм — особая форма материальных взаимодействий, возникающих между движущимися заряженными частицами. Если источником электрического поля являются электрические заряды, то источником магнитного поля является электрический ток.

Магнитные свойства присущи всем веществам, т. е. все они являются магнетиками. Все вещества реагируют на воздействие внешнего магнитного поля: одни создают диамагнитный эффект, другие — парамагнитный эффект.

В природе встречаются различные поля: гравитационное, магнитное, электрическое и др., обладающие характерными особенностями. Поля недоступны нашему восприятию, однако вид полей, получаемых с помощью спектров поля, исследование сил, действующих в поле, дают возможность представления поля в виде потока.

Магнитный поток в отличие от потоков других полей является всегда замкнутым. В качестве физической величины, характеризующей интенсивность магнитного потока, служит вектор магнитной индукции.

Единица магнитного потока в СИ — вебер (Вб). За единицу магнитной индукции принимают индукцию, при которой через площадь в 1 м 2 , расположенную перпендикулярно направлению магнитного потока, проходит поток в 1 Вб. Эта единица называется тесла (Тл).

Графически магнитный поток является скалярной интегральной величиной и изображается линиями, расположенными таким образом, чтобы во всех точках касательные к ним совпадали по направлению с векторами магнитной индукции.

Магнетизм

Магнитные материалы

Название магнит произошло от того места, где впервые были найдены железные руды, обладающие магнитными свойствами.

Магниты, являющиеся кусками руды магнитного железняка, называются естественными. Они способны притягивать к себе другие стальные предметы. При этом притянутые предметы приобретают способность сами намагничиваться. Такие магниты называются искусственными.

Отличительной особенностью магнита является то, что он притягивает к себе другие предметы неравномерно по всей поверхности. Наиболее сильно проявляется сила притяжения на концах магнита. Эти места называются полюсами магнита. Основным магнитным материалом является железо.

Наилучшими магнитными свойствами обладает железо без примесей. Хорошими магнитными свойствами обладает также электротехническая (легированная) сталь. Поэтому из нее изготавливаются магнитопроводы трансформаторов и других электрических аппаратов и машин.

По способу изготовления электротехническая сталь подразделяется на холоднокатаную и горячекатаную.

В качестве магнитных материалов применяются также специальные магнитные сплавы.

Магнитное поле электрического тока

При прохождении тока по проводнику в пространстве вокруг него возникает магнитное поле, обладающее энергией, которая воздействует на вещества. Для характеристики свойств магнитного поля его действия выражаются через так называемые магнитные линии. Направление их соответствует направлению вращения буравчика при его продвижении вдоль тока.

В отличие от электрических силовых линий, которые начинаются на одном электрическом заряде и заканчиваются на другом, магнитные линии являются замкнутым и. Фактически они распределены вдоль всего проводника. С увеличением тока происходит усиление магнитного поля. Чем ближе к проводнику, тем действие магнитного поля проявляется более сильно.

Если применить проводник в виде спирали виде спирали (соленоид, катушка), то при прохождении по нему тока магнитное поле будет значительно сильнее, чем в прямолинейном проводнике. При этом чем больше витков у этой катушки и чем больше ток, тем сильнее магнитное поле.

В катушке магнитные поля отдельных витков складываются, образуя общее магнитное поле. Для усиления его в катушку вводят железный сердечник, который, в результате воздействия магнитного поля катушки, сам намагничивается и значительно усиливает магнитный поток.

Катушка из изолированной проволоки, в которую вставлен сердечник, изготовленный из материала, хорошо проводящего магнитные линии, называется электромагнитом.

Большинство электромагнитов изготавливается с сердечниками, которые способны быстро намагнититься относительно небольшим током, но после прекращения протекания тока почти полностью размагничиваются. Электромагнит проявляет действие только при протекании по нему тока.

Электромагниты находят самое широкое практическое применение. Они используются для возбуждения магнитного потока в электрических машинах, в электромагнитных реле и т. д.

Подробно о том, как работают магниты и электромагниты смотрите здесь:

Исполнительные электромагниты

Виды магнетизма

В зависимости от значения и знака восприимчивости все вещества условно делят на диамагнетики, парамагнетики и ферромагнетики.

Диамагнетики имеют отрицательную магнитную восприимчивость, в большинстве случаев не зависящую от напряженности поля. Во внешнем магнитном поле диамагнетики намагничиваются в направлении, противоположном внешнему полю.

Диамагнетизм существует во всех веществах независимо от структуры их атомов и видов связи, т. е. в жидком, твердом и газообразном состояниях. Он проявляется в тех веществах, где имеет место полная компенсация как орбитальных, так и спиновых магнитных моментов.

Существует ряд диамагнетиков с аномальным поведением; их восприимчивость значительно больше указанной и зависит от температуры. К таким веществам относятся сурьма, висмут, галлий и таллий. В технике диамагнитный эффект ввиду его малости используется сравнительно редко.

Парамагнетики имеют положительную магнитную восприимчивость. К ним относятся большая часть газов, щелочные металлы, многие соли на основе железа, ферромагнетики при температуре выше точки Кюри.

Парамагнитный эффект возникает в веществах с наличием нескомпенсированных магнитных моментов. Результирующий магнитный момент парамагнетика равен нулю.

Под действием внешнего магнитного поля возникает результирующий магнитный момент, совпадающий с направлением поля. Для большинства парамагнетиков намагниченнсоть зависит от температуры, уменьшаясь с ее ростом (закон Кюри).

Разновидностью парамагнетизма является суперпарамагнетизм, обычно наблюдающийся в тонкодисперсных выделениях ферромагнитных частиц в какой-либо матрице, например в выделениях супермагнитных частиц в сплаве медь—железо (Cu+1%Fe). Кривые намагничивания суперпарамагнетиков существенно зависят от температуры.

Одним из признаков ферромагнетиков является высокое значение магнитной восприимчивости и ее сильная зависимость от напряженности магнитного поля.

Зависимость намагниченности от напряженности магнитного поля неоднозначна, и при всех температурах ниже точки Кюри наблюдается гистерезис.

Даже в отсутствие внешнего магнитного поля отдельные частицы ферромагнетика (домены) находятся в состоянии самопроизвольного намагничивания и имеют результирующий магнитный момент. При воздействии внешнего поля магнитные моменты доменов ориентируются в направлении этого поля и ферромагнитное вещество намагничивается.

Из чистых химических элементов ферромагнитными свойствами обладают элементы группы 3d — металлы (железо, кобальт, никель) и группы 4f — металлы (гадолиний, диспрозий, тербий, гольмий, эрбий, тулий). Практически необозримо число ферромагнитных материалов, причем это в основном металлы и их сплавы.

Существует группа материалов, называемая антиферромагнетиками. Антиферромагнитный эффект заключается в том, что в отсутствие внешнего магнитного поля магнитные моменты одинаковых соседних атомов направлены встречно, так что результирующий магнитный момент домена равен нулю.

Магнитное упорядочение сохраняется до температуры, называемой точкой Нееля. Выше этой температуры вещество переходит в парамагнитное состояние. При воздействии внешнего поля магнитные моменты атомов приобретают ориентировку в направлении этого поля и антиферромагнитное вещество намагничивается.

К антиферромагнетикам относятся чистые металлы: хром и марганец, редкоземельные металлы (церий, празеодим, самарий, неодим, европий).

Материалы с некомпенсированным антиферромагнетизмом называют ферримагнетиками. При температурах выше точки Кюри у ферромагнетиков и точки Нееля у антиферромагнетиков атомное магнитное упорядочение нарушается и вещество переходит в парамагнитное coстояние.

Ферримагнетики получили свое название от ферритов первой группы — некомпенсированных антиферромагнетиков. Сюда относятся соединения окиси железа Fe2O3 с окислами других металлов, например соединения с формулой МеОхFe2О3, где Me — металл (железо, никель, марганец, цинк, кобальт, медь, магний и др.).

Ферримагнетикам свойственна такая же, как и ферромагнетикам зависимость намагниченности от напряженности магнитного поля.

Подробно про диамагнетики:

Подробно про ферромагнетики:

Грузоподъемный электромагнит

Применение магнетизма

Универсальность магнетизма открыла широкие широкие возможности для его применения в науке и технике. Во-первых, это использование магнитных материалов для различных отраслей техники (энергетики, электроники, автоматики и т. д.). Во-вторых, используя информационный аспект магнетизма и измеряя магнитные характеристики, можно получить детальные сведения о физических свойствах веществ и их химическом составе.

Использование методов и средств магнитных измерений положено в основу широко применяемых в технике методов структурного анализа, магнитной дефектоскопии и дефектометрии — важнейших неразрушающих методов контроля качества промышленной продукции.

Непрерывно растет производство конструкционных и электротехнических сталей, низкокоэрцитивных сплавов со специальными свойствами (безгистерезисных, с прямоугольной петлей гестерезиса и др.), выоококоэрцитивных магнитных материалов.

Увеличивается применение миниатюрных магнитных сердечников и систем, энергоемких постоянных магнитов и магнитных пленок. Сейчас трудно найти отрасль техники, в которой не использовались бы магнитные системы, в том числе системы с постоянными магнитами.

В связи с этим контроль качества магнитных материалов и изделий из них, измерение параметров магнитных полей и исследование ферромагнитных материалов и магнитных систем в лабораторных условиях и производстве становятся важной задачей.

В последние годы достигнуты значительные результаты в создании автоматической магнитоизмерительной аппаратуры. Применение унифицированных блоков, узлов и микропроцессоров, серийно выпускаемых промышленностью, значительно ускоряет процесс создания магнито-измерительных систем и комплексов, обеспечивающих автоматическое управление процессом перемагничивания, измерение и обработку результатов с высокой точностью и производительностью.

Магнитная плита на станке

Неразрушающие методы контроля изделий из ферромагнитных материалов

Контроль качества изделий из ферромагнитных материалов неразрушающими методами в настоящее время охватывает многие отрасли промышленности. Широко применяется контроль рельсов на железных дорогах, контролируются сварные швы различных изделий, осуществляется проверка деталей машин и механизмов при их изготовлении.

При неразрушающем контроле изделий из ферромагнитных материалов используются магнитный и вихретоко-вый методы для оценки структурного состояния деталей при термообработке, для обнаружения дефектов в процессе эксплуатации и для определения характера развития трещин, возникающих в деталях под влиянием больших нагрузок.

При применении неразрушающего контроля обеспечивается необходимый запас прочности машин и механизмов и снижается их материалоемкость. Подробнее смотрите здесь: Магнитная дефетоскопия

Применение ферромагнитных материалов в электротехнических устройствах

Самым распространенным компонентом ферромагнитных материалов является железо. Поэтому естественно стремление его возможно шире использовать, но получить свободное от примесей железо практически невозможно.

Наибольшее распространение получило технически чистое железо (низкоуглеродистая электротехническая сталь). Его используют для изготовления сердечников электромагнитов постоянного и переменного тока, полюсных башмаков, магнитопроводов, реле и ряда других устройств, работающих в постоянных и низкочастотных магнитных полях.

Применение низкоуглеродистой стали для работы в переменных полях высокой частоты ограничено из-за низкого удельного сопротивления, обусловливающего большие потери на вихревые токи.

При изготовлении магнитопроводов асинхронных двигателей мощностью до 100 кВт основным требованием, предъявляемым к магнитным материалам, являются высокая проницаемость, малое значение коэрцитивной силы, возможно большее значение индукции насыщения.

Низкоуглеродистая сталь для этих целей выпускается горячекатаной и холоднокатаной. Механические напряжения, возникающие в результате обработки материала, в значительной степени ухудшают магнитные свойства. Внутренние напряжения, возникающие после обработки, снимают отжигом при 725—1000 °С.

При необходимости получения особо высоких магнитных свойств термообработку проводят в вакууме при высокой температуре. Для получения материалов с большим удельным электрическим сопротивлением и большой магнитной проницаемостью при индукции 1,2—1,7 Тл используют легирование железа кремнием (от 0,5 до 4%).

Такая электротехническая сталь нашла широкое применение при изготовлении магнитопроводов электрических машин, силовых трансформаторов и коммутирующей аппаратуры силовых электрических цепей.

В настоящее время холоднокатаные стали вытесняют стали, изготовленные горячей прокаткой. Это происходит из-за более высоких магнитных свойств первых.

Кроме того, более гладкая поверхность холоднокатаных сталей позволяет увеличить коэффициент заполнения объема изделий на 20—30% по сравнению с горячекатаными, а более высокая стоимость их компенсируется значительным уменьшением потерь и в конечном счете массы готовых изделий.

Шихтованный магнитопровод трансформатора

Иные требования предъявляются к материалам магнитных систем электротехнических устройств, работающих на повышенных частотах (до единиц мегагерц). Эти материалы должны обладать большим электрическим сопротивлением. Наибольшее распространение здесь нашли никель-цинковые, марганец-цинковые, ферриты и магнитодиэлектрики.

Обычно параметрами, определяющими выбор типа ферритов и магнитодиэлектриков для этих целей, являются начальная магнитная проницаемость, тангенс угла потерь, удельное электрическое сопротивление.

В настоящее время магнитодиэлектрики вытесняются ферритами, характеризующимися лучшими магнитными свойствами, но имеющими худшие показатели по стабильности и чувствительности к внешним воздействиям.

Повышение стабильности ферритов и снижение их чувствительности к внешним воздействиям (температура, время, подмагничивание) ведет к еще более широкому их применению.

Применение ферромагнитных материалов:

Магнитные материалы в электродвигателе

Ферромагнитные материалы специального назначения

В измерительной технике, электронике, технике связи часто требуются материалы с постоянной магнитной проницаемостью в заданных пределах изменения напряженности намагничивающегося поля (сердечники катушек постоянной индуктивности, дроссели фильтров, измерительные трансформаторы и т. д.). Здесь широко применяются перминвары, изопермы.

Для построения магнитных систем магнитоэлектрических приборов, микрофонов и т. п. широко используются пермендюр, имеющий индукцию насыщения 2,5 Тл. Этот материал используется также для магнитопроводов электромагнитов, силовых трансформаторов, сердечников роторов и статоров электрических машин.

Широкое использование получили магнитные материалы для экранирования устройств от внешних магнитных полей. Различают два вида экранирования: магнитостатическое и электромагнитное.

В первом случае экранируемый объект окружают кожухом из материала с высокой магнитной проницаемостью, через который проходят линии потока внешнего постоянного или медленно изменяющегося магнитного поля.

Электромагнитное экранирование основано на эффекте вытеснения линий потока внешнего переменного поля магнитным полем вихревых токов, индуцируемых в кожухе с высокой проводимостью. С увеличением частоты внешних возмущающих полей эффект магнитостатического экранирования уменьшается, а электромагнитного — возрастает.

Для электромагнитного экранирования применяют магнитные материалы с высокой проницаемостью, малой коэрцитивной силой и низким удельным электрическим сопротивлением, например пермаллой 79НМ. Иногда используют сплав 50Н или низкоуглеродистую сталь.

Подробно про электромагнитное экранирование смотрите здесь:

В области техники звуковых и ультразвуковых частот широко используются магнитострикционные материалы. К таким материалам предъявляются требования максимального коэффициента магнитострикции при возможно меньшей напряженности магнитного поля.

Наилучшими свойствами в этом смысле обладают сплавы на основе платины и кобальта, но их техническое применение ограничено высокой стоимостью. В настоящее время в основном в этой области применяются металлические материалы и реже ферриты.

Современные магнитные материалы:

Как намагнитить металл

wikiHow работает по принципу вики, а это значит, что многие наши статьи написаны несколькими авторами. При создании этой статьи над ее редактированием и улучшением работали авторы-волонтеры.

Магнитное притяжение является одним из самых захватывающих феноменов. Магнитное притяжение заставляет предметы вести себя необычным образом, что часто удивляет детей. Хоть такого рода магнитное притяжение не особо применимо в промышленности, с его помощью можно провести очень любопытный эксперимент.

Изображение с названием Magnetize Metal Step 1

Разрядите любое статическое электричество, накопившееся в вашем теле, с помощью заземления. Просто прикоснитесь к металлическому предмету, который касается земли, например, коснитесь металлической ножки стола.

Изображение с названием Magnetize Metal Step 2

Держите металлический объект (желательно, длинный и тонкий) в вашей нерабочей руке, а также возьмите магнит в вашу рабочую руку. Если возможно, положите металлический объект на открытую ладонь, не зажимая его при этом пальцами. Ваши пальцы могут внести помехи в эксперимент.

Изображение с названием Magnetize Metal Step 3

Расположите магнит положительным полюсом на ближний конец металлического объекта. Держите магнит за отрицательный полюс, не заводя руку в область между магнитом и металлическим объектом.

Изображение с названием Magnetize Metal Step 4

Потрите магнит вдоль металлического объекта. Делайте медленные движения снизу вверх. Непрерывно двигайте магнит по прямой линии для достижения лучшего результата.

Изображение с названием Magnetize Metal Step 5

Трите магнит вдоль объекта, выполняя 10 движений вверх и вниз. Таким образом вы настроите отрицательные и положительные частицы внутри объекта, чтобы его намагнитить.

Изображение с названием Magnetize Metal Step 6

Проверьте магнетизм металлического объекта, приложив к нему скрепку. Если скрепка держится на объекте посредством магнитной силы, то вы все сделали верно.

Изображение с названием Magnetize Metal Step 7

Потрите магнит еще раз, пока объект полностью не намагнитится. Повторяйте, пока вы не создадите магнит. Если у вас ничего не вышло, то попробуйте то же самое с другим металлическим объектом или магнитом.

Как намагнитить сталь

Количество источников, использованных в этой статье: 12. Вы найдете их список внизу страницы.

Намагнитьте отвертку, прежде чем разбирать сложный прибор, и вы намного облегчите работу. Также легко поставить эксперимент по намагничиванию с детьми (для этого потребуются лишь некоторые специализированные инструменты). Проверьте сталь при помощи магнита, прежде чем начать; в противном случае процесс не приведет к желаемым результатам.

Изображение с названием Magnetize Steel Step 1

Положите сильный магнит около куска стали (только определенных сортов), и через две минуты сталь превратится в слабый магнит, который утратит свой магнетизм в течение некоторого (достаточно продолжительного) времени. [1] X Источник информации Этот метод идеально подходит для намагничивания отверток, гвоздей, игл. Вы также можете использовать его, чтобы восстановить магнетизм иглы старого компаса или другого слабого магнита. [2] X Источник информации

Изображение с названием Magnetize Steel Step 2

  • Вы также можете приобрести намагничиватель инструментов.

Изображение с названием Magnetize Steel Step 3

  • Если вы подумываете о покупке нержавеющей стали и не может проверить ее магнитом, спросите у продавца о типе этой стали. Вам нужна ферритная нержавеющая сталь. [3] X Источник информации Кстати, сорта стали, которые могут быть намагничены, как правило, дешевле, но это утверждение не всегда верно.

Изображение с названием Magnetize Steel Step 4

  • Вы можете намагнитить подшипник или другой небольшой стальной предмет, проводя им по магниту (а не наоборот).

Изображение с названием Magnetize Steel Step 5.jpeg

  • Если вы не уверены, где на магните расположены два полюса, возьмите второй магнит – один полюс будет притягивать второй магнит, а противоположный полюс будет отталкивать его.

Изображение с названием Magnetize Steel Step 6

  • Лучше всего подойдет эмальпровод с тонкой изоляцией. Не используйте оголенный провод без изоляции, так как он не подойдет для описанного метода. [5] X Источник информации

Изображение с названием Magnetize Steel Step 7

  • В качестве альтернативы оберните провод вокруг жаропрочной пластиковой трубки, в которую вы сможете положить стальной предмет.
  • Если сталь не притягивается обычным магнитом, не пытайтесь его намагнитить. Некоторые сорта нержавеющей стали не могут быть намагничены.
  • Никогда не пользуйтесь источником переменного электрического тока (электрической розеткой или аналогичным). Работая с высоким напряжением, вы рискуете получить удар электрическим током или вывести из строя электрическую сеть в вашем доме. [7] X Источник информации

Изображение с названием Magnetize Steel Step 9

Наденьте резиновые перчатки, чтобы избежать поражения электрическим током. Хотя низковольтные батареи не представляют опасности, все равно наденьте перчатки, чтобы защитить руки от нагретого металла (металл, обмотанный проводом, нагревается).

Изображение с названием Magnetize Steel Step 10

  • При использовании автомобильного аккумулятора при замыкании цепи могут вылететь искры. Держите провод за его изолированную часть.

Изображение с названием Magnetize Steel Step 11

  • Если вы пропустите электрический ток через провод, намотанный на намагниченную сталь, то она размагнитится. [9] X Источник информации

Изображение с названием Magnetize Steel Step 12

Изображение с названием Magnetize Steel Step 13

  • Этот метод не сработает с небольшими стальными предметами, которые нельзя расположить по направлению юг – север.

Изображение с названием Magnetize Steel Step 14

Изображение с названием Magnetize Steel Step 15

  • Некоторые сорта стали нельзя намагнитить в домашних условиях. Если у вас не получается намагнитить определенный стальной предмет, возьмите другой стальной предмет или поэкспериментируйте с железным предметом.

Изображение с названием Magnetize Steel Step 16

Энергия, полученная металлом от удара молотком, позволяет магнитным доменам атомного уровня перестраиваться в соответствии с магнитным полем. Железное ядро Земли создает сильное магнитное поле, поэтому эти миниатюрные магниты перестраиваются в направлении юг – север. После передачи металлу достаточного количества энергии эти миниатюрные магниты выстраиваются в одном направлении, что создает эффект намагничивания металлического предмета. [10] X Источник информации

Читайте также: