Какого цвета уран металл

Обновлено: 30.06.2024

УРАН, U (uranium), металлический химический элемент семейства актиноидов, которые включают Ac, Th, Pa, U и трансурановые элементы (Np, Pu, Am, Cm, Bk, Cf, Es, Fm, Md, No, Lr). Уран приобрел известность благодаря использованию его в ядерном оружии и атомной энергетике. Оксиды урана применяются также для окрашивания стекла и керамики.

Нахождение в природе.

Содержание урана в земной коре составляет 0,003%, он встречается в поверхностном слое земли в виде четырех видов отложений. Во-первых, это жилы уранинита, или урановой смолки (диоксид урана UO2), очень богатые ураном, но редко встречающиеся. Им сопутствуют отложения радия, так как радий является прямым продуктом изотопного распада урана. Такие жилы встречаются в Заире, Канаде (Большое Медвежье озеро), Чехии и Франции. Вторым источником урана являются конгломераты ториевой и урановой руды совместно с рудами других важных минералов. Конгломераты обычно содержат достаточные для извлечения количества золота и серебра, а сопутствующими элементами становятся уран и торий. Большие месторождения этих руд находятся в Канаде, ЮАР, России и Австралии. Третьим источником урана являются осадочные породы и песчаники, богатые минералом карнотитом (уранил-ванадат калия), который содержит, кроме урана, значительное количество ванадия и других элементов. Такие руды встречаются в западных штатах США. Железоурановые сланцы и фосфатные руды составляют четвертый источник отложений. Богатые отложения обнаружены в глинистых сланцах Швеции. Некоторые фосфатные руды Марокко и США содержат значительные количества урана, а фосфатные залежи в Анголе и Центральноафриканской Республике еще более богаты ураном. Большинство лигнитов и некоторые угли обычно содержат примеси урана. Богатые ураном отложения лигнитов обнаружены в Северной и Южной Дакоте (США) и битумных углях Испании и Чехии.

Открытие.

Уран был открыт в 1789 немецким химиком М.Клапротом, который присвоил имя элементу в честь открытия за 8 лет перед этим планеты Уран. (Клапрот был ведущим химиком своего времени; он открыл также другие элементы, в том числе Ce, Ti и Zr.) В действительности вещество, полученное Клапротом, было не элементным ураном, но окисленной формой его, а элементный уран был впервые получен французским химиком Э.Пелиго в 1841. С момента открытия и до 20 в. уран не имел того значения, какое он имеет сейчас, хотя многие его физические свойства, а также атомная масса и плотность были определены. В 1896 А.Беккерель установил, что соли урана обладают излучением, которое засвечивает фотопластинку в темноте. Это открытие активизировало химиков к исследованиям в области радиоактивности и в 1898 французские физики супруги П.Кюри и М.Склодовская-Кюри выделили соли радиоактивных элементов полония и радия, а Э.Резерфорд, Ф.Содди, К.Фаянс и другие ученые разработали теорию радиоактивного распада, что заложило основы современной ядерной химии и атомной энергетики.

Первые применения урана.

Хотя радиоактивность солей урана была известна, его руды в первой трети нынешнего столетия использовались лишь для получения сопутствующего радия, а уран считался нежелательным побочным продуктом. Его использование было сосредоточено в основном в технологии керамики и в металлургии; оксиды урана широко применяли для окраски стекла в цвета от бледножелтого до темнозеленого, что способствовало развитию недорогих стекольных производств. Сегодня изделия этих производств идентифицируют как флуоресцирующие под ультрафиолетовыми лучами. Во время Первой мировой войны и вскоре после нее уран в виде карбида применяли в производстве инструментальных сталей, аналогично Mo и W; 4–8% урана заменяли вольфрам, производство которого в то время было ограничено. Для получения инструментальных сталей в 1914–1926 ежегодно производили по нескольку тонн ферроурана, содержащего до 30% (масс.) U. Однако такое применение урана продолжалось недолго.

Современное применение урана.

Промышленность урана начала складываться в 1939, когда было осуществлено деление изотопа урана 235 U, что привело к технической реализации контролируемых цепных реакций деления урана в декабре 1942. Это было рождение эры атома, когда уран из незначительного элемента превратился в один из наиболее важных элементов в жизни общества. Военное значение урана для производства атомной бомбы и использование в качестве топлива в ядерных реакторах вызвали спрос на уран, который возрос в астрономических размерах. Интересна хронология роста потребности в уране по истории отложений в Большом Медвежьем озере (Канада). В 1930 в этом озере была обнаружена смоляная обманка – смесь оксидов урана, а в 1932 на этом участке была налажена технология очистки радия. Из каждой тонны руды (смоляной обманки) получали 1 г радия и около половины тонны побочного продукта – уранового концентрата. Однако радия было мало и его добыча была прекращена. С 1940 по 1942 разработку возобновили и начали отправку урановой руды в США. В 1949 аналогичная очистка урана с некоторыми усовершенствованиями была применена для производства чистого UO2. Это производство росло, и в настоящее время оно является одним из наиболее крупных производств урана.

СВОЙСТВА УРАНА
СВОЙСТВА УРАНА
Атомный номер 92
Атомная масса 238,03
Изотопы
стабильные нет
нестабильные 226–242
в т. ч. природные 234, 235, 236 (следы), 238
Температура плавления, °С 1132
Температура кипения, °С 3818
Плотность, г/см 3 18,7
Твердость (по Моосу) 4,0
Содержание в земной коре, % (масс.) 0,003
Степени окисления +3, +4, +5, +6

Свойства.

Уран – один из наиболее тяжелых элементов, встречающихся в природе. Чистый металл очень плотный, пластичный, электроположительный с малой электропроводностью и высокореакционноспособный.

Уран имеет три аллотропные модификации: a -уран (орторомбическая кристаллическая решетка), существует в интервале от комнатной температуры до 668 ° С; b -уран (сложная кристаллическая решетка тетрагонального типа), устойчивый в интервале 668–774 ° С; g -уран (объемноцентрированная кубическая кристаллическая решетка), устойчивый от 774 ° С вплоть до температуры плавления (1132 ° С). Поскольку все изотопы урана нестабильны, все его соединения проявляют радиоактивность.

Изотопы урана

238 U, 235 U, 234 U встречаются в природе в соотношении 99,3:0,7:0,0058, а 236 U – в следовых количествах. Все другие изотопы урана от 226 U до 242 U получают искусственно. Изотоп 235 U имеет особо важное значение. Под действием медленных (тепловых) нейтронов он делится с освобождением огромной энергии. Полное деление 235 U приводит к выделению «теплового энергетического эквивалента» 2 Ч 10 7 кВт Ч ч/кг. Деление 235 U можно использовать не только для получения больших количеств энергии, но также для синтеза других важных актиноидных элементов. Уран природного изотопного состава можно использовать в ядерных реакторах для производства нейтронов, образующихся при делении 235 U, в то же время избыточные нейтроны, не востребуемые цепной реакцией, могут захватываться другим природным изотопом, что приводит к получению плутония:

При бомбардировке 238 U быстрыми нейтронами протекают следующие реакции:

Согласно этой схеме, наиболее распространенный изотоп 238 U может превращаться в плутоний-239, который, подобно 235 U, также способен делиться под действием медленных нейтронов.

В настоящее время получено большое число искусственных изотопов урана. Среди них 233 U особенно примечателен тем, что он также делится при взаимодействии с медленными нейтронами.

Некоторые другие искусственные изотопы урана часто применяются в качестве радиоактивных меток (индикаторов) в химических и физических исследованиях; это прежде всего b -излучатель 237 U и a -излучатель 232 U.

Соединения.

Уран – высокореакционноспособный металл – имеет степени окисления от +3 до +6, близок бериллию в ряду активности, взаимодействует со всеми неметаллами и образует интерметаллические соединения с Al, Be, Bi, Co, Cu, Fe, Hg, Mg, Ni, Pb, Sn и Zn. Тонкораздробленный уран особенно реакционноспособен и при температурах выше 500 ° С часто вступает в реакции, характерные для гидрида урана. Кусковой уран или стружка ярко сгорает при 700–1000 ° С, а пары урана горят уже при 150–250 ° С, с HF уран реагирует при 200–400 ° С, образуя UF4 и H2. Уран медленно растворяется в концентрированной HF или H2SO4 и 85%-ной H3PO4 даже при 90 ° С, но легко реагирует с конц. HCl и менее активно с HBr или HI. Наиболее активно и быстро протекают реакции урана с разбавленной и концентрированной HNO3 с образованием нитрата уранила (см. ниже). В присутствии HCl уран быстро растворяется в органических кислотах, образуя органические соли U 4+ . В зависимости от степени окисления уран образует несколько типов солей (наиболее важные среди них с U 4+ , одна из них UCl4 – легко окисляемая соль зеленого цвета); соли уранила (радикала UO2 2+ ) типа UO2(NO3)2 имеют желтую окраску и флуоресцируют зеленым цветом. Соли уранила образуются при растворении амфотерного оксида UO3 (желтая окраска) в кислой среде. В щелочной среде UO3 образует уранаты типа Na2UO4 или Na2U2O7. Последнее соединение («желтый уранил») применяют для изготовления фарфоровых глазурей и в производстве флуоресцентных стекол. См. также КЕРАМИКА ПРОМЫШЛЕННАЯ.

Галогениды урана широко изучались в 1940–1950, так как на их основе были разработаны методы разделения изотопов урана для атомной бомбы или ядерного реактора. Трифторид урана UF3 был получен восстановлением UF4 водородом, а тетрафторид урана UF4 получают разными способами по реакциям HF с оксидами типа UO3 или U3O8 или электролитическим восстановлением соединений уранила. Гексафторид урана UF6 получают фторированием U или UF4 элементным фтором либо действием кислорода на UF4. Гексафторид образует прозрачные кристаллы с высоким коэффициентом преломления при 64 ° С (1137 мм рт. ст.); соединение летуче (в условиях нормального давления возгоняется при 56,54 ° С). Оксогалогениды урана, например, оксофториды, имеют состав UO2F2 (фторид уранила), UOF2 (оксид-дифторид урана). См. также ЭЛЕМЕНТЫ ХИМИЧЕСКИЕ; РАДИОАКТИВНОСТЬ; УРАНИНИТ; УРАНОВАЯ ПРОМЫШЛЕННОСТЬ.

Как добывается радиоактивный уран и для чего он используется?

Уран является редким и дорогим радиоактивным металлом, который окрашен в серебристый цвет. Раньше он использовался в качестве красящего вещества для изготовления керамики и цветного стекла. Однако, сегодня уран высоко ценится за способность его ядер к делению и выделению тепла — этот материал является основой атомной энергетики и атомного оружия. Существует мнение, что в будущем уран можно будет использовать для создания ракетных двигателей. Получается, что этот радиоактивный химический элемент играет в науке и даже в жизни обычных людей очень большую роль — от него зависит не только добыча электроэнергии и уровень вооружения, но и способность людей в будущем посещать далекие планеты вроде Марса и так далее. Поэтому, давайте выясним, как добывается уран, сколько он стоит и другую интересную информацию.


Образец урана — нужного в промышленности, но опасного для здоровья химического элемента

Как добывается уран?

Уран является редким радиоактивным металлом, по распространенности он находится на 38 месте. Его довольно много в земной коре, однако он очень рассеян и не образует мощных месторождений. В чистом виде он практически не встречается, поэтому его выделяют из минералов. Наиболее распространенным минералом урана считается урановая смолка, которая также известна как настуран. Помимо самого урана, в состав этого минерала входят радий, актиний, полоний и другие элементы — продукты радиоактивного распада его изотопов. Примерно 99,4% земного урана представляет собой уран-238, оставшиеся 0,6% приходятся на уран-235.


Настуран — минерал, содержащий в себе уран

Так как уран является радиоактивным металлом, его месторождения можно найти при помощи оборудования для измерения уровня радиации. Но добыча этого металла — очень опасная затея, потому что радиация вредит человеческому здоровью. Так как уран играет очень большую роль в современной промышленности, без его добычи никуда.

Существует три основных вида добычи урана:

  • открытый, применяемый в случаях, когда урановая руда находится на поверхностных слоях земной коры. Рабочие копают бульдозерами большую яму, загружают руду в грузовики и отправляют в перерабатывающий комплекс;
  • подземный, применяемый при глубоком расположении радиоактивного материала. Рабочие бурят вертикальную шахту глубиной до двух километров и поднимают руду при помощи специальных грузовых лифтов. Порода измельчается и очищается от примесей, в результате чего остается только осадок солей урана — он называется желтый кек (yellow cake) и после процесса прокаливания превращается в закись-окись урана, которым торгуют на бирже;
  • скважинное подземное выщелачивание, которое в корне отличается от первых двух способов. В этом случае рабочие бурят 6 скважин по углам шестиугольника, через которые в руду закачивают серную кислоту. После этого, в центре фигуры бурят еще одну дыру, которая используется для извлечения насыщенного солями урана раствора. Он пропускается через специальные колонны, чтобы соли урана остались только на специальной смоле. Далее из смолы изготавливается желтый кек, а из него — закись-окись урана.


Процесс добычи урана из карьера

Опасность урана для здоровья человека

Уран опасен не только потому, что обладает ионизирующим излучением — он является тяжелым металлом, имеющим свойство накапливаться в организме. Ионизирующее излучение провоцирует развитие раковых заболеваний, что многим из нас уже хорошо известно. А накапливание в организме тяжелых металлов ведет к их разрушению: в опасности находятся головной мозг, сердце, легкие, почки и другие важные органы человеческого организма. А если уран попадает в организм беременной женщины или ребенка, могут возникнуть серьезные проблемы в развитии. Опасные частицы урана могут проникнуть в тело самыми разными способами: при заглатывании, вдыхании и даже через трещины на коже.


Уран может нанести серьезный вред здоровью

Что такое обогащение урана?

В природном уране содержится три изотопа: уран-238, уран-235 и уран-234. Выше я уже отметил, что большая часть земного урана представляет собой изотоп 238, который достаточно стабилен и не способен к самостоятельному поддержанию цепной ядерной реакции. Чтобы создать ядерное топливо, среди всех изотопов нужно выделить именно изотоп уран-235 — этот процесс и называется обогащением урана.


Уран-235 является самым ценным изотопом


Газовые центрифуги для обогащения урана

Где добывается больше всего урана?

Уран можно найти практически в любой точке земного шара, но лидерами по его добыче являются Австралия, Канада и Казахстан. В некоторые годы в список самых крупных производителей урана попадают Китай и некоторые африканские страны. Безусловным лидером по запасам урана в мире уже много лет является Австралия. Если верить данным Всемирной ядерной ассоциации, в этой стране хранится около 31% всех мировых запасов урана. В этом нет ничего удивительного, потому что на территории Австралии имеется целых 19 месторождений урана. Среди них есть шахта Олимпик Дам, где ежегодно добывается до 3 000 тонн сырья для ядерного топлива.


Австралийская шахта Олимпик Дам

Как можно понять, Россия редко оказывается лидером в добыче урана. Но не все так плохо — страна занимает первое место по производству обогащенного урана, что является еще более сложной задачей, чем добыча. В большом успехе России в обогащении урана тоже нет ничего удивительного, потому что страна сама производит газовые центрифуги и владеет 40% мировых мощностей для обогащения химического элемента.


В России больше всего урана добывается в Краснокаменске

Сколько стоит уран?

Сырьем для изготовления ядерного топлива является закись-окись урана. Урановый рынок находился в не лучшем состоянии после ужасной аварии на японской атомной электростанции «Фукусима-1» в 2011 году. Но в 2020 году ситуация стала улучшаться и стоимость урана значительно возросла. По данным за начало марта 2022 года, цена за фунт (0,4 килограмма) закиси-окиси урана составляет около 48 долларов.


В продажу уран поступает в виде «таблеток»

Сообщается, что в основном уран необходим для питания 437 атомных энергоблоков, находящихся в разных уголках нашей планеты. Если верить открытым источникам, каждый год они потребляют до 62,5 тысяч тонн урана.

Если вам интересно, как работают атомные электростанции, рекомендую почитать этот материал. Также можете почитать о том, что будет, если на АЭС полностью отключат электричество — вот ссылка.

Уран – полезные свойства, особенности и угроза металла

Первое, что приходит на ум при упоминании этого химического элемента, – ядерная бомба и атомные станции. Уран используют ученые, энергетики, стеклодувы.

Уран

Что представляет собой

Уран – это химический элемент, занимающий ячейку 92 в периодической системе Д.Менделеева.

Относится к металлам семейства актиноидов (сюда же причислен плутоний). Радиоактивен, блестит подобно глянцевой стали.

По составу это смесь из трех изотопов: 234, 235, 238. Доля последнего – 99,3%. Он же (вместе с U 234) создает радиоактивность.

Схема деления 235U

Схема деления 235U

Радиоактивные свойства некоторых изотопов урана (жирным выделены природные изотопы):

Массовое число Период полураспада Основной тип распада
233 1,59⋅105 лет α
234 2,45⋅105 лет α
235 7,13⋅108 лет α
236 2,39⋅107 лет α
237 6,75 сут. β−
238 4,47⋅109 лет α
239 23,54 минуты β−
240 14 часов β−

Создано 11 искусственных изотопов.

Международное обозначение – U (Uranium).

История открытия

Человек начал использовать вещество еще до новой эры. Первой продукцией стала глазурь для керамики: разновалентные соединения урана создавали желтый, бурый, зеленый, черный цвет.

18 век

Систематическое изучение характеристик элемента началось в 18 веке:

  • Немецкий естествоиспытатель Генрих Клапрот исследовал золотисто-желтый концентрат, извлеченный из местной смоляной руды. Полученное вещество окрестил ураном – в честь обнаруженной незадолго до этого новой планеты Солнечной системы.
  • Через полвека француз Эжен Пелиго установил, что это не моновещество, а окисел. Он получил чистый металл и «взвесил» его.
  • В1874 году Дмитрий Менделеев отвел новому элементу последнюю ячейку таблицы, «вычислив» атомный вес – 240 (вдвое больше принятого тогда).

Предвидение Менделеева подтвердил экспериментально немец Циммерман.

19-20 века

История изучения вещества на новом уровне продолжилась на границе 19-20 веков:

  • Французский химик Анри Беккерель открыл лучи (позже названные его именем).
  • Мария Кюри назвала этот феномен радиоактивностью.
  • Анри Муассан (творец ювелирных муассанитов) создал пошаговую инструкцию по получению урана в форме металла.
  • Великий Эрнест Резерфорд выявил виды излучения урановых фрагментов – альфа- и бета-лучи. Поль Вийар пополнил список гамма-лучами.
  • Французско-немецкая команда – Фредерик Лиза Мейтнер, Жолио-Кюри, Отто Фриш – открыла феномен и формулу ядерной реакции.

Резерфорд первым начал экспериментировать с урановым материалом, пытаясь установить возраст горных пород.

Прорыв сотворили советские физики-теоретики Юлий Харитон и Яков Зельдович. Они доказали: незначительное обогащение урана изотопом 235 делает возможным процесс ядерного синтеза.

Нахождение в природе

Уран не относится к редким элементам.

Тонна земной коры содержит 3 грамма урана.

Локации нахождения вещества в природе:

Собственные образования вещества: урановые руды (настуран, или урановая смолка; уранинит, карнотит).

Минерал Основной состав минерала Содержание урана, %
Уранинит UO2, UO3 + ThO2, CeO2 65-74
Карнотит K2(UO2)2(VO4)2·2H2O ~50
Казолит PbO2·UO3·SiO2·H2O ~40
Самарскит (Y, Er, Ce, U, Ca, Fe, Pb, Th)·(Nb, Ta, Ti, Sn)2O6 3,15-14
Браннерит (U, Ca, Fe, Y, Th)3Ti5O15 40
Тюямунит CaO·2UO3·V2O5·nH2O 50-60
Цейнерит Cu(UO2)2(AsO4)2·nH2O 50-53
Отенит Ca(UO2)2(PO4)2·nH2O ~50
Шрекингерит Ca3NaUO2(CO3)3SO4(OH)·9H2O 25
Уранофан CaO·UO2·2SiO2·6H2O ~57
Фергюсонит (Y, Ce)(Fe, U)(Nb, Ta)O4 0,2-8
Торбернит Cu(UO2)2(PO4)2·nH2O ~50
Коффинит U(SiO4)(OH)4 ~50

В месторождениях урану сопутствуют кварц, молибденит, галенит, кальцит, другие минералы.

Месторождения

В литосфере вещество представлено массивами четырех видов.

Они рассредоточены по планете:

  1. Уранинитовые жилы. Богатый, но редкий вид. Ценность вещества повышается наличием радия. Канада, Заир, Чехия,Франция.
  2. Фосфатные руды, железоурановые сланцы. Швеция, Марокко, США, ЦАР, Ангола.
  3. Осадочные породы, богатые карнотитом (с ванадием в составе). США.
  4. Залежи ториево-урановой руды плюс золото,серебро, другие ценные компоненты минералов. Россия, Канада, Австралия, ЮАР.

В России главный поставщик сырья – Читинская область (93%).

Остальное дают рудники Курганской области и Бурятии.

Физико-химические характеристики

Чистый уран чуть мягче стали, пластичный, ковкий. Слабый парамагнетик. Структура кристаллической решетки вещества меняется при разных температурах.

Даже в обычных условиях металл химически активен:

  • Быстро окисляясь, покрывается переливчатой оксидной пленкой.
  • Измельченный до порошка спонтанно воспламеняется при 151°C.
  • Разъедается водой: чем выше температура и мельче фракции, тем быстрее.
  • Растворяется кислотами, устойчив к щелочам.
  • Соли вещества распадаются на ярком свету либо под воздействием органики.

Энергичное встряхивание сосуда с урановой стружкой заставляет ее светиться. По этому признаку элемент легко отличить от других.

Химические свойства вещества также определяются валентностью.

Свойства атома
Название, символ, номер Уран / Uranium (U), 92
Атомная масса
(молярная масса)
238,02891(3) а. е. м. (г/моль)
Электронная конфигурация [Rn] 5f3 6d1 7s2
Радиус атома 138 пм
Химические свойства
Ковалентный радиус 142 пм
Радиус иона (+6e) 80 (+4e) 97 пм
Электроотрицательность 1,38 (шкала Полинга)
Электродный потенциал U←U4+ -1,38В
U←U3+ -1,66В
U←U2+ -0,1В
Степени окисления 6, 5, 4, 3
Энергия ионизации
(первый электрон)
686,4(7,11) кДж/моль (эВ)
Термодинамические свойства простого вещества
Плотность (при н. у.) 19,05 г/см³
Температура плавления 1405,5 K
Температура кипения 4018 K
Уд. теплота плавления 12,6 кДж/моль
Уд. теплота испарения 417 кДж/моль
Молярная теплоёмкость 27,67 Дж/(K·моль)
Молярный объём 12,5 см³/моль
Кристаллическая решётка простого вещества
Структура решётки орторомбическая
Параметры решётки a = 2,854 Å;
b = 5,870 Å;
c = 4,955 Å
Прочие характеристики
Теплопроводность (300 K) 27,5 Вт/(м·К)
Номер CAS 7440-61-1

Четырехвалентные образцы урана нестабильны, долго находясь на воздухе, становятся шестивалентными.

Главная характеристика урана – радиоактивность. Ее величина считается достоинством либо недостатком в зависимости от целей использования вещества.

Уран может проявлять степени окисления от +3 до +6.

Степень окисления Оксид Гидроксид Характер Форма Примечание
+3 Не существует Не существует U3+, UH3 Сильный восстановитель
+4 UO2 Не существует Основный UO2, галогениды
+5 Не существует Не существует Галогениды В воде диспропорционирует
+6 UO3 UO2(OH)2 Амфотерный UO22+ (уранил), UO42- (уранат), U2O72- (диуранат) Устойчив на воздухе и в воде

Реакции металлического урана с другими неметаллами приведены ниже в таблице.

Неметалл Условия Продукт
F2 +20 o C, бурно UF6
Cl2 180 o C для измельчённого
500—600 o C для компактного
Смесь UCl4, UCl5, UCl6
Br2 650 o C, спокойно UBr4
I2 350 o C, спокойно UI3, UI4
S 250—300 o C спокойно
500 o C горит
US2, U2S3
Se 250—300 o C спокойно
500 o C горит
USe2, U2Se3
N2 450—700 o C
то же под давлением N
1300 o
U4N7
UN2
UN
P 600—1000 o C U3P4
C 800—1200 o C UC, UC2

Технология получения

Микродозы урана в литосфере обусловили способ получения металлического вещества:

  1. Обогащение. Сырье измельчают, заливают водой. Тяжелые первичные минералы урана осаждаются первыми.
  2. Выщелачивание. На концентрат воздействуют серной кислотой либо щелочью. Из комплексных руд вещество выщелачивают продувкой при 150°C.
  3. Из полученного раствора выделяют уран – экстракцией либо ионообменом. Это многоступенчатая процедура.
  4. Для образования твердой формы вещества из него удаляют примеси. То есть технически чистое соединение вещества растворяют кислотой, кристаллизуют, прокаливают.
  5. На выходе образуется трехокись. Ее восстанавливают до диоксида водородом.

На него воздействуют обезвоженным фтористым водородом. Добавляют магний либо кальций, восстанавливают металлический уран.

Производство обеспечивает четыре пятых потребности – остальное достают из списанных ядерных боеприпасов.

Как используется

Сфера применения тяжелого металла зависит от его вида.

Тяжёлый серебристо-белый глянцеватый металл - уран

Тяжёлый серебристо-белый глянцеватый металл – уран

Обычный уран

Имеет специфичное и ограниченное применение:

  • Главный потребитель вещества – атомная промышленность. Уран 235 – топливо в ядерных реакторах, начинка ядерных, термоядерных боеприпасов (как и плутоний).

Уран-233 исследуется как топливо будущего для ядерных ракетных двигателей.

  • Мирная отрасль использования – геохимия. Вещество используют как маркер определения возраста минералов, горных пород и выяснения картины геологических процессов.
  • Его применяют в нефтяной геологии при исследовании скважин.

Стекловары добавляют микродозы вещества, чтобы получить продукт с эффектом флуоресценции желто-зеленой гаммы.

Буроватый фон фотографий начала XX века – заслуга соединения урана уранилнитрата.

Обедненный уран

Гораздо популярнее обедненный уран.

«Обедненный уран» – это уран-238, из которого изъяли изотопы 234 и 235. Его радиоактивность вдвое меньше природного материала.

Ему нашлось применение в военном и гражданском сегменте:

  • Сердечник бронебойных снарядов.
  • Урановые сплавы – материал танковой брони, например, натовского танка «Абрамс».
  • Балласт в ракетах, самолетах, яхтах.
  • Компонент гироскопов, маховиков.

Вещество используют при бурении нефтяных скважин и для защиты от радиации.

Влияние на организм

Нанодозы вещества (максимум – стотысячные доли процента) зафиксированы во всех биологических организмах. У человека самые уязвимые места – почки, селезенка, кости, печень, бронхи, легкие.

Однако радиоактивный металл, его соединения (особенно в виде аэрозолей) токсичны:

  • Организм поражается целиком до уровня клеток.
  • Первыми страдают почки (в моче появляются белок и сахар).
  • Угнетается деятельность ферментов.

Хроническая интоксикация влечет за собой сбои в нервной системе, кроветворении. Это недуг работников, занятых на добыче и переработке сырья.

УРАН (химический элемент)

УРА́Н (лат. Uranium), U (читается «уран»), радиоактивный химический элемент с атомным номером 92, атомная масса 238,0289. Актиноид. Природный уран состоит из смеси трех изотопов: 238 U, 99,2739%, с периодом полураспада Т1/2 = 4,51·10 9 лет, 235 U, 0,7024%, с периодом полураспада Т1/2 = 7,13·10 8 лет, 234 U, 0,0057%, с периодом полураспада Т1/2 = 2,45·10 5 лет. 238 U (уран-I, UI) и 235 U (актиноуран, АсU) являются родоначальниками радиоактивных рядов. Из 11 искусственно полученных радионуклидов с массовыми числами 227—240 долгоживущий 233 U (Т1/2 = 1,62·10 5 лет), он получается при нейтронном облучении тория (см. ТОРИЙ) .
Конфигурация трех внешних электронных слоев 5s 2 p 6 d 10 f 3 6s 2 p 6 d 1 7 s 2 , уран относится к f-элементам. Расположен в IIIB группе в 7 периоде периодической системы элементов. В соединениях проявляет степени окисления +2, +3, +4, +5 и +6, валентности II, III, IV, V и VI.
Радиус нейтрального атома урана 0,156 нм, радиус ионов: U 3 + — 0,1024 нм, U 4 + — 0,089 нм, U 5 + — 0,088 нм и U 6+ — 0,083 нм. Энергии последовательной ионизации атома 6,19, 11,6, 19,8, 36,7 эВ. Электроотрицательность по Полингу (см. ПОЛИНГ Лайнус) 1,22.
История открытия
Уран был открыт в 1789 немецким химиком М. Г. Клапротом (см. КЛАПРОТ Мартин Генрих) при исследовании минерала «смоляной обманки». Назван им в честь планеты Уран, открытой У. Гершелем (см. ГЕРШЕЛЬ) в 1781. В металлическом состоянии уран получен в 1841 французским химиком Э. Пелиго (см. ПЕЛИГО Эжен Мелькьор) при восстановлении UCl4металлическим калием. Радиоактивные свойства урана обнаружил в 1896 француз А. Беккерель (см. БЕККЕРЕЛЬ Антуан Анри) .
Первоначально урану приписывали атомную массу 116, но в 1871 Д. И. Менделеев (см. МЕНДЕЛЕЕВ Дмитрий Иванович) пришел к выводу, что ее надо удвоить. После открытия элементов с атомными номерами от 90 до 103 американский химик Г. Сиборг (см. СИБОРГ Гленн Теодор) пришел к выводу, что эти элементы (актиноиды) (см. АКТИНОИДЫ) правильнее располагать в периодической системе в одной клетке с элементом №89 актинием. Такое расположение связано с тем, что у актиноидов происходит достройка 5f-электоронного подуровня.
Нахождение в природе
Уран — характерный элемент для гранитного слоя и осадочной оболочки земной коры. Содержание в земной коре 2,5·10 -4 % по массе. В морской воде концентрация урана менее 10 -9 г/л, всего в морской воде содержится от 10 9 до 10 10 тонн урана. В свободном виде уран в земной коре не встречается. Известно около 100 минералов урана, важнейшие из них настуран U3O8, уранинит (см. УРАНИНИТ) (U,Th)O2, урановая смоляная руда (содержит оксиды урана переменного состава) и тюямунит Ca[(UO2)2(VO4)2]·8H2O.
Получение
Уран получают из урановых руд, содержащих 0,05—0,5% U. Извлечение урана начинается с получения концентрата. Руды выщелачивают растворами серной, азотной кислот или щелочью. В полученном растворе всегда содержатся примеси других металлов. При отделении от них урана, используют различия в их окислительно-восстановительных свойствах. Окислительно-восстановительные процессы сочетают с процессами ионного обмена и экстракции.
Из полученного раствора уран извлекают в виде оксида или тетрафторида UF4, методом металлотермии:
UF4+ 2Mg = 2MgF2+ U
Образовавшийся уран содержит в незначительных количествах примеси бор (см. БОР (химический элемент)) , кадмий (см. КАДМИЙ) и некоторых других элементов, так называемых реакторных ядов. Поглощая образующиеся при работе ядерного реактора нейтроны, они делают уран непригодным для использования в качестве ядерного горючего.
Чтобы избавиться от примесей, металлический уран растворяют в азотной кислоте, получая уранилнитрат UO2(NO3)2. Уранилнитрат экстрагируют из водного раствора трибутилфосфатом. Продукт очистки из экстракта снова переводят в оксид урана или в тетрафторид, из которых вновь получают металл.
Часть урана получают регенерацией отработавшего в реакторе ядерного горючего. Все операции по регенерации урана проводят дистанционно.
Физические и химические свойства
Уран — серебристо-белый блестящий металл. Металлический уран существует в трех аллотропических (см. АЛЛОТРОПИЯ) модификациях. До 669°C устойчива a-модификация с орторомбической решеткой, параметры а = 0,2854нм, в = 0,5869 нм и с = 0,4956 нм, плотность 19,12 кг/дм 3 . От 669°C до 776°C устойчива b-модификация с тетрагональной решеткой (параметры а = 1,0758 нм, с = 0,5656 нм). До температуры плавления 1135°C устойчива g-модификация с кубической объемно-центрированной решеткой (а = 0,3525 нм). Температура кипения 4200°C.
Химическая активность металлического урана высока. На воздухе он покрывается пленкой оксида. Порошкообразный уран пирофорен, при сгорании урана и термическом разложении многих его соединений на воздухе образуется оксид урана U3O8. Если этот оксид нагревать в атмосфере водорода (см. ВОДОРОД) при температуре выше 500°C, образуется диоксид урана UO2:
U3O8 + Н2 = 3UO2 + 2Н2О
Если уранилнитрат UO2(NO3)2 нагреть при 500°C, то, разлагаясь, он образует триоксид урана UO3. Кроме оксидов урана стехиометрического состава UO2, UO3 и U3О8, известен оксид урана состава U4O9 и несколько метастабильных оксидов и оксидов переменного состава.
При сплавлении оксидов урана с оксидами других металлов образуются уранаты: К2UO4 (уранат калия), СаUO4 (уранат кальция), Na2U2O7 (диуранат натрия).
Взаимодействуя с галогенами (см. ГАЛОГЕНЫ) , уран дает галогениды урана. Среди них гексафторид UF6 представляет собой желтое кристаллическое вещество, легко сублимирующееся даже при слабом нагревании (40—60°C) и столь же легко гидролизующееся водой. Важнейшее практическое значение имеет гексафторид урана UF6. Получают его взаимодействием металлического урана, оксидов урана или UF4 с фтором или фторирующими агентами BrF3, СCl3F (фреон-11) или ССl2F2 (фреон-12):
U3O8+ 6CCl2F2 = UF4 + 3COCl2 + CCl4 + Cl2
UF4+ F2= UF6
или
U3O8+ 9F2 = 3UF6+ 4O2
Известны фториды и хлориды, отвечающие степеням окисления урана +3, +4, +5 и +6. Получены бромиды урана UBr3, UBr4 и UBr5, а также иодиды урана UI3 и UI4. Синтезированы такие оксигалогениды урана, как UO2Cl2 UOCl2 и другие.
При взаимодействии урана с водородом образуется гидрид урана UH3, обладающий высокой химической активностью. При нагревании гидрид разлагается, образуя водород и порошкообразный уран. При спекании урана с бором возникают, в зависимости от молярного отношения реагентов и условий проведения процесса, бориды UB2, UB4 и UB12.
С углеродом (см. УГЛЕРОД) уран образует три карбида UC, U2C3 и UC2.
Взаимодействием урана с кремнием (см. КРЕМНИЙ) получены силициды U3Si, U3Si2, USi, U3Si5, USi2 и U3Si2.
Получены нитриды урана (UN, UN2, U2N3) и фосфиды урана (UP, U3P4, UP2). С серой (см. СЕРА) уран образует ряд сульфидов: U3S5, US, US2, US3 и U2S3.
Металлический уран растворяется в HCl и HNO3, медленно реагирует с H2SO4 и H3PO4. Возникают соли, содержащие катион уранила UO2 2+ .
В водных растворах существуют соединения урана в степенях окисления от +3 до +6. Стандартный окислительный потенциал пары U(IV)/U(III) — 0,52 B, пары U(V)/U(IV) 0,38 B, пары U(VI)/U(V) 0,17 B, пары U(VI)/U(IV) 0,27. Ион U 3+ в растворе неустойчив, ион U 4+ стабилен в отсутствие воздуха. Катион UO2 + нестабилен и в растворе диспропорционирует на U 4+ и UO2 2+ . Ионы U 3+ имеют характерную красную окраску, ионы U 4+ — зеленую, ионы UO2 2+ — желтую.
В растворах наиболее устойчивы соединения урана в степени окисления +6. Все соединения урана в растворах склонны к гидролизу и комплексообразованию, наиболее сильно — катионы U 4+ и UO2 2+ .
Применение
Металлический уран и его соединения используются в основном в качестве ядерного горючего в ядерных реакторах. Малообогащенная смесь изотопов урана применяется в стационарных реакторах атомных электростанций. Продукт высокой степени обогащения — в ядерных реакторах, работающих на быстрых нейтронах. 235 U яыляется источником ядерной энергии в ядерном оружии. 238 U служит источником вторичного ядерного горючего — плутония.
Физиологическое действие
В микроколичествах (10 -5 -10 -8 %) обнаруживается в тканях растений, животных и человека. В наибольшей степени накапливается некоторыми грибами и водорослями. Соединения урана всасываются в желудочно-кишечном тракте (около 1%), в легких — 50%. Основные депо в организме: селезенка, почки, скелет, печень, легкие и бронхо-легочные лимфатические узлы. Содержание в органах и тканях человека и животных не превышает 10 -7 гг.
Уран и его соединения высокотоксичны. Особенно опасны аэрозоли урана и его соединений. Для аэрозолей растворимых в воде соединений урана ПДК в воздухе 0,015 мг/м 3 , для нерастворимых форм урана ПДК 0,075 мг/м 3 . При попадании в организм уран действует на все органы, являясь общеклеточным ядом. Молекулярный механизм действия урана связан с его способностью подавлять активность ферментов. В первую очередь поражаются почки (появляются белок и сахар в моче, олигурия). При хронической интоксикации возможны нарушения кроветворения и нервной системы.

Энциклопедический словарь . 2009 .

Полезное

Смотреть что такое "УРАН (химический элемент)" в других словарях:

Уран химический элемент — U (Uran, uranium; при О = 16 атомн. вес U = 240) элемент с наибольшим атомным весом; все элементы, по атомному весу, помещаются между водородом и ураном. Это тяжелейший член металлической подгруппы VI группы периодической системы (см. Хром,… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Уран (хим. элемент) — Уран (U) Атомный номер 92 Внешний вид простого вещества Свойства атома Атомная масса (молярная масса) 238.0289 а. е. м. (г/моль) … Википедия

Уран (хим. элемент) — Уран (лат. Uranium), U, радиоактивный химический элемент III группы периодической системы Менделеева, относится к семейству актиноидов, атомный номер 92, атомная масса 238,029; металл. Природный У. состоит из смеси трёх изотопов: 238U √ 99,2739%… … Большая советская энциклопедия

Уран (хим. элемент) — УРАН (Uranium), U, радиоактивный химический элемент III группы периодической системы, атомный номер 92, атомная масса 238,0289; относится к актиноидам; металл, tпл 1135°C. Уран главный элемент атомной энергетики (ядерное топливо), используется в… … Иллюстрированный энциклопедический словарь

Уран (элемент) — У этого термина существуют и другие значения, см. Уран. 92 Протактиний ← Уран → Нептуний … Википедия

Уран по странам — 10 стран, на которые приходится 94 % мировой добычи урана Эта статья включает списки стран по запасам и производству урана по странам мира. Согласно «Красной книге по урану», выпущенной ОЭСР … Википедия

Азот химический элемент (дополнение к статье) — элемент, в газообразном состоянии является главной составной частью воздуха (см.); присутствие его в воздухе указано довольно определенно в 1772 г. Рутерфордом; окончательно оно установлено опытами Пристлея, Шееле, Кавендиша и Лавуазье. Кавендиш… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

УРАН — (греч. uranos небо). 1) бог неба, отец Сатурна, старейший из богов, по греч. мифол. 2) редкий металл, имеющий в чистом состоянии вид серебристых листочков. 3) большая планета, открытая Гершелем в 1781 г. Словарь иностранных слов, вошедших в… … Словарь иностранных слов русского языка

Уран (значения) — Уран:* Уран (мифология) древнегреческий бог. Сын Геи * Уран (планета) планета Солнечной системы * Уран (музыкальный инструмент) древнетюркский и казахский музыкальный духовой инструмент * Уран (элемент) химический элемент * Операция… … Википедия

УРАН — (Uranium), U, радиоактивный химический элемент III группы периодической системы, атомный номер 92, атомная масса 238,0289; относится к актиноидам; металл, tпл 1135шC. Уран главный элемент атомной энергетики (ядерное топливо), используется в… … Современная энциклопедия

Читайте также: