Какой металл входит в состав костной ткани

Обновлено: 17.05.2024

Костная ткань – особый вид соединительной ткани. Клеточными элементами костной ткани являются остеобласты, остеоциты, остеокласты.

Остеобласты- достаточно большое количество гликогена, глюкозы. Синтез АТФ на 60% связан с реакциями гликолиза. В клетках протекают реакции ЦТК, и наибольшей активностью обладает цитратсинтаза. Синтезируемый цитрат используется в дальнейшем для связывания Са 2+ , необходимого в процессах минерализации. Поскольку функцией остеобластов является создание органического межклеточного матрикса, эти клетки содержат большое количество РНК, необходимой для синтеза белков. В остеобластах синтезируются и выделяются во внеклеточное пространство глицерофосфолипиды, которые связывают кальций и участвуют в процессах минерализации. Остеобласты синтезируют и выделяют в межклеточное вещество фибриллы коллагена, протеогликаны и гликозаминогликаны и обеспечивают непрерывный рост кристаллов гидроксиапатитов. По мере старения остеобласты превращаются в остеоциты.

Остеоциты- зрелая отросчатая клетка костной ткани, вырабатывающая компоненты межклеточного вещества. Остеоциты контактируют друг с другом через отростки.

Остеокласты– образуются из макрофагов, содержат много лизосом и митохондрий. Они осуществляют непрерывный управляемый процесс реконструкции и обновления костной ткани.

Химический состав костной ткани

Межклеточный органический матрикс компактной кости составляет около 20%, неорганические вещества 70%, вода 10%.

Межклеточное вещество состоит из основного вещества (состоящего из внеклеточной жидкости, гликопротеинов, протеогликанов), коллагеновых волокон (90-95%), минеральных веществ, представленных кристаллами, преимущественно гидроксиапатитом Са10(РО4)6(ОН)2. Кроме того, в кости обнаружены ионы Mg 2+ , Na + ,K + , SO4 2- ,НСО 3- , гидроксильные и другие.

Основными белками межклеточного матрикса являются коллагеновые белки I типа, которые составляют около 90% органического матрикса кости. Коллаген I типа содержит 33% глицина, 21% пролина и гидроксипролина, 1% гидроксилизина и малое количество углеводов. Находится в составе костей, дентина, пульпы зуба, цемента, периодонтальных волокон. Этот тип коллагеновых волокон участвует в процессах минерализации. Первичная структура коллагена представлена α-цепями, состоящими из 1000 аминокислотных остатков. Три альфа-цепи скручиваются между собой и образуют тропоколлаген. Формируя фибриллы, молекулы тропоколлагена располагаются ступенчато, смещаясь относительно друг друга на одну четверть длины, что придает фибриллам характерную исчерченность.(Рис. 1)


Рис. 1. Структуры коллагена.

Между альфа-цепями тропоколлагена возникают водородные связи, в образовании которых участвуют гидроксипролин, гидроксилизин и гликозилированный гидроксилизин. В реакциях гидроксилирования пролина и лизина участвует аскорбиновая кислота. В дальнейшем с помощью лизилоксидазы, фермента содержащего Сu 2+ , образуются альдегидные производные лизина и 5-гидроксилизина, которые способствуют образованию межмолекулярных ковалентных связей между фибриллами коллагена. Образование межмолекулярных связей влияет на прочность коллагеновых фибрилл.

Поэтому недостаток в организме аскорбиновой кислоты(цинга), ионов Сu 2+ , генетические дефекты, аутоиммунные состояния приводят к нарушению синтеза коллагена. Клинические проявления будут в виде изменений со стороны зубочелюстной системы : кровоточивость десен, подвижность и выпадение зубов, множественный кариес.

В костной ткани содержится около 10% неколлагеновых белков. Они представлены:10% протеогликанов, 15% костный сиалопротеин, 15% остеонектин, 10% α2HSгликопротеин, 3% альбумин сыворотки, 15% остеокальцин, 32% другие белки. Эти белки синтезируются остеобластами и способны связывать фосфаты или кальций.

Какой металл входит в состав костной ткани

Костные ткани. Остеогистогенез.

Костные ткани — полидифферонные ткани и состоят из клеток различной гистогенетической детерминации (остеобластов, остеоцитов и остеокластов) и очень плотного межклеточного вещества, содержащего большое количество минеральных солей. Костные ткани выполняют опорную функцию. Они входят в качестве главного структурного компонента в состав скелета. Благодаря высокому содержанию минеральных солей (до 65-70% сухой массы) костные ткани активно участвуют в регуляции минерального обмена. Между костными и кроветворными тканями складываются особые взаимодействия, обеспечивающие благоприятное микроокружение для пролиферации и дифференцировки клеток крови.

По степени упорядоченности расположения коллагеновых волокон, которые в костной ткани называются оссеиновыми, различают ретикулофиброзную (грубоволокнистую) и пластинчатую костные ткани. Кроме того, существует дентиноидная костная ткань (дентин зуба), а также цемент зуба.

Гистогенез костных тканей (остеогистогенез). Источником развития костных тканей скелета человека служит мезенхима склеротома. Костные ткани черепа развиваются из эктомезенхимы. Различают два способа развития костных тканей: остеогистогенез, протекающий непосредственно в мезенхиме, и остеогистогенез, источником которого является также мезенхима, но протекает он на месте хряща. Отличия между этими гистогенезами не принципиальны.

костные ткани

Остеогистогенез начинается с появления в мезенхиме скелетоген-ных участков с более плотным расположением клеток, среди которых имеются стволовые клетки, дифференцирующиеся в митотически делящиеся преостеобласты. Последние начинают вырабатывать межклеточное вещество. Затем преостеобласты дифференцируются в остеобласты, которые постепенно теряют способность делиться митозом.

Остеобласты — это клетки, вырабатывающие межклеточное костное вещество. Форма их зависит от функционального состояния и бывает кубическая, цилиндрическая или отростчатая. Диаметр 15-20 мкм. Ядро имеет округлую или овальную форму. В цитоплазме хорошо развита гранулярная эндоплазматическая сеть, что находится в связи с интенсивной продукцией этими клетками белков. Хорошо развит и комплекс Гольджи, где происходит синтез гликозаминогликанов. В цитоплазме остеобластов определяется высокое содержание щелочной фосфатазы. Все это свидетельствует о высокой синтетической активности остеобластов и продукции органического матрикса — остеоида.

Механизм внутриклеточного транспорта и выведения белковых макромолекул в остеобластах принципиально сходен с тем, что имеет место в фибробластах и хондробластах. В общих чертах сходно протекают и первые фазы фибриллогенеза. Относительное количество оссеиновых (коллагеновых) фибрилл в межклеточном веществе костных тканей такое же, как и в хрящевых тканях, и составляет около 30% сухой массы. Оссеиновые фибриллы характеризуются высоким содержанием органического фосфата, что способствует процессам минерализации костной ткани. Основное аморфное вещество костной ткани — оссеомукоид — содержит хондроитинсульфаты, играющие роль активных накопителей и переносчиков ионов кальция, а также белки неколлагеновой природы (остеокальцин, остеопонтин, костные морфогенетические протеины, остеонектин и др.). Они обладают свойствами регуляторов минерализации, факторов роста, остеоиндуктивных веществ, митогенных факторов, регуляторов темпа образования коллагеновых фибрилл. Это также способствует минерализации костной ткани.

Непосредственно процесс минерализации костной ткани начинается после накопления остеобластами большого количества щелочной фосфатазы. Под действием этого фермента глицерофосфаты крови расщепляются на углеводы и фосфорную кислоту. Фосфорная кислота соединяется с ионами кальция, образуя фосфорнокислый кальций, который вместе с углекислым кальцием формирует кристаллы гидроксиапатита. Размер кристаллов: от 20-40 нм до 150 нм в длину и от 1,5 до 75 нм в толщину. Игольчатые и пластинчатые кристаллы апатита обнаруживаются как внутри оссеиновых фибрилл, повторяя их периодическую исчерченность, так и между оссеиновыми фибриллами.

Пропитанное минеральными солями межклеточное вещество костной ткани имеет вид костных перекладин. Остеобласты располагаются обычно на их поверхности. Некоторые остеобласты по мере роста и увеличения массы костной ткани оказываются замурованными в толще костных перекладин. Здесь остеобласты превращаются в зрелые высокодифференцированные клетки костной ткани — остеоциты. Последние имеют отростчатую форму, темное компактное ядро и слабобазофильную цитоплазму. Остеоциты представляют собой гетероморфную популяцию клеток. Одни из остеоцитов имеют развитые мембранные структуры в цитоплазме, другие — находятся на различных стадиях деструкции. Остеоциты располагаются в костных полостях, или лакунах. Тонкие отростки остеоцитов проходят в костных канальцах, пронизывающих межклеточное вещество. При помощи этих канальцев происходит обмен веществ между остеоцитами и кровью.

Остеоциты не делятся, но участвуют в процессах метаболизма, обновления межклеточных структур и поддержании ионного баланса организма на определенном уровне. Для ионного гомеостаза организма немаловажен факт, что общая поверхность соприкосновения тканевой жидкости с пропитанным минеральными солями межклеточным веществом костей у человека достигает 5000 м2. Функция остеоцитов, уже не способных вырабатывать межклеточное костное вещество, сводится к участию в обменно-транспортных процессах, регуляции минерального состава костной ткани.

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

Развитие костной ткани на месте хряща. Остеокласты. Пластинчатая костная ткань.

Развитие костной ткани на месте хряща протекает несколько сложнее, чем остеогистогенез, совершающийся непосредственно в мезенхиме. В этом случае развитию костной ткани предшествует образование хрящевой модели трубчатой кости, выполняющей опорную функцию на докостной стадии формирования скелета. Исходными клетками являются камбиальные клетки надхрящницы — адвентициальные. При подрастании к надхрящнице кровеносных сосудов и улучшении условий трофики и оксигенации эти клетки дифференцируются не в хондробласты, а в остеобласты, вырабатывающие межклеточное вещество ретикулофиброзной костной ткани. Они образуют подобие костной манжетки, окружающей хрящевую модель будущей трубчатой кости. Так возникает перихондральная костная ткань и надкостница. Окруженные костной тканью хрящевые клетки, утратившие связь с источником питания, подвергаются дегенерации. В возникшие полости дегенерирующего хряща из надкостницы врастают кровеносные сосуды с расположенными вокруг них камбиальными клетками. Некоторые из них превращаются в остеобласты, обусловливающие энхондральное развитие ретикулофиброзной костной ткани. Клетки, которые замуровываются в межклеточное вещество, дифференцируются в остеоциты, а периферически расположенные клетки — остеобласты — размножаются и продолжают синтез и секрецию компонентов межклеточного вещества. Все эти процессы первоначально протекают в середине хрящевой модели трубчатой кости (диафизе) и распространяются в проксимальном и дистальном направлениях.

В зоне контакта хрящевой и костной тканей можно выделить зоны неизмененного хряща, размножающихся хондроцитов, формирующих клеточные колонки, зону дегенерации и замещения хряща костной тканью. Зона размножающихся хрящевых клеток определяет зону роста будущей кости и важна для формирования вектора роста кости.

развитие костной ткани

Одновременно с формированием ретикулофиброзной костной ткани, содержащей остеобласты и остеоциты, возникает другой гистогенетический тип клеток — остеокласты. Это крупные многоядерные (до 20-100 ядер) клетки размером до 100 мкм в диаметре являются производными стволовой кроветворной клетки. Цитоплазма остеокластов оксифильна со слабо развитой эндоплазматической сетью. Хорошо развит комплекс Гольджи. В цитоплазме много лизосом, содержащих кислую фосфатазу, коллагеназу, карбоангидразу и другие ферменты. Особенно много лизосом в той части цитоплазмы остеокластов, которая обращена к разрушаемой ткани. На этой поверхности имеются многочисленные выросты цитоплазмы, образующие подобие "щеточной (гофрированной) каемки". Остеокласты специализированы на "внеклеточной работе" лизосом: гидролитические ферменты из них выходят и резорбируют межклеточное вещество. Методами микрокиносъемки показано, что остеокласты подвергают деминерализации и разрушению оссеиновые волокна и аморфное вещество, а затем макрофаги фагоцитируют остатки органического субстрата. Остеокласты разрушают хрящевую ткань и ретикулофиброзную костную ткань, формируя каналы для врастающих сосудов и проникновения остеобластов.

Последующие стадии гистогенеза складываются из процессов новообразования костной ткани, ее разрушения остеокластами и перестройки — ремоделирования. Важным фактором гистогенеза пластинчатой костной ткани, входящей в состав трубчатой кости, является вектор роста кости. Он определяет направление движения остеокластов, следовательно, формирования каналов и врастание в них кровеносных сосудов (по вектору роста). Кровеносный сосуд, в свою очередь, определяет упорядоченное (концентрическое) расположение остеобластов вокруг себя. При этом остеобласты синтезируют межклеточное вещество, оссеиновые волокна которого упорядоченно (параллельно) располагаются возле остеобласта и при минерализации формируют костную пластинку, толщиной 3-10 мкм. Соседняя костная пластинка содержит оссеиновые фибриллы, которые располагаются под углом по отношению к первым.

На протяжении гистогенеза и всей возрастной динамики костной ткани в ней происходит непрерывная перестройка благодаря согласованной деятельности остеобластов и остеоцитов, образующих межклеточное вещество, а также остеокластов, разрушающих костную ткань, что необходимо для процессов ее самообновления. Так происходит смена генераций костных пластинок и формирующихся структурно-функциональных единиц — остеонов, достигается упорядоченность расположения последних, следовательно, высокая механическая прочность костной ткани и кости как органа (см. кость).

Дентиноидная костная ткань отличается отсутствием тел костных клеток в толще межклеточного вещества. Дентин — это вещество, состоящее из коллагеновых волокон и основного аморфного вещества, пропитанного минеральными солями. Образующие дентин зуба клетки — одонтобласты (точнее — их ядросодержащая часть) — расположены вне дентина в пульпе зуба. Дентин пронизан дентинными канальцами, в которых проходят отростки одонтобластов. Сходное строение имеет цемент зуба.

Ретикулофиброзная (грубоволокнистая) костная ткань характеризуется беспорядочным расположением оссеиновых фибрилл в виде толстых, плотных пучков волокон и основного аморфного вещества. Такая костная ткань образует кости в зародышевом и раннем постнатальном периодах. У взрослого человека она сохраняется лишь на месте прикрепления сухожилии к кости, в зарастающих швах черепа, а также в составе тканевого регенерата на месте переломов костей.

Пластинчатая костная ткань отличается упорядоченным расположением оссеиновых фибрилл в составе костных пластинок. Последние образуют расположенные один за другим слои пропитанного солями кальция фибрилл, образованных остеобластами. Слои имеют толщину от 3-7 до нескольких сотен микрометров. Каждая костная пластинка состоит из параллельно ориентированных тонких оссеиновых (коллагеновых) волокон (коллаген 1-го типа). Но коллагеновые волокна двух прилежащих друг к другу костных пластинок ориентированы под разными углами. Костная пластинка соединяется с соседней пластинкой коллагеновыми фибриллами. Так создается прочная волокнистая основа кости. Костные пластинки располагаются концентрически вокруг сосудов, то есть формируют остеоны — структурно-функциональные единицы пластинчатой кости как органа. Кроме этого существуют наружные и внутренние окружающие и вставочные пластинки трубчатой кости (см. ниже).

Регенерация. В регенерации костной ткани участвуют детерминированные остеогенные элементы в составе надкостницы, механоциты костного мозга, которые размножаются и дифференцируются в остеобласты. Продуцируя межклеточное вещество, остеобласты дифференцируются в остеоциты и образуют ретикулофиброзную костную ткань. Кроме того, адвентициальные клетки волокнистой соединительной ткани надкостницы также принимают участие в регенерации костной ткани. Однако дифференцировка их во многом зависит от микроокружения, внетканевых и внеорганных факторов (например, от репозиции отломков, неподвижности отломков, оксигенации места перелома и др.).

Дифференцировка адвентициальных клеток возможна в трех направлениях: остеогенном, хондрогенном, фибробластическом. Этим определяется соотношение различных видов тканей в регенерате. При преимущественно остеобластическом гистогенезе формируется ретикулофиброзная костная ткань, которая постепенно ремоделируется с образованием костной ткани, напоминающей по своему строению пластинчатую.

ХИМИЧЕСКИЙ СОСТАВ КОСТНОЙ ТКАНИ

Изучение химического состава костной ткани сопряжено со значительными трудностями, поскольку для выделения органического матрикса требуется провести деминерализацию кости. Кроме того, содержание и состав органического матрикса подвержены значительным изменениям в зависимости от степени минерализации костной ткани.

Известно, что при продолжительной обработке кости в разведенных растворах кислот ее минеральные компоненты растворяются и остается гибкий мягкий органический остаток (органический матрикс), сохраняющий форму интактной кости. Межклеточный органический матрикс компактной кости составляет около 20%, неорганические вещества – 70% и вода – 10%. В губчатой кости преобладают органические компоненты, которые составляют более 50%, на долю неорганических соединений приходится 33–40%. Количество воды сохраняется в тех же пределах, что и в компактной кости (Ю.С. Касавина, В.П. Торбенко).

По данным А. Уайта и соавт., неорганические компоненты составляют около 1 /4 объема кости; остальную часть занимает органический матрикс. Вследствие различий в относительной удельной массе органических и неорганических компонентов на долю нерастворимых минералов приходится половина массы кости.

Неорганический состав костной ткани. Более 100 лет назад было высказано предположение, что кристаллы костной ткани имеют структуру апатита. В дальнейшем это в значительной мере подтвердилось. Действительно, кристаллы кости относятся к гидроксилапатитам, имеют форму пластин или палочек и следующий химический состав – Са10(РО4)6(ОН)2. Кристаллы гидроксилапатита составляют лишь часть минеральной фазы костной ткани, другая часть представлена аморфным фосфатом кальция Са3(РО4)2. Содержание аморфного фосфата кальция подвержено значительным колебаниям в зависимости от возраста. Аморфный фосфат кальция преобладает в раннем возрасте, в зрелой кости преобладающим становится кристаллический гидроксилапатит. Обычно аморфный фосфат кальция рассматривают как лабильный резерв ионов Са 2+ и фосфата.

В организме взрослого человека содержится более 1 кг кальция, который почти целиком находится в костях и зубах, образуя вместе с фосфатом нерастворимый гидроксилапатит. Большая часть кальция в костях постоянно обновляется. Ежедневно кости скелета теряют и вновь восстанавливают примерно 700–800 мг кальция.

В состав минеральной фазы кости входит значительное количество ионов, которые обычно не содержатся в чистом гидроксилапатите, например ионы натрия, магния, калия, хлора и др. Высказано предположение, что в кристаллической решетке гидроксилапатита ионы Са 2+ могут замещаться другими двухвалентными катионами, тогда как анионы, отличные от фосфата и гидроксила, либо адсорбируются на поверхности кристаллов, либо растворяются в гидратной оболочке кристаллической решетки.

Органический матрикс костной ткани. Приблизительно 95% органического матрикса приходится на коллаген. Вместе с минеральными компонентами коллаген является главным фактором, определяющим механические свойства кости. Коллагеновые фибриллы костного матрикса образованы коллагеном типа 1. Известно, что данный тип коллагена входит также в состав сухожилий и кожи, однако коллаген костной ткани обладает некоторыми особенностями. Есть данные, что в коллагене костной ткани несколько больше оксипролина, чем в коллагене сухожилий и кожи. Для костного коллагена характерно большое содержание свободных ε-амино-групп лизиновых и оксилизиновых остатков. Еще одна особенность костного коллагена – повышенное по сравнению с коллагеном других тканей содержание фосфата. Большая часть этого фосфата связана с остатками серина.

В сухом деминерализованном костном матриксе содержится около 17% неколлагеновых белков, среди которых находятся и белковые компоненты протеогликанов. В целом количество протеогликанов в сформировавшейся плотной кости невелико.

В состав органического матрикса костной ткани входят гликозамино-гликаны, основным представителем которых является хондроитин-4-суль-фат. Хондроитин-6-сульфат, кератансульфат и гиалуроновая кислота содержатся в небольших количествах.

Принято считать, что гликозаминогликаны имеют непосредственное отношение к оссификации . Показано, что окостенение сопровождается изменением гликозаминогликанов: сульфатированные соединения уступают место несульфатированным. Костный матрикс содержит липиды, которые представляют собой непосредственный компонент костной ткани, а не являются примесью в результате недостаточно полного удаления богатого липидами костного мозга. Липиды принимают участие в процессе минерализации. Есть основания полагать, что липиды могут играть существенную роль в образовании ядер кристаллизации при минерализации кости.

Биохимические и цитохимические исследования показали, что остеобласты – основные клетки костной ткани – богаты РНК . Высокое содержание РНК в костных клетках отражает их активность и постоянную биосинтетическую функцию (табл. 22.1).

Химичекский состав большеберцовой кости человека

Своеобразной особенностью костного матрикса является высокая концентрация цитрата: около 90% его общего количества в организме приходится на долю костной ткани. Принято считать, что цитрат необходим для минерализации костной ткани. Вероятно, цитрат образует комплексные соединения с солями кальция и фосфора, обеспечивая возможность повышения концентрации их в ткани до такого уровня, при котором могут начаться кристаллизация и минерализация.

Кроме цитрата, в костной ткани обнаружены сукцинат, фумарат, малат, лактат и другие органические кислоты.

Кость, os, ossis, как орган живого организма состоит из нескольких тканей, главнейшей из которых является костная.

Химический состав кости и ее физические свойства.

Костное вещество состоит из двоякого рода химических веществ: органических (1/3), главным образом оссеина, и неорганических (2/3), главным образом солей кальция, особенно фосфорнокислой извести (более половины - 51,04 %). Если кость подвергнуть действию раствора кислот (соляной, азотной и др.), то соли извести растворяются (decalcinatio), а органическое вещество остается и сохраняет форму кости, будучи, однако, мягким и эластичным. Если же кость подвергнуть обжиганию, то органическое вещество сгорает, а неорганическое остается, также сохраняя форму кости и ее твердость, но будучи при этом весьма хрупким. Следовательно, эластичность кости зависит от оссеина, а твердость ее - от минеральных солей. Сочетание неорганических и органических веществ в живой кости и придает ей необычайные крепость и упругость. В этом убеждают и возрастные изменения кости. У маленьких детей, у которых оссеина сравнительно больше, кости отличаются большой гибкостью и потому редко ломаются. Наоборот, в старости, когда соотношение органических и неорганических веществ изменяется в пользу последних, кости становятся менее эластичными и более хрупкими, вследствие чего переломы костей чаще всего наблюдаются у стариков.

Строение кости

Структурной единицей кости, видимой в лупу или при малом увеличении микроскопа, является остеон, т. е. система костных пластинок, концентрически расположенных вокруг центрального канала, содержащего сосуды и нервы.

Остеоны не прилегают друг к другу вплотную, а промежутки между ними заполнены интерстициальными костными пластинками. Остеоны располагаются не беспорядочно, а соответственно функциональной нагрузке на кость: в трубчатых костях параллельно длиннику кости, в губчатых - перпендикулярно вертикальной оси, в плоских костях черепа - параллельно поверхности кости и радиально.

строение кости

Вместе с интерстициальными пластинками остеоны образуют основной средний слой костного вещества, покрытый изнутри (со стороны эндоста) внутренним слоем костных пластинок, а снаружи (со стороны периоста) - наружным слоем окружающих пластинок. Последний пронизан кровеносными сосудами, идущими из надкостницы в костное вещество в особых прободающих каналах. Начало этих каналов видно на мацерирован-ной кости в виде многочисленных питательных отверстий (foramina nutricia). Проходящие в каналах кровеносные сосуды обеспечивают обмен веществ в кости. Из остеонов состоят более крупные элементы кости, видимые уже невооруженным глазом на распиле или на рентгенограмме, - перекладины костного вещества, или трабекулы. Из этих трабекул складывается двоякого рода костное вещество: если трабекулы лежат плотно, то получается плотное компактное вещество, substantia compacta. Если трабекулы лежат рыхло, образуя между собою костные ячейки наподобие губки, то получается губчатое, трабекулярное вещество, substantia spongiosa, trabecularis (spongia, греч. - губка).

Распределение компактного и губчатого вещества зависит от функциональных условий кости. Компактное вещество находится в тех костях и в тех частях их, которые выполняют преимущественно функцию опоры (стойки) и движения (рычаги), например в диафизах трубчатых костей.

В местах, где при большом объеме требуется сохранить легкость и вместе с тем прочность, образуется губчатое вещество, например в эпифизах трубчатых костей.

Перекладины губчатого вещества располагаются не беспорядочно, а закономерно, также соответственно функциональным условиям, в которых находится данная кость или ее часть. Поскольку кости испытывают двойное действие - давление и тягу мышц, постольку костные перекладины располагаются по линиям сил сжатия и растяжения. Соответственно разному направлению этих сил различные кости или даже части их имеют разное строение. В покровных костях свода черепа, выполняющих преимущественно функцию защиты, губчатое вещество имеет особый характер, отличающий его от остальных костей, несущих все 3 функции скелета. Это губчатое вещество называется диплоэ, diploe (двойной), так как оно состоит из неправильной формы костных ячеек, расположенных между двумя костными пластинками - наружной, lamina externa, и внутренней, lamina interna. Последнюю называют также стекловидной, lamina vftrea, так как она ломается при повреждениях черепа легче, чем наружная.

Костные ячейки содержат костный мозг - орган кроветворения и биологической защиты организма. Он участвует также в питании, развитии и росте кости. В трубчатых костях костный мозг находится также в канале этих костей, называемом поэтому костномозговой полостью, cavitas medullaris.

Таким образом, все внутренние пространства кости заполняются костным мозгом, составляющим неотъемлемую часть кости как органа.

Строение трубчатой кости

Костный мозг бывает двух родов: красный и желтый.

Красный костный мозг, medulla ossium rubra (детали строения см. в курсе гистологии), имеет вид нежной красной массы, состоящей из ретикулярной ткани, в петлях которой находятся клеточные элементы, имеющие непосредственное отношение к кроветворению (стволовые клетки) и костеобразованию (костесозидатели - остеобласты и костеразруши-тели - остеокласты). Он пронизан нервами и кровеносными сосудами, питающими, кроме костного мозга, внутренние слои кости. Кровеносные сосуды и кровяные элементы и придают костному мозгу красный цвет.

Желтый костный мозг, medulla ossium flava, обязан своим цветом жировым клеткам, из которых он главным образом и состоит.

В периоде развития и роста организма, когда требуются большая кроветворная и костеобразующая функции, преобладает красный костный мозг (у плодов и новорожденных имеется только красный мозг). По мере роста ребенка красный мозг постепенно замещается желтым, который у взрослых полностью заполняет костномозговую полость трубчатых костей.

Снаружи кость, за исключением суставных поверхностей, покрыта надкостницей, periosteum (периост).

Надкостница - это тонкая, крепкая соединительнотканная пленка бледно-розового цвета, окружающая кость снаружи и прикрепленная к ней с помощью соединительнотканных пучков - прободающих волокон, проникающих в кость через особые канальцы. Она состоит из двух слоев: наружного волокнистого (фиброзного) и внутреннего костеобразующего (остеогенного, или камбиального). Она богата нервами и сосудами, благодаря чему участвует в питании и росте кости в толщину. Питание осуществляется за счет кровеносных сосудов, проникающих в большом числе из надкостницы в наружное компактное вещество кости через многочисленные питательные отверстия (foramina nutricia), а рост кости осуществляется за счет остеобластов, расположенных во внутреннем, прилегающем к кости слое (камбиальном). Суставные поверхности кости, свободные от надкостницы, покрывает суставной хрящ, cartilage articularis.

Таким образом, в понятие кости как органа входят костная ткань, образующая главную массу кости, а также костный мозг, надкостница, суставной хрящ и многочисленные нервы и сосуды.

Читайте также: