Карбиды соединения металлов с углеродом неверно верно

Обновлено: 01.05.2024

КАРБИДЫ (от лат. carbo - уголь), соед. углерода с металлами, а также с бором и кремнием. По типу хим. связи К. делят на ионные (солеобразные), ковалентные и металлоподобные (ионно-ковалентно-металлические). Ионные К. (см. табл. 1) образуют металлы I и II гр. (соотв. М 2 С 2 и МС 2 ), РЗЭ и актиноиды (МС, М 2 С 3 , МС 2 ), а также Аl. В этих соед. атом С в зависимости от типа гибридизации ( 3 , sp 2 или sp) образует ионы С 4- , (C=C 4- , (С=С=С) 4- , (C=C) 2- . Ковалентные К. (см. табл. 2) образуют В и Si; атом С в этих соед. находится в состоянии 2 -> и sp 3 -гибридизации. Металлoподобные К. образуют переходные металлы IV-VII гр., Со, Ni и Fe. В этих К. связь металл-углерод ионно-ковалентная, причем атом С отрицательно заряжен, связь металл - металл чисто металлическая, атомы С между собой не связаны.

К. щелочных металлов кристаллизуются в решетках типа графита, атомы металлов размещаются между углеродными слоями, построенными из гексагoн. сеток. К. щел.-зем. металлов кристаллизуются в гранецентрир. тетрагон. решетке типа СаС 2 , карбиды РЗЭ, монокарбиды актиноидов и переходных металлов в гранецентрир. кубической типа NaCl, сесквикарбиды актиноидов М 2 С 3 в объемноцентрир. кубич. решетке типа Рu 2 С 3 . Ионные К. щелочных металлов разлагаются при т-ре ок. 800 °С, К. щел.-зем. металлов в интервале 1800-2300°С, ковалентные К. и металлоподобные разлагаются и плавятся при более высоких т-рах. В периодич. системе в пределах группы т-ры плавления К. возрастают с увеличением порядкового номера металла и обычно в 1,5-2 раза выше, чем т-ры плавления соответствующих металлов. Это обусловлено высокой прочностью связи М-С. Металлоподобные К. обладают металлич. проводимостью, для них характерен положит. температурный коэф. r. Для сесквикарбидов величина r (достигает 500 мкОм. см) примерно на порядок выше, чем для дикарбидов и монокарбидов (20-50 мкОм. см). Дикарбиды РЗЭ также обладают металлич. св-вами. Карбиды В и Si, а также Be, Mg и Аl - полупроводники. Мех. св-ва К. зависят от прочности хим. связи, степени ее ковалентности и межатомного расстояния. наиб. высокой твердостью обладают карбиды В, Si, Be, а также монокарбиды РЗЭ и переходных металлов; твердость последних уменьшается при переходе от К. подгруппы IVа к К. подгруппы VIa. Все К. при комнатной т-ре - хрупкие в-ва, их пластич. деформация возможна в условиях всестороннего сжатия при очень высоких напряжениях. Ионные К. разлагаются водой с образованием метана, ацетилена, метилацетилена или смеси углеводородов и гидроксида металла, напр.:

Аl 4 С 3 + 12Н 2 О : 4Аl(ОН) 3 + 3СН 4 ;

Na 2 C 2 + 2Н 2 О : 2NaOH +С 2 Н 2 ;

Mg 2 C 3 + 4Н 2 О : 2Mg(OH) 2 + С 3 Н 4 .

Ковалентные и металлоподобные К. не разлагаются водой и большинством минер. к-т и щелочей. Получают К. из элементов, восстановлением оксидов металлов, газофазным способом, металлотермически. Синтез из элементов осуществляют при высоких т-рах в вакууме или инертной атмосфере. В зависимости от технол. параметров процесса образуются порошки с размером частиц от 0,5 мкм до 2 мм. Синтез может осуществляться в режиме горения, т. к. в результате р-ции выделяется большое кол-во тепла, либо в плазме при 5000-10000 К в дуговых, высокочастотных и сверхчастотных плазмотронах. В результате быстрого охлаждения из парогазовой смеси элементов в плазмообразующем газе (Аr или Не) образуются ультрадисперсные порошки с размерами частиц 10-100 нм. Восстановлением оксидов металлов производят наиб. важные соед . - бора карбиды, кремния карбиды, а также вольфрама карбиды, титана карбид и др. К. переходных металлов. Газофазным способом получают К. из хим. соед., к-рые испаряются, разлагаются, а затем восстанавливаются и взаимод. друг с другом, напр.:

2МСl + 2ССl 4 + 5Н 2 : 2МС + 10НСl.

Чаще всего этот синтез осуществляют в плазме, получая дисперсные порошки. По металлотермич. способу оксиды металлов восстанавливают металлами (Mg, Al или Са) в присут. углерода, напр.:

МО + С + Мg : МС + МgО.

Особо чистые К., не содержащие кислорода и азота, синтезируют взаимод. С и металла в расплаве др. металла или сплава, напр. TiC получают в сплаве Fe Ni. Из ионных К. наиб. важен кальция карбид СаС 2 , из ковалентных В 4 С и SiC. Металлоподобные К. упрочняют чугун и сталь [Fe 3 C, (Fe,Cr) 3 C, Fe 2 W 2 C, (Fe,Cr,Mo) 23 C 6 ], они являются основой твердых вольфрама сплавов(WC, TiC, WC, TiC, TaC, WC) и др. твердых сплавов (TiC, VC, Сr 3 С 2 , ТаС), используемых для обработки металлов резанием. К. применяют также как восстановители, раскислители и катализаторы, они входят в состав жаропрочных и жаростойких композиционных материалов, в т. ч. керметов. Лит.: Стормс Э., Тугоплавкие карбиды, пер. с англ., М., 1970; Гольдшмидт X., Сплавы внедрения, пер. с англ., в. 1-2, М, 1971, Тот Л., Карбиды и нитриды переходных металлов, пер. с англ., М, 1974. Самсонов Г. В., Упадхая Г. Ш., Нешпор В. С., Физическое материаловедение карбидов, К., 1974, Высокотемпературные карбиды, под ред. Г. В. Самсонова, К, 1975, Карбиды и сплавы на их основе, под ред. Г. В. Самсонова, К, 1976, Свойства, получение и применение тугоплавких соединений, Справочник, под ред. Т. Я. Косолаповой. М, 1986, П. С. Кислый.

Химическая энциклопедия. — М.: Советская энциклопедия . Под ред. И. Л. Кнунянца . 1988 .

Свойства и особенности карбидов металлов

В природе металлы активно вступают в химические реакции с кислотами, щелочами и атмосферным кислородом. В большинстве случаев для этого не требуется дополнительная обработка (химическая, термическая). При сильном нагреве металлы начинают активно вступать в реакцию с углеродом, что приводит к образованию сложных соединений под названием карбиды. Эти соединения отличаются рядом необычных свойств — высокая прочность, тугоплавкость, химическая инертность. Какие бывают карбиды металлов? Как эти соединения применяются в промышленности? Какие вещества получили наибольшее применение?

карбиды металлов

Краткие сведения

Карбиды — это химические соединения, которые состоят из углерода (C) и другого элемента. Обычно в качестве второго элемента выступают металлы — это может быть железо (Fe), титан (Ti), хром (Cr), гафний (Hf) и другие. В карбидных соединениях углерод более высокой электроотрицательностью (в сравнении со вторым элементом). Поэтому карбиды нельзя отнести к оксидам, галогенидам и другим химическим соединениям. Карбиды металлов — в основном твердые тугоплавкие вещества, которые отличаются очень высокой прочностью и почти не вступают в реакции с химически активными веществами.

Благодаря этим необычным свойствам карбиды часто применяют в качестве абразивов для обработки различных сплавов (это может быть чугун, сталь, соединения на основе алюминия). Из них делают электроды для сварки, огнеупорные стержни, элементы электрических систем. Первые карбиды на основе калия, железа и магния были открыты и получены совсем недавно — в XIX веке. Однако со временем были получены и новые карбидные соединения — на основе хрома, титана, гафния, вольфрама, кальция.

Физические свойства, особенности

  1. Высокая твердость. Атомы углерода и металлов образуют твердую кристаллическую решётку, для разрушения которой потребуется большое механическое усилие. Поэтому с помощью ударов разрушить карбидные вещества будет крайне сложно. Благодаря высокой твердости материалы нашли широкое распространение в различных технических сферах (от военного машиностроения до строительства).
  2. Высокая температура плавления. Плотная кристаллическая решетка обеспечивает устойчивость вещества при сильном нагреве или охлаждении. Средняя температура плавления карбидов находится в пределах от 1500 до 2000 градусов. Поэтому такой материал без проблем выдержит длительное воздействие экстремальных температур (скажем, его можно использовать в печах, металлургических ковшах для расплавления других материалов).
  3. Устойчивость к химическим веществам и коррозии. Внешние электронные оболочки веществ-карбидов являются полностью заполненными. Поэтому такой материал будет редко вступать в химические реакции с другими веществами (он устойчив к воздействию кислот, щелочей, солей). Вещества не вступают в реакцию с водой и атмосферным кислородом, поэтому они не покрываются ржавчиной, что обеспечивает их высокий срок годности.
  4. Повышенная износоустойчивость. Изделия на основе карбидов долгое время сохраняют свою форму даже в случае удара, деформации или воздействия высоких температур. Поэтому они обладают повышенной износоустойчивостью, что делает их срок годности большим. Благодаря повышенной устойчивости материал часто применяют для изготовления абразивных и шлифовальных изделий, которыми можно пользоваться в течение большого срока.

Стоит обратить внимание, что далеко не все карбидные соединения обладают перечисленными свойствами. Скажем, карбид золота (I) чрезвычайно взрывоопасен (тогда как большинство других карбидов металлов — нет). Он может взорваться даже в случае неаккуратного пересыпания вещества на бумажную поверхность. Поэтому при рассмотрении физических и химических свойства карбидов нужно по отдельности рассматривать каждое соединение, поскольку карбидные материалы могут обладать уникальными необычными свойствами.

карбид алюминия

Разновидности карбидов

  • Материалы с ковалентной решеткой. Вещества с таким способом связи возможны только в том случае, если в качестве второго элемента выступает бром или кремний. На атомарном уровне соединение образуется за счет sp, sp-2 или sp-3 гибридизации. В веществе атомарный металл заменяет собой углерод, что позволяет формировать прочное устойчивое вещество, которое устойчиво к механическим ударам, высоким температурам, химическим веществам. С точки зрения электропроводности вещество является полупроводником (хотя использование карбидов в качестве полупроводниковых элементов невыгодно с практической точки зрения).
  • Металлоподобные материалы. В эту группу входят соединения, у которых металлических элемент является железом, кобальтом, никелем либо относится к переходной группе (IV-VII). У таких карбидных соединений металлические атомы располагаются не на месте атомов углерода, а в различных пустотах кристаллических решеток (поэтому часто такие вещества называют карбидами внедрения). Такое необычное расположение делает вещество устойчивым, крепким, надежным, оно не будет разрушаться под воздействием высоких температур или при воздействии химически активных веществ (кислоты, щелочи, соли и другие).
  • Материалы с ионной связью. В эту группу входит множество карбидов, у которых в качестве металлического элемента выступает алюминий, редкоземельные металлы либо элементы I или II группы периодической таблицы. По химической структуре вещества похожи на соединения с ковалентной решеткой с той лишь разницей, что здесь металлы обычно теряют один или несколько электронов на внешнем уровне, что приводит к образованию веществ-ионов. По химико-физическим свойствам ионные карбиды аналогичны стандартным соединениям — отличная прочность, высокая температура плавления. Единственное крупное отличие — вещества активно взаимодействуют с кислотами (обычно с образованием металла или подобных веществ).

карбид кальция

Применение материалов

Карбиды металлов применяются производстве (в основном — в тяжелом). Перечислим основные варианты применения:

  • Простые карбидные соединения на основе железа могут добавлять в металлический сплав (чугун, сталь, чистое железо), чтобы улучшить его физико-химические свойства. Дополнительные компоненты улучшают прочность, повышают химическую инертность, минимизируют риск коррозии под действием воды или атмосферного воздуха. Еще одно полезное свойство — увеличение температуры плавления, что удобно в случае изготовления тугоплавких запчастей или деталей.
  • Карбиды на основе титана или вольфрама отличаются сверхвысокой прочностью, а плавятся они при сверхвысоких температурах. Поэтому из них делают режущие и абразивные инструменты, которые отличаются высоким сроком годности. Подобные соединения можно использовать в качестве огнеупорных материалов (скажем, при производстве печей), для изготовления сварочных стержней.
  • Карбид кальция обладает необычным свойством — при контакте с водой происходит ряд химических реакций, что в конечном счете приводит к образованию ацетилена. Это вещество широко применяется для кислородной сварки, резки или напайки. Поэтому такое карбидное соединение может использоваться для изготовления соответствующих деталей (электроды для сварочных инструментов, напайка и другие). Ацетилен при горении выделяет большое количество тепла, поэтому к работам нужно подойти осторожно.

Основные металлические карбиды

На практике широко применяется множество карбидных соединений. Рассмотрим основные из них.

Карбид гафния

Встречается в виде только одного вещества — HfC. В нормальных условиях обладает кристаллической структурой, окрашено в серый цвет. плавится при температуре 3900 градусов — интересно, что его закипание происходит уже при температуре 4160 градусов. Поэтому к расплавлению нужно подходить аккуратно, чтобы не испарить его. При нагреве до 2000 градусов начинает взаимодействовать с металлами (молибден, вольфрам). Вещество не обладает полной химической инертностью — оно вступает в реакцию с кислотами (в азотной или серной кислоте оно способно полностью раствориться).

виды карбидов

Карбиды хрома

Встречается в виде нескольких веществ; основные — Cr23C6, Cr3C2, Cr7C3. Отличаются высокой химической инертностью (хотя могут реагировать с цинком при сильном нагреве). Не вступают в контакт с водой, атмосферным воздухом, кислотами, щелочами, солями, другими карбидными соединениями. Температура плавления не слишком высокое — большинство соединений плавятся уже при температуре 1500-1700 градусов. У соединения Cr7C3 при нагреве до 800 градусов происходит ряд эндотермических реакций и превращений, что приводит к превращению вещества в Cr23C6.

Карбид титана

Встречается в виде одного стабильного соединения — TiC. При нормальных условиях обладает серым цветом с характерным металлическим блеском. Плавится при температуре 3100 градусов, кипит — при 4305 градусах. Обладает высокой устойчивостью, прочностью. Химическая инертность средняя — в нормальном состоянии может вступать в реакцию с кислотами и щелочами (хотя реакция идет слабо). При нагреве до 2500 градусов может вступать в реакцию с азотом (в том числе — атмосферным). При нагреве до 1200 градусов может окисляться и/или вступать в реакцию с углекислым газом.

Карбиды вольфрама

Встречается в виде двух устойчивых соединений — WC и W2C. Оба карбида отличаются приблизительно одинаковыми химико-физическими свойствами. Вид — мелкий порошок серовато-черного цвета (со слабым металлическим блеском или без него). Вещества плавятся при температуре около 2720 градусов, однако при более низких температурах начинается их активных контакт с атмосферным воздухом, азотом или углекислым газом. Соединения легко растворяются в разогретых до температуре кипения серных и азотных кислотах.

Карбид кальция

Основное устойчивое соединение — CaC2. Вид — крупные прозрачные кристаллы, которые могут обладать светло-голубым оттенком. При наличии примесей может окрашиваться в другие цвета — серый, желтый, коричневый, черный и другие (в зависимости от типа примеси и ее концентрации). Соединение плавится при температуре порядка 2500 градусов, однако при комнатной температуре оно активно вступает в реакцию с водой с активным выделением ацетилена. Поэтому вещество нуждается в особых безопасных способах хранения (ацетилен является токсичным для человека).

Карбид циркония

Основное соединение — ZrC. Стандартное состояние — небольшие кристаллы серого цвета, обладающие металлическим блеском. Температура плавления — 3530 градусов, однако при нагреве до 1200 градусов вещество начинает активно вступать в реакцию с атмосферным кислородом, что приводит к образованию оксидов. Вещество слабо реагирует с кислотами, щелочами и солями, однако может вступать в реакцию с атомизированным азотом в составе сложных веществ, что приводит к образованию нитритов. Поэтому вещество нуждается в особых способах хранения.

гидролиз карбидов

Заключение

Подведем итоги. Карбиды металлов — соединения, в состав которых входит углерод и какой-либо дополнительный металл. Это может быть железо, хром, цирконий, вольфрам и другие. Соединение может образовывать сложную прочную кристаллическую решетку (ковалентную, металлическую, ионную). Карбиды из-за особенностей своего строения отличаются высокой прочностью, устойчивостью к механической деформации, химической инертностью. Вещества обычно не вступают в реакцию с кислотами, щелочами, солями, атмосферными газами (кислород, азот, углекислый газ).

Из карбидов делают абразивные или шлифовальные инструменты, поскольку они не деформируются, не портятся со временем, могут деформировать другие прочные соединения. Из них делают электроды для сварочных инструментов, термоустойчивые стержни, элементы электрических инструментов. Некоторые виды карбидов могут проявлять необычные свойства. Скажем, карбид золота взрывается при легком контакте, а карбид кальция может вступать в реакцию с водой при комнатной температуре с образованием ацетилена.

Тренажер задания 31 по химии углерода и кремния

Тренажер задания 31 из ЕГЭ по химии углерода и кремния, задачи на неорганическую химию (мысленный эксперимент) из экзамена ЕГЭ по химии, задания 31 по химии углерода и кремния с текстовыми решениями и ответами.

  1. Газы, которые выделяются при нагревании угля в концентрированной азотной и серной кислотах, смешали друг с другом. Продукты реакции пропустили через известковое молоко. Напишите уравнения описанных реакций.
  1. Негашеную известь «погасили» водой. В полученный раствор пропустили газ, который выделяется при нагревании гидрокарбоната натрия, при этом наблюдали образование и последующее растворение. Напишите уравнения описанных реакций.
  1. Газ, образовавшийся при сгорании кокса, длительное время соприкасался с раскаленным углем. Продукт реакции последовательно пропустили через слой железной руды и негашеную известь. Напишите уравнения описанных реакций осадка.
  1. Одно из веществ, образующихся при сплавлении оксида кремния с магнием, растворяется в щелочи. Выделяющийся газ ввели в реакцию с серой, а продукт их взаимодействия обработали хлором. Напишите уравнения описанных реакций.

SiO2 + 2Mg = 2MgO + Si

  1. Силицид магния обработали раствором хлороводородной кислоты и выделяющийся газ сожгли. Твердый продукт реакции смешали с кальцинированной содой, смесь нагрели до плавления и выдержали некоторое время. После охлаждения продукт реакции (используется под названием «жидкое стекло») растворили в воде и обработали раствором серной кислотой. Напишите уравнения описанных реакций.
  1. Хлорид кремния (IV) нагрели в смеси с водородом. Продукт реакции смешали с магниевым порошком, нагрели и обработали водой, одно из образующихся веществ самовоспламеняется на воздухе. Напишите уравнения описанных реакций.
  1. Силицид магния обработали раствором соляной кислоты, продукт реакции сожгли, образовавшееся твердое вещество смешали с кальцинированной содой и нагрели до плавления. После охлаждения расплава его обработали водой и к полученному раствору добавили азотную кислоту. Напишите уравнения описанных реакций.
  1. Магниевый порошок смешали с кремнием и нагрели. Продукт реакции обработали холодной водой, и выделяющийся газ пропустили через горячую воду. Образовавшийся осадок отделили, смешали с едким натром и нагрели до плавления. Напишите уравнения описанных реакций.
  1. Кремний сожгли в атмосфере хлора. Полученный хлорид обработали водой. выделившийся при этом осадок прокалили. Затем сплавили с фосфатом кальция и углем. Напишите уравнения описанных реакций.
  1. Вещество, образующееся при сплавлении магния с кремнием обработали водой, в результате образовался и выделился бесцветный газ. Осадок растворили в соляной кислоте, а газ пропустили через раствор перманганата калия, при этом образовались два нерастворимых в воде бинарных вещества. Напишите уравнения описанных реакций.
  1. Продукт взаимодействия кремния с хлором легко гидролизуется. При сплавлении твердого продукта гидролиза как с каустической, так и кальцинированной содой образуется жидкое стекло. Напишите уравнения описанных реакций.
  1. Углерод сожгли в недостатке кислорода, образовавшийся газ пропустили над оксидом меди (II). Полученное вещество сплавили с серой, а продукт этой реакции сожгли в кислороде. Напишите уравнения описанных реакций.

CO + CuO = Cu + CO2

  1. Кремний сожгли в кислороде. Продукт реакции сплавили с карбонатом натрия, образовавшееся вещество обработали избытком соляной кислоты при нагревании. Осадок отфильтровали, а к фильтрату добавили раствор нитрата серебра. Напишите уравнения описанных реакций.
  1. Кремний растворили в концентрированном растворе гидроксида натрия. Через полученный раствор пропустили углекислый газ. Выпавший осадок отфильтровали, высушили и прокалили. Твердый остаток сплавили с магнием. Напишите уравнения описанных реакций.

SiO2 + 2Mg = Si + 2MgO

Понравилось это:

4 комментария

Добавить ваш

Во всём остальном вопросов нет! Подборка очень хорошая, многие реакции интересные, есть над чем подумать!
Спасибо!

Соединения углерода: карбиды, соли, диоксид, угольная кислота

Задание 368
Какие соединения называются карбидами и силицидами? Напишите уравнения реакций: а) карбида алюминия с водой; б) силицида магния с хлороводородной (соляной) кислотой. Являются ли эти реакции окислительно-восстановительными? Почему?
Решение:
Карбидами называются соединения углерода с металлами. Силицидами называются соединения кремния с металлами.
Уравнения реакций:

а) карбида алюминия с водой:

б) силицида магния с хлороводородной (соляной) кислотой:

Эти реакции не являются окислительно-восстановительными, потому что не происходит изменения степеней окисления элементов.

Задание 389
Как получают диоксид углерода в промышленности и в лаборатории? Напишите уравнения соответствующих реакций и реакций, с помощью которых можно осуществить следующие превращения:
NaHCO3 → CO2 → CaCO3 → Ca(HCO3)2
Решение:
В промышленности диоксид углерода получают обжигом известняка:

В лаборатории диоксид углерода получают в аппарате Киппа по реакции:

Уравнения соответствующих реакций и реакций, с помощью которых можно осуществить следующие превращения:

Задание 390
Какие из солей угольной кислоты имеют наибольшее промышленное применение? Как получить соду, исходя из металлического натрия, хлороводородной (соляной) кислоты, мрамора и воды? Почему в растворе соды лакмус приобретает синий цвет? Ответ подтвердите уравнениями соответствующих реакций.
Решение:
Из солей угольной кислоты большое практическое значение имеют следующие соли:

1.Na2CO3 – карбонат натрия или сода. Применяется для получения алюминия, стекла, производство моющих веществ и др.
2.СаСО3 – карбонат кальция или известняк. Применяется в производстве извести и углекислого газа, как флюс в металлургии, большое количество в виде мела используется в производстве строительных материалов и для очистки веществ.
3.К2СО3 – карбонат калия или поташ. Применяется для производства строительных материалов.
4.NaHCO3 – гидрокарбонат натрия или пищевая сода. Применяется в пищевой промышленности.
5.MgCO3 – карбонат магния или магнезит. Применяется в производстве строительных материалов.

Получение соды. При растворении металлического натрия в воде можно получить гидроксид натрия, который при взаимодействии с соляной кислотой даёт хлорид натрия. При реакции хлорида натрия и карбоната кальция получают соду. Реакции процессов:

Раствор Na2CO3 окрашивает лакмус в синий цвет, потому что сода – соль сильного однокислотного основания и слабой многоосновной кислоты гидролизуется по аниону СО3 2- , который связывается с ионом Н + с образованием аниона кислой соли НСО3 – . Н2СО не образуется, потому что диссоциация НСО3 - протеакает труднее, чем Н2СО3. Гидролиз протекает по первой ступени. Ионно-молекулярное уравнение гидролиза:

Поскольку при гидролизе соли образуется избыток ионов ОН – , то раствор будет иметь щелочную среду, рН > 7. В щелочной среде лакмус даёт синее окрашивание.

Углерод. Химия углерода и его соединений


Углерод расположен в главной подгруппе IV группы (или в 14 группе в современной форме ПСХЭ) и во втором периоде периодической системы химических элементов Д.И. Менделеева.

Электронное строение углерода

Электронная конфигурация углерода в основном состоянии :

+6С 1s 2 2s 2 2p 2 1s 2p

Электронная конфигурация углерода в возбужденном состоянии :

+6С * 1s 2 2s 1 2p 3 1s 2p

Атом углерода содержит на внешнем энергетическом уровне 2 неспаренных электрона и 1 неподеленную электронную пару в основном энергетическом состоянии и 4 неспаренных электрона в возбужденном энергетическом состоянии.

Степени окисления атома углерода — от -4 до +4. Характерные степени окисления -4, 0, +2, +4.

Физические свойства

Углерод в природе существует в виде нескольких аллотропных модификаций: алмаз, графит, карбин, фуллерен.

Алмаз — это модификация углерода с атомной кристаллической решеткой. Алмаз — самое твердое минеральное кристаллическое вещество, прозрачное, плохо проводит электрический ток и тепло. Атомы углерода в алмазе находятся в состоянии sp 3 -гибридизации.



Графит — это аллотропная модификация, в которой атомы углерода находятся в состоянии sp 2 -гибридизации. При этом атомы связаны в плоские слои, состоящие из шестиугольников, как пчелиные соты. Слои удерживаются между собой слабыми связями. Это наиболее устойчивая при нормальных условиях аллотропная модификация углерода.

Графит — мягкое вещество серо-стального цвета, с металлическим блеском. Хорошо проводит электрический ток. Жирный на ощупь.



Карбин — вещество, в составе которого атомы углерода находятся в sp-гибридизации. Состоит из цепочек и циклов, в которых атомы углерода соединены двойными и тройными связями. Карбин — мелкокристаллический порошок серого цвета.

[=C=C=C=C=C=C=]n или [–C≡C–C≡C–C≡C–]n



Фуллерен — это искусственно полученная модифицикация углерода. Молекулы фуллерена — выпуклые многогранники С60, С70 и др. Многогранники образованы пяти- и шестиугольниками, в вершинах которых расположены атомы углерода.

Фуллерены — черные вещества с металлическим блеском, обладающие свойствами полупроводников.


В природе углерод встречается как в виде простых веществ (алмаз, графит), так и в виде сложных соединений (органические вещества — нефть, природные газ, каменный уголь, карбонаты).

Качественные реакции

Качественная реакция на карбонат-ионы CO3 2- — взаимодействие солей-карбонатов с сильными кислотами . Более сильные кислоты вытесняют угольную кислоту из солей. При этом выделяется бесцветный газ, не поддерживающий горение – углекислый газ.

Например , карбонат кальция растворяется в соляной кислоте:

Видеоопыт взаимодействия карбоната кальция с соляной кислотой можно посмотреть здесь.

Качественная реакция на углекислый газ CO2 – помутнение известковой воды при пропускании через нее углекислого газа:

При дальнейшем пропускании углекислого газа осадок растворяется, т.к. карбонат кальция под действием избытка углекислого газа переходит в растворимый гидрокарбонат кальция:


Видеоопыт взаимодействия гидроксида кальция с углекислым газом (качественная реакция на углекислый газ) можно посмотреть здесь.

Углекислый газ СО2 не поддерживает горение . Угарный газ CO горит голубым пламенем.

Соединения углерода

Основные степени окисления углерода — +4, +2, 0, -1 и -4.

Наиболее типичные соединения углерода:

карбиды металлов (карбид алюминия Al4C3)

Химические свойства

При нормальных условиях углерод существует, как правило, в виде атомных кристаллов (алмаз, графит), поэтому химическая активность углерода — невысокая.

1. Углерод проявляет свойства окислителя (с элементами, которые расположены ниже и левее в Периодической системе) и свойства восстановителя (с элементами, расположенными выше и правее). Поэтому углерод реагирует и с металлами , и с неметаллами .

1.1. Из галогенов углерод при комнатной температуре реагирует с фтором с образованием фторида углерода:

1.2. При сильном нагревании углерод реагирует с серой и кремнием с образованием бинарного соединения сероуглерода и карбида кремния соответственно:

C + 2S → CS2

C + Si → SiC

1.3. Углерод не взаимодействует с фосфором .

При взаимодействии углерода с водородом образуется метан. Реакция идет в присутствии катализатора (никель) и при нагревании:

1.4. С азотом углерод реагирует при действии электрического разряда, образуя дициан:

2С + N2 → N≡C–C≡N

1.5. В реакциях с активными металлами углерод проявляет свойства окислителя. При этом образуются карбиды:

2C + Ca → CaC2

1.6. При нагревании с избытком воздуха графит горит , образуя оксид углерода (IV):

при недостатке кислорода образуется угарный газ СО:

2C + O2 → 2CO

Алмаз горит при высоких температурах:

Горение алмаза в жидком кислороде:

Графит также горит:


Графит также горит, например, в жидком кислороде:

Графитовые стержни под напряжением:

2. Углерод взаимодействует со сложными веществами:

2.1. Раскаленный уголь взаимодействует с водяным паром с образованием угарного газа и водорода:

C 0 + H2 + O → C +2 O + H2 0

2.2. Углерод восстанавливает многие металлы из основных и амфотерных оксидов . При этом образуются металл и угарный газ. Получение металлов из оксидов с помощью углерода и его соединений называют пирометаллургией.

Например , углерод взаимодействует с оксидом цинка с образованием металлического цинка и угарного газа:

ZnO + C → Zn + CO

Также углерод восстанавливает железо из железной окалины:

4С + Fe3O4 → 3Fe + 4CO

При взаимодействии с оксидами активных металлов углерод образует карбиды.

Например , углерод взаимодействует с оксидом кальция с образованием карбида кальция и угарного газа. Таким образом, углерод диспропорционирует в данной реакции:

3С + СаО → СаС2 + СО

2.3. Концентрированная серная кислота окисляет углерод при нагревании. При этом образуются оксид серы (IV), оксид углерода (IV) и вода:

2.4. Концентрированная азотная кислотой окисляет углерод также при нагревании. При этом образуются оксид азота (IV), оксид углерода (IV) и вода:

2.5. Углерод проявляет свойства восстановителя и при сплавлении с некоторыми солями , в которых содержатся неметаллы с высокой степенью окисления.

Например , углерод восстанавливает сульфат натрия до сульфида натрия:

Карбиды

Карбиды – это соединения элементов с углеродом . Карбиды разделяют на ковалентные и ионные в зависимости от типа химической связи между атомами.

Например :

Это соединения с металлами, при гидролизе которых образуется пропин

Например : Mg2C3

Например:

СаС2+ 2Н2O →

Пропиниды разлагаются водой или кислотами с образованием пропина и гидроксида или соли

Все карбиды проявляют свойства восстановителей и могут быть окислены сильными окислителями .

Например , карбид кремния окисляется концентрированной азотной кислотой при нагревании до углекислого газа, оксида кремния (IV) и оксида азота (II):

SiC + 8HNO3 → 3SiO2 + 3CO2 + 8NO + 4H2O

Оксид углерода (II)

Строение молекулы и физические свойства

Оксид углерода (II) («угарный газ») – это газ без цвета и запаха. Сильный яд. Небольшая концентрация угарного газа в воздухе может вызвать сонливость и головокружение. Большие концентрации угарного газа вызывают удушье.

Строение молекулы оксида углерода (II) – линейное. Между атомами углерода и кислорода образуется тройная связь, за счет дополнительной донорно-акцепторной связи:


Способы получения

В лаборатории угарный газ можно получить действием концентрированной серной кислоты на муравьиную или щавелевую кислоты:

НСООН → CO + H2O

В промышленности угарный газ получают в газогенераторах при пропускании воздуха через раскаленный уголь:

CO2 + C → 2CO

Еще один важный промышленный способ получения угарного газа — паровая конверсия метана. При взаимодействии перегретого водяного пара с метаном образуется угарный газ и водород:

Также возможна паровая конверсия угля:

Угарный газ в промышленности также можно получать неполным окислением метана:

Химические свойства

Оксид углерода (II) – несолеобразующий оксид . За счет углерода со степенью окисления +2 проявляет восстановительные свойства.

1. Угарный газ горит в атмосфере кислорода . Пламя окрашено в синий цвет:

2. Оксид углерода (II) окисляется хлором в присутствии катализатора или под действием света с образованием фосгена. Фосген – ядовитый газ.

3. Угарный газ взаимодействует с водородом при повышенном давлении . Смесь угарного газа и водорода называется синтез-газ. В зависимости от условий из синтез-газа можно получить метанол, метан, или другие углеводороды.

Например , под давлением больше 20 атмосфер, при температуре 350°C и под действием катализатора угарный газ реагирует с водородом с образованием метанола:

4. Под давлением оксид углерода (II) реагирует с щелочами. При этом образуется формиат – соль муравьиной кислоты.

Например , угарный газ реагирует с гидроксидом натрия с образованием формиата натрия:

CO + NaOH → HCOONa

5. Оксид углерода (II) восстанавливает металлы из оксидов .

Например , оксид углерода (II) реагирует с оксидом железа (III) с образованием железа и углекислого газа:

Оксиды меди (II) и никеля (II) также восстанавливаются угарным газом:

СО + CuO → Cu + CO2

СО + NiO → Ni + CO2

6. Угарный газ окисляется и другими сильными окислителями до углекислого газа или карбонатов.

Например , пероксидом натрия:

Оксид углерода (IV)

Оксид углерода (IV) (углекислый газ) — газ без цвета и запаха. Тяжелее воздуха. Замороженный углекислый газ называют также «сухой лед». Сухой лед легко подвергается сублимации — переходит из твердого состояния в газообразное.

Смешивая сухой лед и различные вещества, можно получить интересные эффекты. Например, сухой лед в пиве:

Углекислый газ не горит, поэтому его применяют при пожаротушении.

Молекула углекислого газа линейная , атом углерода находится в состоянии sp-гибридизации, образует две двойных связи с атомами кислорода:


Обратите внимание! Молекула углекислого газа не полярна. Каждая химическая связь С=О по отдельности полярна, а вся молекула не будет полярна. Объяснить это очень легко. Обозначим направление смещения электронной плотности в полярных связях стрелочками (векторами):


Теперь давайте сложим эти векторы. Сделать это очень легко. Представьте, что атом углерода — это покупатель в магазине. А атомы кислорода — это консультанты, которые тянут его в разные стороны. В данном опыте консультанты одинаковые, и тянут покупателя в разные стороны с одинаковыми силами. Несложно увидеть, что покупатель двигаться не будет ни влево, ни вправо. Следовательно, сумма этих векторов равна нулю. Следовательно, полярность молекулы углекислого газа равна нулю.

В лаборатории углекислый газ можно получить разными способами:

1. Углекислый газ образуется при действии сильных кислот на карбонаты и гидрокарбонаты металлов. При этом взаимодействуют с кислотами и нерастворимые карбонаты, и растворимые.

Еще один пример : гидрокарбонат натрия реагирует с бромоводородной кислотой:

2. Растворимые карбонаты реагируют с растворимыми солями алюминия, железа (III) и хрома (III) . Карбонаты трехвалентных металлов необратимо гидролизуются в водном растворе.

Например: хлорид алюминия реагирует с карбонатом калия. При этом выпадает осадок гидроксида алюминия, выделяется углекислый газ и образуется хлорид калия:

3. Углекислый газ также образуется при термическом разложении нерастворимых карбонатов и при разложении растворимых гидрокарбонатов.

Например , карбонат кальция разлагается при нагревании на оксид кальция и углекислый газ:

Углекислый газ — типичный кислотный оксид . За счет углерода со степенью окисления +4 проявляет слабые окислительные свойства .

1. Как кислотный оксид, углекислый газ взаимодействует с водой . Реакция очень сильно обратима, поэтому мы считаем, что в реакциях угольная кислота распадается почти полностью при образовании.

2. Как кислотный оксид, углекислый газ взаимодействует с основными оксидами и основаниями . При этом углекислый газ реагирует только с сильными основаниями (щелочами) и их оксидами . При взаимодействии углекислого газа с щелочами возможно образование как кислых, так и средних солей.

Например , гидроксид калия взаимодействует с углекислым газом. В избытке углекислого газа образуется кислая соль, гидрокарбонат калия:

При избытке щелочи образуется средняя соль, карбонат калия:

Помутнение известковой воды — качественная реакция на углекислый газ:

Видеоопыт взаимодействия гидроксида кальция (известковая вода) с углекислым газом можно посмотреть здесь.

3. Углекислый газ взаимодействует с карбонатами . При пропускании СО2 через раствор карбонатов образуются гидрокарбонаты.

Например , карбонат натрия взаимодействует с углекислым газом. В избытке углекислого газа образуется кислая соль, гидрокарбонат натрия:

4. Как слабый окислитель, углекислый газ взаимодействует с некоторыми восстановителями .

Например , углекислый газ взаимодействует с углеродом с образованием угарного газа:

Магний горит в атмосфере углекислого газа:

2М g + CO 2 → C + 2 MgO

Видеоопыт взаимодействия магния с углекислым газом можно посмотреть здесь.

Поэтому углекислый газ нельзя применять для пожаротушения горящего магния.

Углекислый газ взаимодействует с пероксидом натрия. При этом пероксид натрия диспропорционирует:

Карбонаты и гидрокарбонаты

При нагревании карбонаты (все, кроме карбонатов щелочных металлов и аммония) разлагаются до оксида металла и оксида углерода (IV).

Карбонат аммония при нагревании разлагается на аммиак, воду и углекислый газ:

Гидрокарбонаты при нагревании переходят в карбонаты:

Качественной реакцией на ионы СО3 2─ и НСО3 − является их взаимодействие с более сильными кислотами , последние вытесняют угольную кислоту из солей, а та разлагается с выделением СО2.

Например , карбонат натрия взаимодействует с соляной кислотой:

Гидрокарбонат натрия также взаимодействует с соляной кислотой:

NaHCO3 + HCl → NaCl + CO2 ↑ + H2O

Гидролиз карбонатов и гидрокарбонатов

Растворимые карбонаты и гидрокарбонаты гидролизуются по аниону. Гидролиз протекает ступенчато и обратимо, т.е. чуть-чуть:

Однако карбонаты и гидрокарбонаты алюминия, хрома (III) и железа (III) гидролизуются необратимо, полностью, т.е. в водном растворе не существуют, а разлагаются водой:

Читайте также: