Когда частота падающего на металл света увеличилась в 2 раза

Обновлено: 30.06.2024

С6-1. Красная граница фотоэффекта для вещества фотокатода λо = 290 нм. При облучении катода светом с длиной волны λ фототок прекращается при запирающем напряжении между анодом и катодом U = 1,9 В. Определите длину волны λ.

С6-2. Красная граница фотоэффекта для вещества фотокатода λ0 = 290 нм. Фотокатод облучают светом с длиной волны λ = 220 нм. При каком напряжении между анодом и катодом фототок прекращается?

С6-4. При облучении металлической пластинки квантами света с энергией 3 эВ из нее выбиваются электроны, которые проходят ускоряющую разность потенциалов ΔU = 5 В. Какова работа выхода Авых, если максимальная энергия ускоренных электронов Е e равна удвоенной энергии фотонов, выбивающих их из металла?

С6-5. При облучении металлической пластинки квантами света с энергией 3 эВ из нее выбиваются электроны, которые проходят ускоряющую разность потенциалов U. Работа выхода электронов из металла Авых = 2 эВ. Определите ускоряющую разность потенциалов U, если максимальная энергия ускоренных электронов Ее равна удвоенной энергии фотонов, выбивающих их из металла.

С6-6. Работа выхода электрона из металлической пластины Авых = 3,68 • 10 -19 Дж. Какова максимальная скорость электронов, выбиваемых из пластины светом с частотой v = 7 · 10 14 Гц?

С6-10. Фотон с длиной волны, соответствующей красной границе фотоэффекта, выбивает электрон из металлической пластинки (катода) в сосуде, из которого откачан воздух. Электрон разгоняется однородным электрическим полем с напряженностью E = 5•10 4 В/м. Какой должна быть длина пути электрона S в электрическом поле, чтобы он разогнался до скорости, составляющей 10% от скорости света в вакууме? Релятивистские эффекты не учитывать.

С6-11. Фотон с длиной волны, соответствующей красной границе фотоэффекта, выбивает электрон из фотокатода, помещённого в сосуд, из которого откачан воздух. Электрон разгоняется однородным электрическим полем напряжённостью Е = 5 · 10 4 В/м. До какой скорости электрон разгонится в этом поле, пролетев путь S = 5 · 10 -4 м? Релятивистские эффекты и силу тяжести не учитывать.

С6-13. В вакууме находятся два покрытых кальцием электрода, к которым подключен конденсатор емкостью С = 8000 пФ. При длительном освещении катода светом фототок, возникший вначале, прекращается, а на конденсаторе появляется заряд q = 11 • 10 -9 Кл. Работа выхода электронов из кальция А = 4,42 · 10 -19 Дж. Определите длину волны λ света, освещающего катод.

Фотоэффект

Начало теории электромагнитной природы света заложил Максвелл, который заметил сходство в скоростях распространения электромагнитных и световых волн. Но согласно электродинамической теории Максвелла любое тело, излучающее электромагнитные волны, должно в итоге остынуть до абсолютного нуля. В действительности этого не происходит. Противоречия между теорией и опытными наблюдениями были разрешены в начале XX века, вскоре после того, как был открыт фотоэффект.

Что такое фотоэффект

Фотоэффект — испускание электронов из вещества под действием падающего на него света.

Александр Столетов

Явление фотоэффекта было открыто в 1887 году Генрихом Герцем. Фотоэффект также был подробно изучен русским физиком Александром Столетовым в период с 1888 до 1890 годы. Этому явлению он посвятил 6 научных работ.

Для наблюдения фотоэффекта нужно провести опыт. Для этого понадобится электрометр и подсоединенная к нему пластинка из цинка (см. рисунок ниже). Если дать пластинке положительный заряд, то при ее освещении электрической дугой скорость разрядки электрометра не изменится. Но если цинковую пластинку зарядить отрицательно, то свет от дуги заставить электрометр разрядиться очень быстро.


Наблюдаемое во время этого эксперимента явление имеет простое объяснение. Свет вырывает электроны с поверхности цинковой пластинки. Если она имеет отрицательный заряд, электроны отталкиваются от нее, что приводит к полному разряжению электрометра. Причем при повышении интенсивности освещения скорость разрядки увеличивается, ровно, как и наоборот: при уменьшении интенсивности освещения электрометр разряжается медленно. Если же зарядить пластинку положительно, то электроны, которые вырываются светом, притягиваются к ней. Поэтому они оседают на ней, не изменяя заряд электрометра.

Если между световым пучком и отрицательно заряженной пластиной поставить лист стекла, пластинка перестанет терять электроны независимо от интенсивности излучения. Это связано с тем, что стекло задерживает ультрафиолетовое излучение. Отсюда можно сделать следующий вывод:

Явление фотоэффекта может вызвать только ультрафиолетовый участок спектра.

Волновая теория света не может объяснить, почему электроны могут вырываться только под действием ультрафиолета. Ведь даже при большой амплитуде и силе волн электроны остаются на месте, когда, казалось бы, они должны непременно быть вырванными.

Законы фотоэффекта

Чтобы получить более полное представление о фотоэффекте, выясним, от чего зависит количество электронов, вырванных светом с поверхности вещества, а также, от чего зависит их скорость, или кинетическая энергия. Выяснить все это нам помогут эксперименты.

Первый закон фотоэффекта


Возьмем стеклянный баллон и выкачаем из него воздух (смотрите рисунок выше). Затем поместим в него два электрода. На электроды подадим напряжение и будем регулировать его с помощью потенциометра и измерять при помощи вольтметра.

В верхней части нашего баллона есть небольшое кварцевое окошко, которое пропускает весь свет, в том числе ультрафиолетовый. Через него падает свет на один из электродов (в нашем случае на левый электрод, к которому присоединен отрицательный полюс батареи). Мы увидим, что под действием света этот электрод начнет испускать электроны, которые при движении в электрическом поле будут создавать электрический ток. Вырванные электроны будут направляться ко второму электроду. Но если напряжение небольшое, второго электрода достигнут не все электроны. Если интенсивность излучения сохранить, но увеличить между электродами разность потенциалов, то сила тока будет увеличиваться. Но как только она достигнет некоторого максимального значения, рост силы тока при дальнейшем увеличении напряжения прекратится. Максимальное значение силы тока будем называть током насыщения.


Ток насыщения — максимальное значение силы тока, также называемое предельным значением силы фототока.

Ток насыщения обозначается как I н . Единица измерения — А (Кл/с). Численно величина равна отношению суммарному заряду вырванных электронов в единицу времени:

Если же мы начнем изменять интенсивность излучения, то сможем заметить, что фототок насыщения также начинается меняться. Если интенсивность излучения ослабить, максимальное значение силы тока уменьшится. Если интенсивность светового потока увеличить, ток насыщения примет большее значение. Отсюда можно сделать вывод, который называют первым законом фотоэффекта.

Первый закон фотоэффекта:

Число электронов, вырываемых светом с поверхности металла за 1 с, прямо пропорционально поглощаемой за это время энергии световой волны. Иными словами, фототок насыщения прямо пропорционален падающему световому потоку Ф.

Второй закон фотоэффекта

Теперь произведем измерения кинетической энергии, то есть, скорости вырывания электронов. Взгляните на график, представленный ниже. Видно, что сила фототока выше нуля даже при нулевом напряжении. Это говорит о том, что даже при нулевой разности потенциалов часть электронов достигает второго электрода.


Если мы поменяем полярность батареи, то будем наблюдать уменьшение силы тока. Если подать на электроды некоторое значение напряжения, равное U з , сила тока станет равно нулю. Это значит, что электрическое поле тормозит вырванные электроны, останавливает их, а затем возвращает на тот же электрод.

Напряжение, равное U з , называют задерживающим напряжением. Оно зависит зависит от максимальной кинетической энергии электронов, которые вырываются под действием света. Измеряя задерживающее напряжение и применяя теорему о кинетической, можно найти максимальное значение кинетической энергии электронов. Оно будет равно:

m v 2 2 . . = e U з

Опыт показывает, что при изменении интенсивности света (плотности потока излучения) задерживающее напряжение не меняется. Значит, не меняется кинетическая энергия электронов. С точки зрения волновой теории света этот факт непонятен. Ведь чем больше интенсивность света, тем большие силы действуют на электроны со стороны электромагнитного поля световой волны и тем большая энергия, казалось бы, должна передаваться электронам. Но экспериментальным путем мы обнаруживаем, что кинетическая энергия вырываемых светом электронов зависит только от частоты света. Отсюда мы можем сделать вывод, являющийся вторым законом фотоэффекта.

Второй закон фотоэффекта:

Максимальная кинетическая энергия фотоэлектронов линейно растет с частотой света и не зависит от его интенсивности.

Причем, если частота света меньше определенной для данного вещества минимальной частоты νmin, фотоэффект наблюдаться не будет.

Теория фотоэффекта

Все попытки объяснить явление фотоэффекта электродинамической теорией Максвелла, согласно которой свет — это электромагнитная волна, непрерывно распределенная в пространстве, оказались тщетными. Нельзя было понять, почему энергия фотоэлектронов определяется только частотой света и почему свет способен вырывать электроны лишь при достаточно малой длине волны.

В попытках объяснить это явление физик Макс Планк предложил, что атомы испускают электромагнитную энергию отдельными порциями — квантами, или фотонами. И энергия каждой порции прямо пропорциональна частоте излучения:

h — коэффициент пропорциональности, который получил название постоянной Планка. Она равна 6,63∙10 –34 Дж∙с.

Пример №1. Определите энергию фотона, соответствующую длине волны λ = 5∙10 –7 м.

Энергия фотона равна:

Выразим частоту фотона через скорость света:

Идею Планка продолжил развивать Эйнштейн, которому удалось дать объяснение фотоэффекту в 1905 году. В экспериментальных законах фотоэффекта Эйнштейн увидел убедительное доказательство того, что свет имеет прерывистую структуру и поглощается отдельными порциями. Причем энергия Е каждой порции излучения, по его расчетам, полностью соответствовала гипотезе Планка.

Из того, что свет излучается порциями, еще не вытекает вывода о прерывистости структуры самого света. Ведь и воду продают в бутылках, но отсюда не следует, что вода состоит из неделимых частиц. Лишь фотоэффект позволил доказать прерывистую структуру света: излученная порция световой энергии Е = hν сохраняет свою индивидуальность и в дальнейшем. Поглотиться может только вся порция целиком.

h ν = A + m v 2 2 . .

Работа выхода — минимальная энергия, которую надо сообщить электрону, чтобы он покинул металл.

Полученное выражение объясняет основные факты, касающиеся фотоэффекта. Интенсивность света, по Эйнштейну, пропорциональна числу квантов (порций) энергии в пучке света и поэтому определяет количество вырванных электронов. Скорость же электронов согласно зависит только от частоты света и работы выхода, которая определяется типом металла и состоянием его поверхности. От интенсивности освещения кинетическая энергия фотоэлектронов не зависит.

Предельную частоту νmin называют красной границей фотоэффекта. При этой частоте фотоэффект уже наблюдается.

Красная граница фотоэффекта равна:

Минимальной частоте, при которой возможен фотоэффект для данного вещества, соответствует максимальная длина волны, которая также носит название красной границы фотоэффекта. Это такая длина волны, при которой фотоэффект еще наблюдается. Обозначается она как λmах или λкр.

Максимальная длина волны, при которой еще наблюдается фотоэффект, равна:

Работа выхода А определяется родом вещества. Поэтому и предельная частота vmin фотоэффекта (красная граница) для разных веществ различна. Отсюда вытекает еще один закон фотоэффекта.

Третий закон фотоэффекта:

Для каждого вещества существует максимальная длина волны, при которой фотоэффект еще наблюдается. При больших длинах волн фотоэффекта нет.

Вспомните опыт, который мы описали в самом начале. Когда между цинковой пластинкой и световым пучком мы поставили зеркало, фотоэффект был прекращен. Это связано с тем, что красная граница для цинка определяется величиной λmах = 3,7 ∙ 10 -7 м. Эта длина волны соответствует ультрафиолетовому излучению, которое не пропускало стекло.

Пример №2. Чему равна красная граница фотоэффекта νmin, если работа выхода электрона из металла равна A = 3,3∙10 –19 Дж?

Применим формулу для вычисления красной границы фотоэффекта:

Задание EF15717 При увеличении в 2 раза частоты света, падающего на поверхность металла, задерживающее напряжение для фотоэлектронов увеличилось в 3 раза. Первоначальная частота падающего света была равна 0,75 ⋅10 15 Гц. Какова длина волны, соответствующая «красной границе» фотоэффекта для этого металла? Ответ записать в нм.

Читайте также: