Какие металлы ржавеют в воде

Обновлено: 07.07.2024

Цинк часто используется как основное антикоррозийное средство.

В основе самого процесса оцинковки лежит создание на поверхности металла специального защитного слоя, способного отталкивать воду и не давать материалу контактировать с кислородом.

Отсутствие катализаторов окисления приводит к тому, что на стальных изделиях не появляется ржавчины.

Но может ли ржаветь сам цинк?

Да, коррозия цинка в агрессивных средах возможна. Эту особенность нужно учитывать, когда вы выбираете область использования оцинкованных изделий.

Отказ от учета рисков приведет к тому, что даже защитная обработка не сможет уберечь материал от активного разрушения.

Рассмотрим, что становится фактором риска для запуска процесса коррозии цинка, дадим рекомендации как избежать такой проблемы и значительно продлить сроки использования металлоконструкций.

Главные факторы риска

Как и в случае с другими материалами, вероятность развития коррозии цинка напрямую зависит от особенностей среды, в которой он используется.

Наиболее опасными считаются вода, кислоты и щелочи.

Ржавение под действием атмосферы тоже распространено, потому нужно быть особенно осторожным при эксплуатации стальных конструкций на открытом воздухе.

Рассмотрим все типы рисков подробнее.

Сам по себе цинк относится к материалам, покрытие которыми помогает защитить металлоконструкции при использовании на открытом воздухе.

Так в российском климате прошедший оцинковку металл будет защищен от коррозии, если будет постоянно контактировать с речной водой без сильных загрязнений, периодически попадать под дождь.

Но есть два фактора риска, провоцирующих коррозию:

  • Высокие температуры. Если материал контактирует с водой, нагретой до 55 °C, риск начала ржавения становится выше. При подогреве водной среды до 70°C риск становится еще больше. Интересное наблюдение ученых – температуры более 90 – 95 °C уже не так опасны для материала, потому что при таком прогревании на металле начинает образовываться защитная пленка из продуктов коррозии и процесс купируется.
  • Состав воды. Большинство видов оцинкованных деталей применяют как в речной, так и в морской воде. Во втором случае из-за особенностей состава, продукты коррозии будут появляться интенсивнее. Многое зависит от толщины покрытия. Она должна составлять 0,13 мм. Сроки использования материала при контакте с морской водой - не более пяти лет. Это показывает, что оцинковка отлично подходит для агрессивных сред.

В остальных случаях коррозии цинка в воде можно не опасаться. Если она и начинается, то идет медленно.

При использовании в морской воде, а также в нейтральных растворах, где процесс проходит с кислородной деполяризацией, его можно замедлить с применением специальных веществ – ингибиторов коррозии цинка.

Контакт с атмосферой

Использование на открытом воздухе вредит любому материалу и цинк не становится исключением.

Но его преимущество в том, что в районах с нормальной экологией и на большей территории России не наблюдается протекания процесса разрушения.

Это достигается за счет появления защитной оксидной пленки.

Сложнее дела обстоят в случае с морской атмосферой. Здесь риск коррозии из-за особого состава воздуха становится значительно выше.

Но даже небольшая толщина цинковой пленки, до 0,03 мм позволяет обеспечить защиту на срок не менее восьми лет.

Самый большой риск связан с районами с плохой экологией. Здесь в воздухе рассеяно множество вредных примесей, появляется риск запуска электрохимической коррозии цинка. Рядом с крупными предприятиями металлоконструкции быстрее выходят из строя.

Опаснее всего районы, в которых в атмосфере рассеяно много таких элементов, как SO2, SO3, HCl. Даже нанесенный цинковый слой в подобных условиях продержится всего 3-4 года.

Кислоты

Кислотная среда представляет большую опасность для всех видов металлов. Вопрос о том, запустится ли процесс коррозии цинка решается в зависимости от нескольких факторов:

  • Тип кислоты.
  • Концентрация кислоты в растворе.
  • Уровень чистоты нанесенного на поверхность цинка.
  • Температура среды.

Чем более чистый цинк был использован при обработке, тем меньше вероятности появления коррозии, даже если среда сильно прогрета. Опасны примеси, добавленные к цинку, особенно сульфат меди (CuSO4).

Тип кислоты сильно влияет на скорость и другие особенности процесса коррозии.

Рассмотрим две наиболее распространенные кислоты:

  • Соляная. Процесс протекает по химической формуле Zn + 2HCl → ZnCl2 + H2↑. Он характеризуется высокой интенсивностью. Активно выделяется водород, появляется хлорид цинка. При сильных концентрациях в растворе, защитное покрытие разрушается и начинается ржавение основного материала под ним.
  • Серная. Записывается формулой Zn + H2SO4(разб.) → ZnSO4 + H2↑. Также протекает с образованием водорода. При этом для реакции также характерно появление сульфата цинка.

Щелочь

Щелочная среда не менее опасна для материалов, чем кислотная. Многое зависит от состава среды и самого типа вещества. Наиболее интенсивно протекает процесс в растворах аммиака.

Дополнительным фактором риска становится контакт с положительно заряженными металлами. При этом интенсивность коррозии в щелочах может стать намного выше.

Что влияет на коррозийную стойкость цинка

Выше уже затрагивался вопрос о том, что состав цинка сильно влияет на его защищенность от коррозии. Так наиболее чистые виды вещества помогают металлу оставаться неповрежденным при контакте со средами повышенной кислотности.

На рынке есть много марок цинка и количество посторонних включений в нем отличается в диапазоне от 0,003 до 2,5%. Кроме основного вещества, в составе также может быть медь, свинец, кадмий и даже мышьяк.

Проблемы могут возникать и в случае отказа от учета особенностей типа примеси, непонимания того, выступает она в качестве катода или анода.

Простой пример – нейтральная атмосферная среда. Чтобы увеличить защиту от коррозии при применении в таких условиях, традиционно используется катодный элемент.

В качестве него выступает металл с более высоким показателем положительного заряда, чем у самого цинка. При правильном расчете концентрации примеси, скорость атмосферной коррозии становится значительно меньше.

Но есть и обратная ситуация.

Когда оцинкованное изделие помещается в агрессивную среду с большим количеством активирующих ионов, а также при контакте с щелочами, легирующие металлы только ускоряют протекание процесса. Специалисты наблюдают растворение и анодных добавок.

Примеси могут ускорить течение коррозии в полтора-два раза. Но такой же эффект может наблюдаться и при нанесении слишком чистого материала без правильно подобранных легирующих компонентов.

Это позволяет сделать вывод, что гнаться только за чистотой не стоит, нужно правильно выбирать добавки в зависимости от типа среды и следить за тем, чтобы общее их содержание оставалось ниже 1%.

Методы увеличения стойкости цинкового покрытия

Из описанного выше может сложиться впечатление, что цинк не такое надежное средство для защиты металлов.

Это не так. Важно правильно выбирать состав материала для нанесения покрытия и грамотно подходить к самому процессу оцинковки.

Чтобы покрытие стало более качественным, его нужно правильно пассивировать. Значительно влияет на коррозийную стойкость использование следующих видов пассиваторов:

  • ангидрид (СгО3);
  • бихроматы (Сr2О 2- 7);
  • фосфаты (PO 3- 4).

Элементы дают значительный прирост уровня защищенности при контакте с агрессивными средами. Но при использовании такого метода важна правильная обработка поверхности. На предприятии выполняется также обезжиривание, промывка и травление заготовок.

Сильно увеличивает коррозийную стойкость и использование внешнего полимерного покрытия.

Оно работает также как и цинковое – не допускает контакта материала с агрессивными средами, стимулирующими возникновение процесса окисления. В качестве альтернативы можно использовать и ряд других распространенных способов.

При выборе вида цинкования, важно понимать, где вы будете использовать изделие, какие риски представляет среда, какая специфика протекания катодно-анодного процесса.

Стоит понимать степень загрязненности, химический состав окружения, максимальные и минимальные температуры, другие потенциальные факторы, стимулирующие коррозию.

Наша компания поможет защититься от коррозии

Выполняем оцинковку на собственных производственных мощностях. Все работы проводятся в точном соответствии с ГОСТ 9.307-89. Метод обработки – горячее цинкование металла.

В пользу выбора компании говорит три причины:

  • Три цеха для проведения работ. Это ускоряет работу с заказами. Производственная мощность составляет более 120 тысяч тонн в год.
  • Установлена одна из самых глубоких ванн для цинкования в ЦФО. Ее глубина составляет 3,43 метра. Это позволяет работать даже с большими металлическими заготовками.
  • Дается гарантия качества. Работы ведутся в точном соответствии с ГОСТ, установлено оборудование от таких европейских фирм, как KVK KOERNER и EKOMOR.

Оставьте заявку или звоните. Выберем лучший вариант состава покрытия в зависимости от области использования, ответим на вопросы про потенциальные риски и расчет длительности защиты с использованием цинкования. Работаем с клиентами со всей России.

4 типа металлов устойчивые к коррозии или нержавеющие

Мы обычно думаем о ржавчине как о оранжево-коричневых хлопьях, которые образуются на открытой стальной поверхности, когда молекулы железа в металле реагируют с кислородом в присутствии воды с образованием оксидов железа. Металлы также могут реагировать в присутствии кислот или агрессивных промышленных химикатов. Если ничто не остановит коррозию, чешуйки ржавчины будут продолжать отламываться, подвергая металл дальнейшей коррозии, пока он не распадется.

Не все металлы содержат железо, но они могут коррозировать или потускнеть в других окислительных реакциях. Чтобы предотвратить окисление и разрушение металлических изделий, таких как поручни, резервуары, приборы, кровля или сайдинг, вы можете выбирать металлы, которые «устойчивы к ржавчине» или, точнее, «устойчивы к коррозии». В эту категорию попадают четыре основных типа металлов:

  • Нержавеющая сталь
  • Алюминиевый металл
  • Медь, бронза или латунь
  • Оцинкованная сталь

Нержавеющая сталь

Типы нержавеющей стали такие, как 304 или 316, представляют собой смесь элементов и большинство из них содержат некоторое количество железа, которое легко окисляется с образованием ржавчины. Но многие сплавы нержавеющей стали также содержат высокий процент хрома (не менее 18%), который даже более активен, чем железо. Хром быстро окисляется, образуя защитный слой оксида хрома на поверхности металла. Этот оксидный слой противостоит коррозии и в то же время предотвращает попадание кислорода на нижележащую сталь. Другие элементы сплава, такие как никель и молибден, повышают его устойчивость к ржавчине.

Рекомендуем эффективный удалитель ржавчины с металлических поверхностей -

Рекомендуем эффективный удалитель ржавчины с металлических поверхностей — «РжавоМед-У»

Алюминиевый металл

Многие самолеты сделаны из алюминия, как и детали автомобилей и мотоциклов. Это связано с его небольшим весом, а также с устойчивостью к коррозии. Алюминиевые сплавы почти не содержат железа, а без железа металл не может ржаветь, но окисляется. Когда сплав подвергается воздействию воды, на поверхности быстро образуется пленка оксида алюминия. Слой твердого оксида довольно устойчив к дальнейшей коррозии и защищает лежащий под ним металл.

Медь, бронза и латунь

Эти три металла содержат мало железа или вовсе его не содержат, поэтому не ржавеют, но могут вступать в реакцию с кислородом. Медь со временем окисляется, образуя зеленую патину, которая фактически защищает металл от дальнейшей коррозии. Бронза представляет собой смесь меди и олова, а также небольшого количества других элементов, и, естественно, гораздо более устойчива к коррозии, чем медь. Латунь – это сплав меди, цинка и других элементов, которая также устойчива к коррозии.

Оцинкованная сталь

Оцинкованная сталь долго ржавеет, но со временем она ржавеет. Это углеродистая сталь, оцинкованная или покрытая тонким слоем цинка. Цинк действует как барьер, не позволяющий кислороду и воде достигать стали, поэтому она защищена от коррозии. Даже если цинковое покрытие поцарапано, оно продолжает защищать близлежащие участки лежащей под ним стали за счет катодной защиты, а также путем формирования защитного покрытия из оксида цинка. Как и алюминий, цинк очень реактивен по отношению к кислороду в присутствии влаги, а покрытие предотвращает дальнейшее окисление железа в стали.

Какие металлы ржавеют?

Ржавчина, обычно называемая окислением, возникает, когда железо или металлические сплавы, содержащие железо, такие как сталь, подвергаются воздействию кислорода и воды в течение длительного периода времени.

Ржавчина образуется, когда железо подвергается процессу окисления, но не все окисления образуют ржавчину. Как уже говорилось выше, ржаветь может только железо или сплавы, содержащие железо, но и другие металлы могут подвергаться коррозии аналогичным образом.

Что такое коррозия?

Коррозия возникает, когда элемент, легко теряющий свои электроны (например, некоторые металлы), соединяется с элементом, который поглощает дополнительные электроны (кислород), а затем вступает в контакт с раствором электролита (водой). Работа воды в процессе коррозии заключается в ускорении потока электронов от металла к кислороду.

Этот процесс называется окислительно -восстановительной реакцией и на самом деле представляет собой два химических процесса, которые происходят одновременно: восстановление (редукция) и окисление.

Что такое редукция?

Редукция – это название химической реакции, которая происходит, когда молекула получает электрон. Это роль кислорода в коррозии металлов.

Что такое окисление?

Окисление – это противоположная восстановлению реакция, которая происходит, когда молекула теряет электрон. Это роль воздействия металла в коррозии металла. Ржавчина и патина меди странного зеленого цвета – видимые результаты того, что металлы теряют свои электроны в воздухе.

Ржавеют ли медь, железо и алюминий?

Технически ржаветь может только железо и сплавы, содержащие железо. Другие металлы, включая драгоценные металлы, такие как золото и серебро, могут подвергаться аналогичной коррозии.

Что отличает определенные металлы, так это время, необходимое для того, чтобы они начали ржаветь или подвергаться коррозии.

Вот несколько примеров о том, как наиболее распространенные металлы противостоят ржавчине и коррозии.

В ассортименте нашей компании есть эффективный удалитель ржавчины с металлов «РжавоМед-У»

В ассортименте нашей компании есть эффективный удалитель ржавчины с металлов «РжавоМед-У»

Ржавеет ли медь?

Медь не ржавеет, однако, корродирует. Медь имеет естественный коричневый цвет и при коррозии приобретает ярко-зеленый оттенок. Хотя некоторые считают, что реакция меди скорее потускнение, чем окисление, металл по-прежнему подвергается аналогичному процессу «ржавления».

В естественной среде медь крайне несклонна к коррозии. Тип коррозии, которая в конечном итоге приводит к поломке медных питьевых труб, называется эрозионной коррозией, и она возникает только из-за воздействия текущей турбулентной воды в течение длительного периода времени. Обычно видимая на старых монетах знаменитая красивая зеленая «патина» может полностью сформироваться за 20 лет.

Это один из немногих природных металлов, который не добывается из руды (хотя он может быть получен другими способами), пригодный для непосредственного использования в естественной среде. Этот, а также тот факт, что медь очень мягкая и с ней легко работать, повлекли за собой то, что медь стала одним из первых металлов, с которыми работали люди в истории человечества.

Фактически, медь имела такое большое значение, что у нас действительно есть период в истории, называемый медным веком.

Медь обладает высокой проводимостью к теплу и электричеству, поэтому ее часто используют в электропроводке.

Медь также имеет очень низкую реакционную способность. Известный инструмент в химии, который представляет собой последовательность металлов, упорядоченную от самой высокой до самой низкой реакционной способности до кислот, воды, извлечения металлов из их руд и других реакций. Из-за её низкой реакционной способности специальный сплав меди (90% меди и 10% никеля) используется для деталей лодок, которые в дальнейшем подвергаются воздействию морской воды, или в качестве труб для транспортировки питьевой воды. Если вы осмотритесь в своем доме или здании, то заметите, что во многих ваших приборах используются медные трубы для подачи и отвода воды.

По данным Министерства жилищного строительства и городского развития России, средний срок службы медной водопроводной трубы составляет 50-70 лет.

Ржавеет ли железо?

Да. Помните, что технически ржаветь может только железо и сплавы, содержащие железо.

По сравнению с коррозией других металлов, железо относительно быстро ржавеет, особенно если оно подвергается воздействию воды и кислорода. Фактически, когда железо подвергается воздействию воды и кислорода, оно может начать ржаветь в течение нескольких часов.

Железо также быстро ржавеет при воздействии высоких температур. Экстремальные температуры могут изменить химический состав металла, что делает его чрезвычайно склонным к рекомбинации с кислородом в окружающей среде.

Алюминий производится в 3 этапа:

Этап 1. Добыча полезных ископаемых

Этап 2. Обработка

Этап 3. Электролитическое восстановление (при котором образуется сам алюминий)

Алюминий получают из минерала боксита. Бокситы чаще всего встречаются в субтропических местах, таких как Африка, Западная Индия, Южная Америка и Австралия, хотя есть небольшие месторождения и в других местах, например, в Европе. Австралия является крупнейшим производителем бокситов. На его долю приходится около 23% мировой добычи.

Затем этот боксит перерабатывается в оксид алюминия, который состоит только из атомов алюминия и кислорода, связанных вместе.

Затем через оксид алюминия пропускается электрический ток, который отделяет различные компоненты друг от друга. Пузырьки кислорода образуются на одном конце, а капли чистого расплавленного алюминия собираются на другом.

Около 4-5 тонн боксита перерабатывается в 2 тонны оксида алюминия, что дает 1 тонну чистого алюминия.

Алюминий корродирует намного медленнее, чем другие металлы, такие как железо. Причина того, что алюминий не так легко подвергается коррозии, как другие металлы, заключается в его особой реакции с водой.

Обычно, когда вода вступает в контакт с металлом, она побуждает металл еще быстрее отдавать свои электроны окружающему его кислороду.

Однако у алюминия особая реакция на воду. Когда вода соприкасается с алюминием, атомы алюминия и кислорода (содержащиеся в металле, а не кислород в окружающем его воздухе) перемещаются дальше друг от друга.

Они окажутся почти на 50% дальше друг от друга, чем были в начале. Эта реакция удаления меняет молекулярную структуру алюминия настолько, что он становится химически инертным, а это означает, что он не так легко подвергается коррозии.

Как предотвратить ржавление металлов

Ржавчина – это естественная химическая реакция. Несмотря на то, что некоторые металлы ржавеют быстрее других, это не должно вас сдерживать от использования этих металлов для определенных целей. Есть много способов предотвратить ржавчину металлов, например, металлические краски и покрытия, защитные барьеры, барьерные пленки, а также многочисленные антикоррозионные растворы и лужение. В каждом методе используются разные соединения и материалы для создания защитного барьера между металлом и элементами, вызывающими ржавчину и коррозию.

Какой металл не ржавеет?

Если разговор идет именно о ржавчине. То нержавеет любой цветной металл будь то алюмминий, медь, бронза, серебро, золото и так далеп но они и еют свойство окислятся. Если быть точнее то большее колличество из них. Но есть так же металл который и не ржавеет и не окисляется но имеет возможность видоизменятся и переходить в иное не материальное состояние и это всем известная ртуть которая просто напросто испаряется.

Существуют черные и цветные металлы, и если черные подвержены коррозии, то цветные металлы не ржавеют. К черным металлам относятся: железо, сталь, чугун - они все рано или поздно ржавеют.

К цветным же металлам относятся:

  • медь и ее сплавы (бронза, латунь),
  • алюминий и его сплавы (дюралюминий, силумин),
  • свинец,
  • олово,
  • цинк, хром (не зря же ими покрывают железные детали (цинкование, хромирование), защищая их тем самым от коррозии).

Не подвержены ржавчине также и благородные металлы - это золото, платина, серебро.

Кстати, существует нержавеющая сталь, ее еще просто называют "нержавейка". Эта сталь из-за высокого содержания хрома также устойчива к ржавчине.

Есть такой материал - нержавеющая сталь, из которого производят посуду или мангалы и коптильни, но как показала практика - это не правда и товары из такого материала все равно со временем ржавеют.

А вот золото, серебро, медь, латунь, бронза и другие ценные породы металлов не ржавеют.

"Есть такой материал - нержавеющая сталь, из которого производят посуду или мангалы и коптильни, но как показала практика - это не правда и товары из такого материала все равно со временем ржавеют"

- Бред не на чём не основанный, нержавейки ржавеют только тогда когда их производят не правильно, или когда они подвергаются сильному оскилению! — 3 года назад

Строго говоря, алюминий "ржавеет", поскольку алюминиевые изделия всегда покрыты естественно возникающим тончайшим слоем оксида алюминия. Именно поэтому при пользовании алюминиевой утварью не наступает отравление, - так мне объяснили ещё в советской школе на уроке химии, не вижу причин сомневаться в этой информации.

Однако ржавчиной мы называем только один-единственный - оксид железа, и то не всякий, а лишь (III), описываемый формулой "феррум два о три" Fe2O3.

оксид железа формула

Выглядит он так:

оксид железа

(Скриншот презентации, которую полностью можно посмотреть здесь).

В реальной жизни практически не приходится иметь дело с металлами в чистом виде, лишь со сплавами, в которых преобладает какой-либо элемент (или несколько). Поэтому если некий металл начинает ржаветь, значит, это сплав, в состав которого входит железо с примесями углерода, и оно уже начало взаимодействовать с водой.

Следы подобных взаимодействий видны и на изделиях из благородных металлов (серебро, золото), которые вдруг потемнели. Неадекватные бабки в таких случаях требуют молиться и каяться за совершённые грехи (если потемнел нательный крестик), выводить шлаки, чистить чакры или срочно заняться кармой (смотря какой именно религией или суеверием они пришиблены), однако всё гораздо проще: неблагородные составляющие сплава окислились, и это стало заметно. Сколько в золоте именно золота, показывает проба в промилле. 375 проба означает 37,5% Au, а всё остальное может быть каким угодно металлом - вот и делайте вывод, стоит ли инвестировать средства в такие побрякушки.

Морская коррозия

Одним из наиболее опасных для металла явлений считается морская коррозия. Это электрохимический процесс, который запускается и протекает из-за особенностей состава жидкости.

В этом материале мы подробнее разберем особенности явления, его протекание и методы защиты.

Почему морская вода так опасна для металла

По статистике, металлические изделия в море портятся намного быстрее, чем в стандартных условиях на открытом воздухе.

Катализатором становится 3 особенности жидкости:

  • Большое количество кислорода. Как известно, именно он запускает окисление, которое и понимается под коррозией. Уровень содержания кислорода – до 8 мг на один литр.
  • Электропроводность. Морская вода выступает как хороший электролит. В некоторых морях ее электропроводность составляет 3х10-2 Ом-1 см-1.
  • Особый состав. Химики давно установили, что в жидкости присутствует весь набор веществ, делающих ее опасной для металла – от сульфатов натрия и солей кальция до хлоридов.

Коррозия в морской воде протекает быстрее, потому что у нее есть выраженное депассивирующее действие. Если на поверхности начинает формироваться защитная пассивная пленка, вода быстро разрушает ее.

Все что попадает в море начинает разрушаться. Убедитесь в этом, если посмотрите на состояния днищ кораблей, погруженных металлоконструкций, трубопроводов, проложенных по дну.

То же относится и к металлическим изделиям, которые периодически соприкасаются с агрессивной средой, к примеру, при охлаждении.

Особенности протекания процесса

Морская коррозия металлов протекает под воздействием множества внешних агрессивных факторов. Как мы уже отмечали, этот процесс относится к электромеханическим разновидностям процессов.

Его протекание напрямую связано с кислородной деполяризацией и дифузионно-кинетическим катодным контролем.

Проблем добавляет то, что сама вода постоянно двигается. Это связано не только с давлением, но и с тем, что суда постоянно находятся в движении с собственной скоростью.

В зависимости от условий, в которых находится металлоконструкция, меняется тип контроля:

  • При сильной аэрации и в местах с сильным течением, частым волнением, кинетический контроль выходит на первый план.
  • На участках где морская вода находится в неподвижном состоянии, преобладающим оказывается катодный контроль.

Если рассматривать процесс как катодно-анодную реакцию, мы увидим, что в качестве анода выступает металл, в то время как катодом становится оксидная пленка на его поверхности.

Протекание морской коррозии

Морская коррозия становится заметной быстро. Она вызывает масштабное разрушение материала, на нем появляются язвы большой глубины, структура металла разрушается и становится хрупкой. Материал уже переносит прежнего нагрузок.

Также не стоит сбрасывать со счетов атмосферную коррозию в морских районах. Она связана с особым составом воздуха, воздействием других особых условий среды.

Что усиливает морскую коррозию

На разных морях ржавение металла протекает с разной скоростью. На скорость и особенности явления влияет 6 факторов среды:

  • Степень солености воды. Чем больше твердых веществ растворено в жидкости, тем больше будет степень солености. Этот фактор не сильно влияет на скорость или характер процесса, но чем больше содержание, тем выше будет опасность на контрасте с другими факторами.
  • Состав воды. Состав жидкости формирует благоприятную среду, в которой коррозия могла бы развиваться намного быстрее. Состав отличается в зависимости от географического расположения места. Одними из самых опасных веществ становятся хлориды и сероводород. Если их много, катодный и анодный процесс становятся более интенсивными. Также такой состав приводит к появления сульфидов, которые будет сложно растворить. Еще один фактор риска – большое количество ионов брома. Интересная особенность заключается и в том, что в ряде случае состав выступает и в качестве защитного фактора – он помогает сформировать специальную пленку, отталкивающую внешние угрозы.
  • Скорость течения. Чем быстрее течение, тем лучше будет диффузия кислорода. Потому, когда судно движется с большой скоростью, риск морской коррозии становится все более и более ощутимым. Но опасность представляет и неподвижная вода. Даже когда на море штиль, есть риск что ржавение начнет протекать с диффузионным контролем.
  • Место расположения ватерлинии. Место, с которым соприкасается морская вода, намного больше других поражено коррозионными процессами. Причина в том, что на этом участке кислород наиболее сильно влияет на металл. Также сказывается и температура. Вода, которая омывает ватерлинию более теплая из-за контакта с солнечными лучами.
  • Наличие прокатной окалины на поверхности металла. Опасность ее присутствия заключается в том, что в этом случае сильно упрощается формирование гальванопары. Это опасно, потому что возникает анодное растворение металла.
  • Биологический состав морской воды. Как и в почве, в морской воде много микроорганизмов, флоры и фауны, которые стимулируют разложение металла. К ним относятся различные виды бактерий, а также кораллы и моллюски. При их большом скоплении увеличивается риск образования коррозийных поражений. Исключение составляют только некоторые виды морских существ, которые не позволяют кислороду контактировать с металлическими частями. Скорость протекания коррозийного поражения также зависит от сплава, который был использован при изготовлении той или иной конструкции. Так опасность для биокоррозии представляют сплавы, в которых есть много свинца, никеля, олова и алюминия. Наиболее защищенными оказываются магниевые сплавы и медь.

Виды морской коррозии

В морской воде протекает 2 вида коррозии.

Наиболее распространенными среди них считаются следующие:

  • Контактная. Проявляется из-за контакта жидкости и металла. Причиной становится хорошая электропроводность. Если рядом в воде находится несколько металлических изделий, металл становится по отношению к стали катодом.
  • Электрокоррозия. Появляется, потому что в воде находятся блуждающие токи. Иногда проблемы оказываются связанными и с самими морскими судами, состоянием проложенной на них электросети.

Коррозия металла в морской воде способна за короткое время вывести из строя даже крупную металлоконструкцию. Как результат – она теряет прочность и обрушиться.

Это всегда риск появления человеческих жертв и больших убытков.

К 2020 году разработано множество средств, позволяющих или обеспечить защиту от агрессивной среды или замедлить протекание процесса. Их качество доказано на практике – удается получить заметный результат.

Рассмотрим вопросы защиты от морской коррозии более подробно.

Как защитить металл от повреждения

В работе используется несколько видов защитных средств, к которым относятся такие, как:

Использование специальных лакокрасочных покрытий

Как и в случае с борьбой с ржавением под открытым воздухом, очень важно не допустить контакта агрессивной среды с металлом. ЛКМ в таком случае подходят отлично.

ЛКМ от коррозии металла

Есть несколько типов материалов, которые можно свободно использовать в окрашивании.

К ним относятся такие, как:

  • Краски на основе битумов.
  • Составы с фенолформальдегидной основой.
  • Этинолевые лакокрасочные материалы.

Хорошо показывают себя вещества с эпоксидной, каменноугольной основой. Главное требование, чтобы в них было как можно меньше растворителей.

Главное преимущество использования такого средства заключается в простоте нанесения.

Краска наносится на поверхность, защищенные места сразу становятся хорошо видимыми.

Для дополнительного усиления, ограждающего от агрессивной среды эффекта, можно также применять разные окиси, в том числе, ртути и меди. В таком случае конструкция не будет обрастать морскими обитателями.

Чтобы нанесение ЛКМ дало лучшие результаты, поверхность металлоконструкции нужно будет фосфатировать. Только после этого допускается проведение окрашивания.

Стоит также учитывать, что оно должно быть как можно более толстым, чтобы удержаться дольше и сохранить заметный эффект.

Применение металлических защитных покрытий

В этом направлении работает наша компания. Среди самых распространенных видов составов можно назвать цинк.

Он наносится на металл слоем толщиной до 200 мкм. При этом создается хорошая защита от контакта со средой.

Еще одно преимущество – такой материал можно окрашивать.

Оцинковывают самые разные изделия, в том числе, днища морских судов.

Зачистка поверхности

Процесс очень важен, потому что позволяет снять окалину. Как мы уже говорили выше, ее присутствие способно в несколько раз ускорить негативный процесс.

Для удаления окалины могут применяться высокие температуры, химическое травление и очистка пескоструйным методом.

Низкое легирование

Изменение самого характера стали – один из действенных методов для борьбы с коррозией. По данным исследований, стали с большим содержанием никеля портятся особенно быстро, в то время как добавление меди помогает сделать конструкцию намного более стойкой.

Создание дополнительной электрохимической защиты

Она может быть двух типов – от внешнего источника тока или от протектора. При этом удается остановить формирование пор и протекание электрохимического процесса, представляющего большую опасность для материалов.

Все перечисленные методы используются и в месте. В таком случае, вероятность повреждения металла станет намного ниже. Вопрос о подборе материалов, правильном конструировании также стоит очень остро.

Защита методом горячего цинкования

Наша компания предлагает горячую оцинковку различных видов конструкций, в том числе тех, которые постоянно находятся в контакте с морской водой.

Работаем с 2007 года и готовы быстро выполнить даже наиболее сложный и крупный заказ.

4 причины обратиться к нам:

  • Действуют три цеха горячего цинкования. Наши производственные мощности – 120 тысяч тонн в год.
  • Работаем с большинством видов деталей и конструкций. На предприятии установлена одна из самых крупных ванн в ЦФО. Ее глубина составляет 3,43 метра.
  • Гарантируем качество. Горячее цинкование проводится строго по ГОСТ 9.307-89.
  • Используем передовое оборудование. Установлена европейская техника от KVK KOERNER и EKOMOR.

Готовы ответить на все интересующие заказчика вопросы и быстро приступить к работе. Звоните или оставляйте заявку на сайте.

Читайте также: