Какие металлы растворяет царская водка

Обновлено: 21.09.2024

Царская водка – вода царей — Aqua Regia на латыни – смесь двух кислот, соединенных вместе. Азотная и соляная кислоты берутся в пропорции один к трем. Это баланс по массе, при пересчете на чистые вещества один к двум. Издает неприятный хлорный запах. Уникальная особенность состава – возможность растворять ряд драгоценных металлов – золота, платины и др. Используется для очищения золота от примесей путем фильтрования и осаждения металла.

Царская водка: история названия, пропорция кислот и химические свойства

Свойства Aqua Regia была описаны еще до того момента, как была открыта соляная кислота в 14 веке. Состав получил широкое распространение и свое название в эпоху расцвета алхимии на Европейском континенте. Алхимик из Германии Альберт Великий (Кельнский), который был наставником Фомы Аквинского, назвал ее aqua secunda как производное от aqua prima, азотной кислоты.

В переводе с латыни «вторичная водка» и «первичная водка».

Растворение золота в царской водке

Aqua regia — очень сильная кислота

Представители алхимической когорты начали именовать ее царской тогда, когда кардинал Бонавентура, относимый католичеством к отцам церкви, установил, что вещество, которое объединило две кислоты способно растворять «царя металлов». Ранее этого момента считалось, что благородный металл не может быть ничем изменен. Взаимодействие царской водки и золота доказало обратное. В России М.В Ломоносов называл раствор «королевской водкой».

Символ Aqua Regia, принятый у алхимиков: ▽R. перевернутый треугольник — знак воды.

Химические продукты, соединяясь, взаимодействуют и образуют состав продуктов, который отличается высокой активностью. Это проявляется в сильном запахе с оттенками хлора и диоксида азота. Газообразная двуокись азота желтого цвета напоминает дым такого тона.

Сначала царская водка не имеет цвета, но постепенно приобретает желто-оранжевый оттенок, становясь очень сильным окислителем. Если ее хранить некоторое время, постепенно разлагается, выделяя газообразные вещества.

Скорость травления, то есть окисления, или уровня растворимости, золота — около 10 мкм/мин. Другие благородные металлы требуют для прохождения реакции нагрева до определенных температур. Это относится к родию и иридию. Иными свойствами отличается такой металл, как серебро. Растворение в Aqua Regia не наступает, на поверхности образуется слой AgCl, хлорида драгоценного металла.

ТОП-10 способов, как отличить белое золото от серебра визуально на глаз и в домашних условиях: характеристика металлов, основные критерии отличий

Состав царской водки для растворения золота

Растворение золота в царской водке

Какой состав царской водки для растворения золота и какая реакция в домашних условиях возможна

Точный взвешенный состав двух кислот описывается как 65-68% по массе HNO3 и 32-36% HCl. Уравнение реакции, которая происходит при травлении золотого металла в двойном растворе кислот:

Итог: тетрахлораурат водорода (золотохлористоводородная кислота), оксид азота, вода.

По составу Тетрахлораурата водорода понятно, что соединение происходит между золотом и соляной кислотой. Азотная кислота присутствует в процессе, как катализатор со свойствами окислителя.

Аффинаж Золота

Добыча золота

Весь процесс проходит за три стадии:

  1. Растворение золота в царской водке.
  2. Фильтрование полученного раствора.
  3. Процесс осаждения золота после выпаривания.

Правила безопасности при работе с химическими реагентами

Домашняя химическая лаборатория для аффинажных процессов похожих на алхимические процедуры, требует максимальной осторожности и собранности.

Очистка золота такими сложными реагентами, как высокоактивные кислоты предъявляет серьезные требования к соблюдению правил безопасности. Процесс длится несколько часов, по ходу выпариваются ядовитые газы NOCl, Cl2, NO, NO2. Это означает, что все должно происходить либо на открытом воздухе, либо в помещении, которое хорошо проветривается, либо организована мощная система вытяжной вентиляции.

Необходимо защищать глаза специальными очками, лицо – респиратором, тело – соответствующей защитной одеждой. Ни один реактив не должен попасть на части тела и лицо.

Добывание золота

Добывание золота из разных деталей , чипов, сим-карт

Важность соблюдения сроков и пропорций

Для того, чтобы реакция прошла успешно, необходимо соблюсти правильные пропорции: 65-68% HNO3, к 32-35% HCl.

Для получения 1 г золота потребуется порядка 5 г реактива или 3,75 миллилитра соляной кислоты. Эта пропорция вытекает из химической формулы получения тетрахлораурата водорода. Работая с ломом драгметалла для соблюдения пропорций, следует прежде, чем опускать его в кислотный раствор, пройтись по нему магнитом, что позволит удалить частицы металлов, обладающих ферромагнитными свойствами.

Дальнейшая обработка сырья проходит химическими методами.

Предварительная очистка золота в азотной кислоте

Один из методов очистки золотого лома или изделий, содержащих благородный металл — очистка азотной кислотой. Она удаляет почти все накопленные примеси.

После этого происходит растворение золота с применением соляной кислоты.

Предварительная очистка золота в азотной кислоте

Химический метод извлечения золота

Процедура растворения металла в кислотах и их постепенное выпаривание

Механизм реакции травления срабатывает при подогревании смесового раствора и добавлении азотной кислоты, катализирующей процесс. Когда весь металл растворился, ее больше не добавляют, а переходят к отстаиванию — выдерживают состав такого вида около получаса. Вслед за этим наступает этап фильтрации. Для этих целей пригодится фильтровальная бумага различного качества. К фильтру нередко добавляют сульфид железа – FeS.

Температура плавления золота: влияние пробы (585 или 999) и лигатур; важный процесс очистки золота перед плавлением и плавка металла в домашних условиях

После этого смеси дают «отдохнуть» на протяжении получаса. За это время часть летучих элементов уйдет, и можно приступать к процессу выпаривания. Он проходит под воздействием серной кислоты. Ее добавляют таким образом, чтобы на ее 5 частей приходилось 100 мл раствора.

Кислота обеспечивает осаживание серебра, свинца, алюминия и цинка, если они еще остаются после фильтрования, и удаление азотной кислоты.

Выпаривание проводят неспешно с медленным нагреванием, не допуская закипания. Происходит добавление HCl до исходного состояния, а затем H2О, пропорция 1 к 1. Затем состав стоит 24 часа для того, чтобы пошел процессе осаждения серебра на дно емкости.

Процедура растворения металла в кислотах и их постепенное выпаривание

Для травления золота используется азотная кислота

Химическое уравнение для расчета пропорций кислот: азотной, соляной и серной

В процессе травления необходимо выдерживать постоянно пропорции содержания кислот. Для получения 1 гр. золота потребуется порядка 5 гр. реактива или 3,75 миллилитра соляной кислоты. Добавление азотной кислоты по соотношению к соляной проводится как два к одному.

Серная кислота добавляется на этапе выпаривания 5 мл на 100 мл раствора.

Точного уравнения не существует, так как условия каждого этапа процесса растворения, фильтрации и выпаривания могут несколько различаться.

Осаждение золота с применением различных реактивов в течение суток

После этапа выпаривания наступает время осадить золотой металл из раствора. Оно проводится с применением одного из химических реагентов:

ТОП5 веществ для осаждения золота

  • гидразин сильный растворитель, не очень пригодный для домашней лаборатории, если все же применяют, добавляют по каплям, иначе возможен взрыв;
  • железный купорос; FeSO4, его добавляют водным раствором, соотношение 1 к 2.
  • щавелевая кислота не очень подходит для первичного осаждения, но успешно проводит вторичное;
  • пиросульфит натрия подходит для вторичного осаждения, добавляют в чистом виде, требует осторожности: если что-то сделать не так – произойдет выделение вредных газообразных веществ;
  • перекись водорода должна иметь высокую концентрацию, чтобы процесс пошел.

Позолота - это драгоценное покрытие в различных областях от кондитерских изделий до церковной утвари. Золочение металла в домашних условиях

Если процедуры проведены правильно золото будет осаждаться как красный или оранжевый тяжелый осадок. Он будет концентрироваться на дне емкости.

Железный купорос

Железный купорос — FeSO4

Формула реакции с железным купоросом (НАuСl4 + 3FеSО4 = Fе2 (SО4) 3 + FеСl3 + НСl + Аu)

Осаждение золота из царской водки на основе добавления железного купороса, описывается формулой:

Сульфата двухвалентного железа требуется не меньше, чем 13 г на 1 гр. металла, который планируют получить. Наблюдают за реакцией: раствор должен помутнеть, если этого не происходит, и при этом раздается шипение – это признак не удаленной до конца азотной кислоты. Тогда процесс выпаривания повторяют с добавлением большего количества сернокислого соединения железного купороса. Таким безопасным способом на этапе восстановления устраняются следы азотной кислоты.

Вещества, которые могут навредить процессу восстановления золота

Наряду с описанными реагентами, способствующими осаждению золота, есть еще несколько таких, которые могут быть эффективны в отдельных, особых, случаях, но при стандартном аффинаже не помогут или окажут вредное воздействие.

  • цианид калия работает только, если нужно восстановить металл из хлорида золота;
  • гидрат аммиака и карбонат аммония являются опасными для здоровья человека, а кроме этого, получается «гремучее золото», которое может взорваться;
  • нитрат ртути чреват опасными для здоровья и жизни парами;
  • цитрат, тартрат, ацетат калия бесполезны для получения золотого материала с помощью царской водки.

Экспериментировать с этими веществами не стоит.

Нитрат ртути

Нитрат ртути

Окончательное промывание золотого осадка в кислоте и растворе аммиака

Когда золото осело на дне в виде кусочков, крупных капель, песка, раствор аккуратно сливают. Металлический материал промывают сначала соляной кислотой, а затем нашатырным спиртом. Эти процедуры нужны, чтобы убрать остатки меди.

В самом конце горячая вода устранит частицы гидроксида аммония и приведет золото в надлежащий вид.

Переплавка золотого песка в тигле для получения золота 999 пробы

Полученная россыпь золотых кусочков может быть приведена доведена до состояния гранул или выплавлена как слиток или брусок. Для этого пригодится тигель, который перед нагреванием обрабатывают тетрокарбонатом натрия. Это будет способствовать лучшему стеканию золота по стенкам наряду с очисткой емкости от окислов.

Тройская унция - королевский стандарт чистоты и качества меры драгоценных металлов: золота, серебра, палладия и платины, сколько грамм, чему равна, Калькулятор для перевода

Золото в мерных слитках

Золотые слитки 999,9 пробы

Температура плавления драгоценного металла — 1063 градусов С. Поскольку горелка обеспечивает меньшую температуру горения, емкость и сам материал обрабатывают бораксом. Он снижает уровень необходимого для плавления теплового воздействия.

Это способ получения 24-х каратного золота из лома или золотосодержащих изделий.

Видео: много ли золота в вашем золоте. Извлечение золота химическим путем

Растворимость металлов в различных жидкостях

а) Хорошо растворяется в соляной кислоте. Медленно растворяется в концентрированной и разбавленной HNO3 н разбавленной Н2SO4.

б) Алюминий и его сплавы хорошо растворяются в концентрированных растворах едких щелочей (20—40% NaOH или KОН).

Бериллий

Хорошо растворяется в соляной и серной кислотах, а также в азотной кислоте при нагревании. Холодная азотная кислота пассивирует металл вследствие образования пленки окиси бериллия.

Растворяется в кислотах-окислителях: в концентрированных азотной и серной, а также в хлорной при нагревании до белого дыма. Сплавляется с едкими щелочами, образуя метабораты.

Ванадий

Растворяется на холоду в «царской водке» и в азотной кислоте. При нагревании растворяется в концентрированной серной и плавиковой кислотах. Сплавляется со щелочами, образуя соли ванадиевой кислоты (ванадаты). Нерастворим в разбавленных серной и соляной кислотах.

Висмут

Хорошо растворяется в разбавленной азотной кислоте, в смеси азотной и соляной кислот, в горячей концентрированной серной кислотах. Нерастворим в разбавленных соляной и серной кислотах.

Вольфрам

Нерастворим в серной и соляной кислотах. Концентрированная азотная кислота и «царская водка» окисляют вольфрам с поверхности, переводя его в нерастворимую вольфрамовую кислоту. Растворяется в смеси плавиковой и азотной кислот. Растворим в смесях кислот, содержащих фосфорную кислоту, вследствие образования комплексной вольфрамо-фосфорной кислоты H7[P(W2O7)6]*xH2O

Растворяется в насыщенном растворе щавелевой кислоты в присутствии перекиси водорода. Сплавляется со щелочами или Na2CO3 в присутствии окислителей (например, КСlO3) с образованием солей вольфрамовой кислоты.

Гафний

Германий

Хорошо растворяется в «царской водке», а также в щелочном растворе перекиси водорода. Кислоты на германий действуют слабо; в азотной кислоте образуется гидрат двуокиси германия.

Железо

Легко растворяется в азотной кислоте, разбавленной серной, а также в соляной кислоте. Чистейшее железо растворяется в азотной кислоте, но не растворяется в соляной.

Золото

Индий

Легко растворяется в соляной кислоте, медленно — в серной, с трудом в концентрированной азотной кислоте.

Кадмий

Растворяется в горячей разбавленной азотной кислоте. Плохо растворяется в разбавленной соляной и серной кислотах; растворение ускоряется в присутствии перекиси водорода.

Кобальт

Растворяется в разбавленной азотной кислоте, а также в разбавленной соляной и серной кислотах. Концентрированные серная и азотная кислоты пассивируют кобальт.

Лантан

Магний

Легко растворяется во всех разбавленных кислотах, в т. ч. и в уксусной. Растворяется в концентрированных растворах хлорида аммония.

Марганец

Растворяется в разбавленных азотной, соляной и серной кислотах с образованием солей двухвалентного марганца (Мn 2+ ). В концентрированной серной кислоте растворяется с выделением SO2

Легко растворяется в азотной кислоте. Нерастворима в соляной и в разбавленной серной кислотах. Концентрированная серная кислота растворяет медь при нагревании до паров Н2SO4. Соляная кислота растворяет медь в присутствии окислителей (например, Fe 3+ , Н2О2, НNО3 и т. д.).

Молибден

Легко растворяется в «царской водке» и в смеси плавиковой и азотной кислот. Растворяется в концентрированной серной кислоте при нагревании до паров Н2SO4. В разбавленной соляной кислоте растворяется при нагревании очень медлепно.

Сплавляется со щелочами в присутствии окислителей. Концентрированная азотная кислота пассивирует молибден.

Мышьяк

Растворяется в смеси азотной и соляной кислот, в концентрированной серной кислоте при нагревании до паров Н2SO4. Нерастворим в соляной и разбавленной серной кислотах.

Никель

Растворяется в разбавленной азотной кислоте. В концентрированной азотной кислоте пассивируется и не растворяется. Плохо растворяется в разбавленных соляной и серной кислотах.

Ниобий

Нерастворим в «царской водке» и концентрированной азотной кислоте. Растворяется в плавиковой кислоте с добавкой азотной кислоты. Концентрированная серная кислота с добавкой (NH4)2SO4 или К2SO4 растворяет ниобий при нагревании до паров Н2SO4. Сплавляется со щелочами, образуя солн-ниобаты.

Олово

Растворяется в соляной кислоте и в смеси соляной и азотной кислот. Растворяется в концентрированной серной кислоте при нагревании. В азотной кислоте образуется нерастворимый осадок метаоловянной кислоты H2SnO3

Платина

Рений

Растворяется в азотной кислоте с образованием раствора рениевой кислоты. Концентрированная серная кислота при нагревании медленно растворяет рений. Соляная и разбавленная серная кислоты очень медленно растворяют его.

Ртуть

Хорошо растворяется в азотной кислоте, а также в концентрированной серной при нагревании. Нерастворима в соляной кислоте и в разбавленной серной.

Свинец

Хорошо растворяется в разбавленной азотной кислоте. Соляная и серная кислоты растворяют свинец лишь при нагревании. Растворяется в уксусной кислоте.

Селен

Растворяется в азотной кислоте с образованием растворимой селенистой кислоты H2SeO3. Растворяется также в «царской водке».

Серебро

Легко растворяется в азотной кислоте; при нагревании растворяется в концентрированной серной кислоте. Нерастворимо в соляной, а также на холоду в серной кислотах.

Сурьма

Растворяется в концентрированной серной кислоте при нагревании до паров Н2SO4, в смеси азотной и соляной кислот, в смеси азотной кислоты с винной.

Таллий

Легко растворяется в азотной кислоте. В серной кислоте растворяется труднее, в соляной — плохо вследствие образования малорастворимого хлорида одновалентного таллия.

Тантал

Нерастворим в «царской водке» и в азотной кислоте. На него не действует плавиковая кислота (в отсутствие платины). Концентрированная серная кислота лишь при нагревании действует на металл. Растворяется в плавиковой кислоте с добавкой азотной. Металл сплавляется со щелочами, образуя танталаты.

Теллур

Растворяется в азотной кислоте с образованием растворимой теллуристой кислоты H2TeO3. Растворим в «царской водке», в концентрированной серной кислоте, в растворах NaOH и KCN.

Титан

Растворяется в разбавленной 1 : 1 соляной и разбавленной 1 : б серной кислотах с образованием солей трех валентного титана фиолетового цвета. Очень легко растворяется в разбавленной плавиковой кислоте и в смеси плавиковой и азотной кислот.

Азотная кислота пассивирует титан вследствие образования нерастворимой метатитановой кислоты. Такой пассивированный титан плохо растворяется в соляной и серной кислотах.

Торий

Легко растворяется в концентрированной соляной кислоте и в смеси соляной и азотной кислот. Одна азотная кислота пассивирует металл.

Растворяется в разбавленных серной и соляной кислотах, а также в хлорной кислоте. Азотная кислота на холоду пассивирует уран (при растворении образуется нитрат уранила UO2(NO3)2 ).

Легко растворяется в соляной и хлоркой кислотах, а также в разбавленной серной кислоте. В азотной кислоте хром с поверхности пассивируется, и дальнейшее растворение его протекает крайне медленно.

Церий

Цирконий

Растворяется в «царской водке» и плавиковой кислоте, а также в смеси плавиковой и азотной кислот. Медленно растворяется в серной и концентрированной соляной кислоте. Устойчив к действию 5%-ной соляпой кислоты даже при нагревапии.

Легко переводится в раствор мокрым сплавлением (на 10 мл концентрированной Н2SO4 добавляют 3 грамма K2SO4).

--> Растворимость металлов в различных жидкостях. Ртуть Хорошо растворяется в азотной кислоте, а также в концентрированной серной при нагревании. Нерастворима в соляной кислоте и в разбавленной серной. | растворимость, металл, химия, кислота

Растворение золота в царской водке: очистка, пропорции раствора кислот, осаждение золота в домашних условиях и его переплавка в слитки

Ювелирный сплав: определение, разновидности сплавов и причины их создания, отличие от сплавов бижутерных

Магнитится ли золото: проверка на подлинность, сплавы, которые притягиваются и отталкиваются от магнита

Сплав золота и серебра: исторические факты об электруме, соотношение цвета, пробы по ГОСТу, преимущества сплавов двух драгоценных металлов

Каков же состав кислоты «царская водка»?

Что же такое царская водка? Нет, это не элитный напиток, как можно было бы подумать. Царская водка — это смесь определённых концентрированных кислот в определённой пропорции. Классический рецепт царской водки таков: одна четвёртая соляной кислоты (формула HCl) и три четверти азотной кислоты (формула HNO3). Такой напиток вряд ли принесёт пользу человеческому организму. Зато он способен растворять золото и платину. И не только их.

Кислота

Что собой представляет кислота «царская водка»?

Большинство металлов полностью растворяются в царской водке. Но ни одна кислота, входящая в состав, по отдельности на это неспособна. Благодаря сложной реакции между азотной и соляной кислотой, рождается сила растворять металлы. Ей неподвластны тантал, иридий и родий. На вид царская водка просто жёлтая жидкость с резким неприятным запахом.

Как появилась на свет царская водка и почему её так назвали?

Царская водка появилась благодаря неустанным попыткам алхимиков создать некий философский камень, который бы превращал все в золото. Золото для людей того времени было королевским, царским металлом. Соответственно, жидкость, которая смогла растворить этот драгоценный металл, назвали царём воды. Но на русский язык название этой кислоты было интерпретировано по-другому, как царская водка.

Впервые рецепт водки был найден в трактате алхимика Псевдо-Гебера. Правда, рецепт несколько отличается от современного. В то время алхимики получали царскую водку за счёт смеси медного купороса, нашатыря, квасцов и селитры. Смешивали ингредиенты в сосуде со стеклянной крышкой.

В более поздних годах, в тринадцатом веке, был найден ещё один рецепт получения королевской водки. Этот рецепт приписывают Бонавентуру, который смешивал нашатырь с азотной кислотой. Этот же алхимик установил, что серебро растворяется в азотной кислоте – это хороший способ отделить серебро от золота. Бонавентура первый начал использовать название царской водки.

Рецепт водки, в которую входят концентрированные соляная и азотная кислоты, появился в конце шестнадцатого века. Описал его Андреаса Либавия в своей «Алхимии». Либавия придал царской водке большое значение, увидев в ней универсальный растворитель (одна из сложнейших задач алхимии). С шестнадцатого века царская водка активно помогала человечеству в увеличении знаний про различные вещества и химические реакции между ними. Королевская вода также сделала свой вклад в развитие пробирного анализа.

Интересный случай случился во времена Второй мировой войны. В нацистской Германии было запрещено получение Нобелевской премии. Поэтому два немецких физика (Макс фон Лауэ и Джеймс Франк) решили оставить на хранение свои золотые медали в Институте Нильса Бора (Дания). Когда Дания была оккупирована, один из химиков института растворил золотые медали в водке. Банка с раствором простояла всю войну среди сотен других различных растворов. После окончания войны, этот же химик выделил золото обратно из раствора и отдал его Шведской академии наук и Нобелевскому фонду. Из полученного золота изготовили новые медали и отдали их Джеймсу Франку и Максу фон Лауэ.

Водка в пробирке

Свойства царской водки

Смесь соляной и азотной кислоты образует высокоактивные продукты (диоксида хлора, азота и нитрозилхлорида). Царская водка является одним из сильнейших окислителей. Надо заметить, что готовят эту водку непосредственно перед применением. Ведь со временем она распадается на газообразные продукты. Золото растворяется в водке приблизительно со скоростью 10 мкм/мин.

Применение царской воды

Основным и профессиональным применением царской воды является использование её, как реактива, за счёт которого получают хлорид металлов. Некоторые используют этот реактив, чтобы добыть золото из старых радиодеталей. А также, с помощью царской воды можно легко взламывать навесные замки.

Главное не забывать, что царской воды можно пользоваться только первое время после его изготовления.

Стоит также подробно разобрать те кислоты, которые входят в состав царской водки.

Состав кислоты

Азотная кислота

Кислота, чувствительная к свету. При освещении, она распадётся на оксид и воду. Поэтому азотную кислоту содержат в тёмном шкафу или в непрозрачной ёмкости. И также HNO3 сама по себе не растворяет железо, поэтому её смело можно хранить в железной ёмкости. Азотная кислота один из сильнейших электролитов и окислителей.

Известны случая, образования HNO3 в атмосфере. При ударе молнии азот, входящий в состав атмосферы, начинает реагировать с кислородом, вследствие чего образовывается оксид азота. Впоследствии этот оксид азота реагирует с влагой в воздухе, образовывая азотную кислоту в небольших концентрациях.

Соляная кислота

Бесцветная кислота, с резким запахом очень едкая, выделяет лёгкий пар на открытом воздухе. HCl растворяет многие металлы. С использованием этого реактива нужно быть очень аккуратным. Работать с ней можно только в помещении, которое активно проветривается. Ведь пар, выделяемой этой кислотой, может раздражать слизистые оболочки дыхательных путей.

Состав кислоты «царская водка»

Способ приготовления царской воды

Чтобы приготовить самостоятельно царскую водку вам понадобится:

  • концентрированные HCl, HNO3;
  • стеклянная пробирка;
  • стеклянная палочка.
  1. В первую очередь, вы должны точно отмерить нужное количество реактивов. Напоминаем, требуется смешать три части соляной кислоты с одной частью азотной. Не думайте отмерять на глаз количество жидкости. Малейшая неточность приведёт к тому, что реактив будет слабым по эффективности. Лучше всего взять стеклянную пробирку с делениями, по которым вы будете ориентироваться.
  2. Постарайтесь использовать минимальное количество посуды. А также постарайтесь поменьше переливать реактивы с одной пробирки в другую. Остерегайтесь проливать их.
  3. Советуем вначале налить в пробирку соляную кислоту, а потом уже добавлять в неё азотную. Это делается для того, чтобы, когда вы вливаете меньшее количество жидкости в большее количество жидкости, уменьшить количество брызг. Вливайте кислоту осторожно, тонкой струёй. Не подносите близко к лицу пробирку с кислотой, чтобы случайно не вдохнуть пары.
  4. Когда вы смешали все реактивы, аккуратно перемешайте смесь стеклянной палочкой. Перемешать нужно тщательно, чтобы все реактивы прореагировали между собой, а не просто расслоились. Ни в коем случае, нельзя взбалтывать пробирку. Если вы все сделали правильно, то, смешанная вами жидкость, вначале будет жёлтого цвета, а через полчаса потемнеет до оранжевого цвета.

На всех этапах не забывайте соблюдать осторожность!

Видео

Из видео вы узнаете, что такое царская водка.

Поставь лайк, это важно для наших авторов, подпишись на наш канал в Яндекс.Дзен и вступай в группу Вконтакте

Царская водка

Ца́рская во́дка (лат. Aqua Regia, Aqua Regis, A.R. ) — смесь концентрированных азотной (65–68% масс.) и соляной (35–38 % масс.) кислот, взятых в соотношении 1:3 по объему (массовое соотношение, в пересчёте на чистые вещества, около 1:2) [1] .

Содержание

История

Царская водка впервые описана Псевдо-Гебером, неизвестным алхимиком, трактаты которого стали распространяться в Европе, начиная с VIII века. Задолго до открытия соляной кислоты в латинских текстах, приписываемых Геберу, изложен способ получения царской водки путём сухой перегонки смеси селитры, медного купороса, квасцов и нашатыря в стеклянном, хорошо замазанном сосуде, снабженном стеклянной крышкой или колпаком [2] .

В сочинениях Альберта Великого она называется aqua secunda («вторичная водка», а «первичная водка» — aqua prima — азотная кислота), у других алхимиков — aqua regia. В 1270 году Бонавентура указал на применяемый им собственный метод получения растворением нашатыря в «крепкой водке» (aqua fortis, азотная кислота) [3] . Бонавентура также установил, что азотная кислота растворяет серебро, отделяя его от золота; используя царскую водку, он установил её способность растворять «царя металлов» — золото, считавшегося до некоторых пор неподверженным изменению. Таким образом появилось название aqua regia (также aqua regis, A.R.) [4] . Алхимический символ царской водки был составлен из знака воды и прописной буквы R.

Приготовление царской водки смешением концентрированных соляной и азотной кислот впервые описывается в «Алхимии» Андреаса Либавия (1597) [5] . Установление факта растворения благородных металлов в царской водке рассматривалось алхимиками как решение одной из важнейших задач алхимии: приготовление алкагеста — универсального растворителя. Использование царской водки в алхимической практике привело к существенному росту знаний о веществах и химических реакциях [6] и способствовало становлению пробирного анализа и технической химии.

В работах Лавуазье царская водка именовалась нитромуриевой кислотой, в соответствии с представлениями о том, что выделяющийся газ (хлор) не что иное, как оксид элемента мурия, дефлогистированная соляная кислота.

В России её называли королевской водкой (М. В. Ломоносов, 1742 г.), царской водкой (М. Парпуа, 1796 г.), селитро-соляной кислотой (В. В. Петров, 1801 г.), азотноводохлорной кислотой (Г. И. Гесс, 1831 г.); известны и другие названия [7] . Слово «водка» первоначально появилось в русском языке примерно в XIII—XIV веках как уменьшительное от слова «вода» и имело таковое значение основным вплоть до середины XIX века. Значение «спиртной напиток» слово «водка» приобрело где-то между XIV и XIX веками первоначально как диалектное, и лишь в конце XIX — начале XX века стало обозначать единственно «крепкий спиртной напиток». [8] .

Свойства

Представляет собой жидкость жёлто-оранжевого цвета с сильным запахом хлора и диоксида азота. Только что приготовленная царская водка бесцветна, однако быстро приобретает оранжевый цвет.

При взаимодействии HCl и HNO3 образуется сложная смесь высокоактивных продуктов, в том числе ассоциатов и свободных радикалов. Наличие среди продуктов взаимодействия хлорида нитрозила NOCl и атомарного хлора in statu nascendi в сильнокислой среде делает царскую водку одним из сильнейших окислителей. Смесь готовят непосредственно перед её применением: при хранении она разлагается с образованием газообразных продуктов (именно выделение диоксида азота придаёт царской водке окраску) и теряет окислительные свойства.



Эффективность царской водки как окислителя в значительной степени связана с уменьшением потенциала окисления металлов вследствие образования хлоридных комплексных соединений. Комплексообразование в сильнокислой окислительной среде делает возможным растворение уже при комнатной температуре даже таких малоактивных металлов, как золото, платина и палладий:

Скорость растворения (травления) золота в царской водке составляет примерно 10 мкм/мин. Рутений растворяется в царской водке только в присутствии кислорода воздуха, образуя комплексное соединение — гексахлорорутениевую кислоту [9] . Родий и иридий в компактном состоянии устойчивы, но растворяются при нагревании в виде высокодисперсных порошков (черни) [9] .

Серебро не растворяется в царской водке из-за пассивации поверхности образующейся плёнкой хлорида серебра. Пассивация поверхности металла кислотоустойчивыми оксидами является причиной устойчивости к царской водке хрома, титана, тантала, циркония, гафния и ниобия.

Царская водка применяется как реактив в химических лабораториях, для очистки стеклянной посуды от следов органических веществ (например, в ЯМР-спектроскопии), в пробирном анализе благородных металлов и их сплавов, при аффинаже золота и платины, получении хлоридов металлов и другого.

Интересный факт

В нацистской Германии было запрещено принятие Нобелевской премии после того, как в 1936 году премию мира присудили противнику национал-социализма Карлу фон Осецкому. Немецкие физики Макс фон Лауэ и Джеймс Франк доверили хранение своих золотых медалей Нильсу Бору. Когда в апреле 1940 года немцы оккупировали Копенгаген, во избежание возможной конфискации сотрудник Института Нильса Бора химик Георг Хевеши растворил эти медали в царской водке (сам Хевеши был удостоен Нобелевской премии по химии в 1943 году).

После окончания войны сотрудники Нильса Бора выделили золото из раствора тетрахлорозолотой кислоты и передали его Шведской королевской академии наук, которая изготовила новые медали и вернула их фон Лауэ и Франку [10] .

Читайте также: