Коррозия металлов и способы борьбы с коррозией

Обновлено: 04.05.2024

Материалы из металлов под химическим или электрохимическим воздействием окружающей среды подвергаются разрушению, которое называется коррозией.

Коррозия металлов вызывается окислительно-восстановительными реакциями, в результате которых металлы переходят в окисленную форму и теряют свои свойства, что приводит в негодность металлические материалы.

Можно выделить 3 признака, характеризующих коррозию:

  • Коррозия – это с химической точки зрения процесс окислительно-восстановительный.
  • Коррозия – это самопроизвольный процесс, возникающий по причине неустойчивости термодинамической системы металл – компоненты окружающей среды.
  • Коррозия – это процесс, который развивается в основном на поверхности металла. Однако, не исключено, что коррозия может проникнуть и вглубь металла.

Виды коррозии металлов

Наиболее часто встречаются следующие виды коррозии металлов:

  1. Равномерная – охватывает всю поверхность равномерно
  2. Неравномерная
  3. Избирательная
  4. Местная пятнами – корродируют отдельные участки поверхности
  5. Язвенная (или питтинг)
  6. Точечная
  7. Межкристаллитная – распространяется вдоль границ кристалла металла
  8. Растрескивающая
  9. Подповерхностная

виды коррозии металлов

Основные виды коррозии металлов

С точки зрения механизма коррозионного процесса можно выделить два основных типа коррозии: химическую и электрохимическую.

Химическая коррозия металлов

Химическая коррозия металлов — это результат протекания таких химических реакций, в которых после разрушения металлической связи, атомы металла и атомы, входящие в состав окислителей, образуют химическую связь.

Электрический ток между отдельными участками поверхности металла в этом случае не возникает. Такой тип коррозии присущ средам, которые не способны проводить электрический ток – это газы, жидкие неэлектролиты.

Виды химической коррозии

Химическая коррозия металлов бывает газовой и жидкостной.

Газовая коррозия металлов – это результат действия агрессивных газовых или паровых сред на металл при высоких температурах, при отсутствии конденсации влаги на поверхности металла. Это, например, кислород, диоксид серы, сероводород, пары воды, галогены. Такая коррозия в одних случаях может привести к полному разрушению металла (если металл активный), а в других случаях на его поверхности может образоваться защитная пленка (например, алюминий, хром, цирконий).

Жидкостная коррозия металлов– может протекать в таких неэлектролитах, как нефть, смазочные масла, керосин и др. Этот тип коррозии при наличии даже небольшого количества влаги, может легко приобрести электрохимический характер.

При химической коррозии скорость разрушения металла пропорциональна скорости химической реакции и той скорости с которой окислитель проникает сквозь пленку оксида металла, покрывающую его поверхность. Оксидные пленки металлов могут проявлять или не проявлять защитные свойства, что определяется сплошностью.

Фактор Пиллинга-Бэдворса

Сплошность такой пленки оценивают величине фактора Пиллинга—Бэдвордса: (α = Vок/VМе) по отношению объема образовавшегося оксида или другого какого-либо соединения к объему израсходованного на образование этого оксида металла

где Vок — объем образовавшегося оксида

VМе — объем металла, израсходованный на образование оксида

Мок – молярная масса образовавшегося оксида

ρМе – плотность металла

n – число атомов металла

AMe — атомная масса металла

ρок — плотность образовавшегося оксида

Оксидные пленки, у которых α < 1, не являются сплошными и сквозь них кислород легко проникает к поверхности металла. Такие пленки не защищают металл от коррозии. Они образуются при окислении кислородом щелочных и щелочно-земельных металлов (исключая бериллий).

Оксидные пленки, у которых 1 < α < 2,5 являются сплошными и способны защитить металл от коррозии.

При значениях α > 2,5 условие сплошности уже не соблюдается, вследствие чего такие пленки не защищают металл от разрушения.

Ниже представлены значения сплошности α для некоторых оксидов металлов

МеталлОксидαМеталлОксидα
KK2O0,45ZnZnO1,55
NaNa2O0,55AgAg2O1,58
LiLi2O0,59ZrZrO21.60
CaCaO0,63NiNiO1,65
SrSrO0,66BeBeO1,67
BaBaO0,73CuCu2O1,67
MgMgO0,79CuCuO1,74
PbPbO1,15TiTi2O31,76
CdCdO1,21CrCr2O32,07
AlAl2­O21,28FeFe2O32,14
SnSnO21,33WWO33,35
NiNiO1,52

Электрохимическая коррозия металлов

Электрохимическая коррозия металлов – это процесс разрушения металлов в среде различных электролитов, который сопровождается возникновением внутри системы электрического тока.

При таком типе коррозии атом удаляется из кристаллической решетки результате двух сопряженных процессов:

  • Анодного – металл в виде ионов переходит в раствор.
  • Катодного – образовавшиеся при анодном процессе электроны, связываются деполяризатором (вещество — окислитель).

Сам процесс отвода электронов с катодных участков называется деполяризацией, а вещества способствующие отводу – деполяризаторами.

Наибольшее распространение имеет коррозия металлов с водородной и кислородной деполяризацией.

Водородная деполяризация

Водородная деполяризация осуществляется на катоде при электрохимической коррозии в кислой среде:

2H + +2e — = H2 разряд водородных ионов

Кислородная деполяризация

Кислородная деполяризация осуществляется на катоде при электрохимической коррозии в нейтральной среде:

O2 + 4H + +4e — = H2O восстановление растворенного кислорода

Все металлы, по их отношению к электрохимической коррозии, можно разбить на 4 группы, которые определяются величинами их стандартных электродных потенциалов:

  1. Активные металлы (высокая термодинамическая нестабильность) – это все металлы, находящиеся в интервале щелочные металлы — кадмий (Е 0 = -0,4 В). Их коррозия возможна даже в нейтральных водных средах, в которых отсутствуют кислород или другие окислители.
  2. Металлы средней активности (термодинамическая нестабильность) – располагаются между кадмием и водородом (Е 0 = 0,0 В). В нейтральных средах, в отсутствии кислорода, не корродируют, но подвергаются коррозии в кислых средах.
  3. Малоактивные металлы (промежуточная термодинамическая стабильность) – находятся между водородом и родием (Е 0 = +0,8 В). Они устойчивы к коррозии в нейтральных и кислых средах, в которых отсутствует кислород или другие окислители.
  4. Благородные металлы (высокая термодинамическая стабильность) – золото, платина, иридий, палладий. Могут подвергаться коррозии лишь в кислых средах при наличии в них сильных окислителей.

Виды электрохимической коррозии

Электрохимическая коррозия может протекать в различных средах. В зависимости от характера среды выделяют следующие виды электрохимической коррозии:

  • Коррозия в растворах электролитов — в растворах кислот, оснований, солей, в природной воде.
  • Атмосферная коррозия – в атмосферных условиях и в среде любого влажного газа. Это самый распространенный вид коррозии.

Например, при взаимодействии железа с компонентами окружающей среды, некоторые его участки служат анодом, где происходит окисление железа, а другие – катодом, где происходит восстановление кислорода:

А: Fe – 2e — = Fe 2+

K: O2 + 4H + + 4e — = 2H2O

Катодом является та поверхность, где больше приток кислорода.

  • Почвенная коррозия – в зависимости от состава почв, а также ее аэрации, коррозия может протекать более или менее интенсивно. Кислые почвы наиболее агрессивны, а песчаные – наименее.
  • Аэрационная коррозия — возникает при неравномерном доступе воздуха к различным частям материала.
  • Морская коррозия – протекает в морской воде, в связи с наличием в ней растворенных солей, газов и органических веществ.
  • Биокоррозия – возникает в результате жизнедеятельности бактерий и других организмов, вырабатывающих такие газы как CO2, H2S и др., способствующие коррозии металла.
  • Электрокоррозия – происходит под действием блуждающих токов на подземных сооружениях, в результате работ электрических железных дорог, трамвайных линий и других агрегатов.

Методы защиты от коррозии металла

Основной способ защиты от коррозии металла – это создание защитных покрытий – металлических, неметаллических или химических.

Металлические покрытия

Металлическое покрытие наносится на металл, который нужно защитить от коррозии, слоем другого металла, устойчивого к коррозии в тех же условиях. Если металлическое покрытие изготовлено из металла с более отрицательным потенциалом (более активный) , чем защищаемый, то оно называется анодным покрытием. Если металлическое покрытие изготовлено из металла с более положительным потенциалом (менее активный), чем защищаемый, то оно называется катодным покрытием.

Например, при нанесении слоя цинка на железо, при нарушении целостности покрытия, цинк выступает в качестве анода и будет разрушаться, а железо защищено до тех пор, пока не израсходуется весь цинк. Цинковое покрытие является в данном случае анодным.

Катодным покрытием для защиты железа, может, например, быть медь или никель. При нарушении целостности такого покрытия, разрушается защищаемый металл.

Неметаллические покрытия

Такие покрытия могут быть неорганические (цементный раствор, стекловидная масса) и органические (высокомолекулярные соединения, лаки, краски, битум).

Химические покрытия

В этом случае защищаемый металл подвергают химической обработке с целью образования на поверхности пленки его соединения, устойчивой к коррозии. Сюда относятся:

оксидирование – получение устойчивых оксидных пленок (Al2O3, ZnO и др.);

азотирование – поверхность металла (стали) насыщают азотом;

воронение стали – поверхность металла взаимодействует с органическими веществами;

цементация – получение на поверхности металла его соединения с углеродом.

Изменение состава технического металла и коррозионной среды

Изменение состава технического металла также способствует повышению стойкости металла к коррозии. В этом случае в металл вводят такие соединения, которые увеличивают его коррозионную стойкость.

Изменение состава коррозионной среды (введение ингибиторов коррозии или удаление примесей из окружающей среды) тоже является средством защиты металла от коррозии.

Электрохимическая защита

Электрохимическая защита основывается на присоединении защищаемого сооружения катоду внешнего источника постоянного тока, в результате чего оно становится катодом. Анодом служит металлический лом, который разрушаясь, защищает сооружение от коррозии.

Протекторная защита – один из видов электрохимической защиты – заключается в следующем.

К защищаемому сооружению присоединяют пластины более активного металла, который называется протектором. Протектор – металл с более отрицательным потенциалом – является анодом, а защищаемое сооружение – катодом. Соединение протектора и защищаемого сооружения проводником тока, приводит к разрушению протектора.

Примеры задач с решениями на определение защитных свойств оксидных пленок, определение коррозионной стойкости металлов, а также уравнения реакций, протекающих при электрохимической коррозии металлов приведены в разделе Задачи к разделу Коррозия металлов

Лекция 19. Коррозия металлов. Методы защиты от коррозии

Ключевые слова: электрохимическая и химическая коррозия металлов, способы защиты от коррозии.

Коррозия – самопроизвольный окислительно-восстановительный процесс разрушения металла при взаимодействии с окружающей средой. Среда, в которой происходит разрушение металла, называется коррозионной, а образующиеся в результате коррозии химические соединения – продуктами коррозии. Продукты – оксиды, сульфиды, карбонаты, сульфаты и т.д. – представляют собой прочные соединения, содержащие металлы в ионном виде, которые обладают существенно иными физическими свойствами. По механизму протекания различают два основных вида коррозии: химическая и электрохимическая.

Химическая коррозия подчиняется основным законам химической кинетики гетерогенных реакций. Химическая коррозия подразделяется на газовую – окисление металла кислородом или другими газами (SO2, CO2, H2 и пр.) при высокой температуре и полном отсутствии влаги на поверхности металлического изделия и коррозию в неэлектролитах – разрушение металла в жидких или газообразных агрессивных средах, обладающих малой электропроводностью.

Электрохимическая коррозия - это окисление металлов в электропроводных средах, сопровождающееся образованием и протеканием электрического тока. С электрохимическим механизмом протекают следующие виды процесса коррозии: 1) коррозия в электролитах; 2) почвенная коррозия; 3) электрокоррозия – разрушение подземного металлического сооружения, вызванное блуждающими токами; 4) атмосферная коррозия – разрушение металлов в атмосфере воздуха или среде любого влажного газа; 5) контактная коррозия – коррозия, вызванная электрическими контактами двух металлов, имеющих различный электрохимический потенциал.

При электрохимической коррозии на металле протекают две реакции:

анодная - ионизация атомов металла с переходом ионов металла в раствор электролита: Me → Me n + + nē (окисление 1);

катодная: Ох + nē → Red (восстановление 2).

Механизм электрохимической коррозии связан с возникновением и работой на поверхности металла во влажной среде микрогальваноэлементов. По характеру катодного процесса различают коррозию с водородной и кислородной деполяризацией. В водной среде окислителем являются катионы водорода (Н + ) и растворённый в электролите кислород. Катодный процесс с водородной деполяризацией осуществляется в соответствии с уравнениями:

катодный процесс с кислородной деполяризацией протекает в соответствии: в)O2+4H + +4ē 2H2O (pH < 7); г) O2 + 2H2O + 4ē 4OH - (pH ≥ 7).

Суммарные уравнения: 1. 2Me + 2nH2O → 2Me n + + nH2 + 2nOH - (pH ≥ 7)

2. 4Me + nO2 + 2nH2O → 4Me n+ + 4nOH - (pH ≥ 7)

К основным методам защиты от коррозии относятся:

1. Защитные покрытия металлов.Покрытия подразделяются на металлические, неметаллические и образованные в результате химической или электрохимической обработки поверхности металла. Основная цель защитных покрытий – изолировать металл от воздействия агрессивной среды. Для металлических покрытий обычно применяют металлы, которые образуют на своей поверхности защитные пленки (Al, Cr, Zn, Cd, Ni и др.). Металлические покрытия подразделяют на катодные (металл покрытия менее активный) и анодные (металл покрытия более активный). К неметаллическим покрытиям относятся покрытия красками, лаками, эмалями, минеральными маслами, битумом; металлокерамические и резиновые покрытия. К химическим покрытиям относятся искусственно создаваемые защитные пленки различного состава (оксидные, фосфатные, хроматные, сульфидные и пр.), вызывающие пассивирование поверхности металлов.

Коррозия металлов и методы борьбы с ней

Коррозией называют разрушение металла под воздействием окружающей среды.

Виды коррозии. В зависимости от механизма процесса разрушения металла коррозия может быть химической и электрохимической.

Химическая коррозия возникает при действии на металл сухих газов или жидкостей органического происхождения, которые не являются электролитами. Примером химической коррозии служит окисление металла при высоких температурах, в результате чего на его поверхности возникает продукт окисления – окалина. Данный вид коррозии встречается редко.

Электрохимическая коррозия образуется в результате воздействия на металл электролитов (растворов кислот, щелочей и солей)

В металлах из-за наличия неоднородных структурных составляющих может возникнуть микрокоррозия. Распространяясь по границам зерен металла, она вызывает межкристаллическую коррозию.

В зависимости от характера окружающей среды электрохимическая коррозия может быть:

  • атмосферной,
  • подводной
  • почвенной,
  • вызванной блуждающими токами.

Подводная коррозия возможна в металле строительных конструкций, погруженных в воду. Почвенная коррозия протекает при взаимодействии металла конструкций с почвой. Довольно распространена коррозия металла труб, металлического каркаса подземных сооружений от воздействия блуждающих токов, возникающих при близком расположении подземных кабелей, и рельсов трамвайных или железнодорожных путей.

Защита металла от коррозии.

Существуют различные методы защиты металлов от коррозии, Лакокрасочные покрытия – наиболее распространенный вид антикоррозионной защиты металла. В качестве пленкообразующих материалов используют нитроэмали, нефтяные, каменноугольные и синтетические лаки, краски на основе растительных масел и др. Образующаяся при покрытии на поверхностях конструкций плотная пленка изолирует металл от воздействия окружающей его влажной среды.

Неметаллические покрытия довольно разнообразны. К ним относят эмалирование, покрытие стеклом, цементно-казеиновым составом, листовым пластиком и плитками, напыление пластмасс

Металлические покрытия наносят на металлы гальваническим, химическим, горячим, металлизацией и другими способами.

При гальваническом способе защиты на поверхности металла путем электролитического осаждения из раствора солей металлов создается тонкий защитный слой какого-либо металла. Химическая обработка поверхности металла – изделия погружают в ванну с расплавленным защитным металлом.

Металлизация – распространенный способ защиты металлов в строительстве. Он состоит в нанесении сжатым воздухом тончайшего слоя распыленного расплавленного металла.

При защите легированием в металл вводят легирующие элементы, повышающие сопротивление сплава коррозии. Защита от огня.

Для защиты металлоконструкций наиболее перспективны вспучивающиеся покрытия или краски на основе полимерных связующих, которые при воздействии огня образуют закоксовавшийся вспененный расплав, препят-ствующий нагреву металла.

Для повышения предела огнестойкости (600 °С) металлических, в том числе алюминиевых, конструкций применяют также асбестоцементные, асбестоперлитовые, асбестовермикулитовые покрытия, наносимые пневмонапылением.

Новый вид огнезащиты – фосфатное покрытие толщиной 20-30 мм, представляющее собой стойкую (при 1000 °С) монолитную легкую массу.

Традиционные способы увеличения предела огнестойкости, использование облицовок и штукатурок из несгораемых огнезащитных материалов (кирпича, пустотелой керамики, гипсовых плит, растворов и др.).

Тема 4.1. Коррозия металлов и методы борьбы с ней.

Коррозией металлов называют самопроизвольное разруше­ние металла вследствие химического или электрохимического взаимодействия с окружающей средой.

Под воздействием внешней среды многие металлы и сплавы постепенно окисляются и разрушаются. Разрушение начинается с поверхности и с течением времени распространяется в глубь ме­таллического изделия. Коррозионно-стойкими называют метал­лы и сплавы, которые способны сопротивляться коррозионному воздействию среды. Процессы коррозии в таких металлах проте­кают с малой скоростью. Антикоррозионная защита металлов имеет большое народнохозяйственное значение, поскольку обу­словливает надежность и долговечность эксплуатации машин, ме­ханизмов, различных металлических сооружений (нефте- и газо­проводов, железнодорожных мостов, опор линий электропере­дач и др.).

Практически все металлы (кроме золота, платины и серебра) под действием влаги, воздуха, газов, растворов кислот и щело­чей корродируют и разрушаются. Различают два основных вида коррозии — электрохимическую и химическую.

Электрохимической коррозией называют процесс самопро­извольного взаимодействия металла с коррозионной средой, в хо­де которого последовательно протекают окисление металла и вос­становление окислительного компонента. Она развивается во влажной атмосфере и почве, в морской и речной воде, водных растворах солей, щелочей и кислот. При электрохимической коррозии возникает коррозионный ток и происходит растворе­ние металла вследствие его электрохимического взаимодейст­вия с электролитом. Электролитами при этом могут быть любые жидкости, проводящие электрический ток.

Коррозия большинства металлов протекает по электрохими­ческому механизму. Примерами могут быть ржавление метал­лических конструкций в атмосфере, корпусов судов в речной и морской воде, коррозия оборудования химических предпри­ятий, стальной арматуры гидросооружений.

При соприкосновении металла с электролитом положительно заряженные ионы металла с поверхности переходят в электролит. При этом электролит становится положительно заряженным, а поверхность металла — отрицательно. Между металлом и элек­тролитом возникает электродвижущая сила. Вследствие посто­янного перехода ионов с поверхности металла в электролит будет происходить его постепенное растворение, т.е. коррозия.

Количество электролита при коррозии может быть весьма незначительным. Например, для начала процесса коррозии дос­таточно конденсации влаги из воздуха на поверхности металла, поэтому электрохимическая коррозия наблюдается и в закры­тых помещениях.

В зависимости от условий, в которых протекают коррозион­ные процессы, различают атмосферную, морскую, почвенную, кислотную и щелочную, по характеру разрушения — равномер­ную и местную коррозию. Кроме того, выделяют другие виды коррозионного разрушения.

Кавитационая коррозия — это разрушение металла в резуль­тате электрохимической коррозии и ударного воздействия кавитационных пузырьков электролита при его движении с боль­шой скоростью.

Точечная коррозия — вид местной коррозии в электрохими­чески неоднородной коррозионной среде. Это наиболее опасный вид коррозии, так как распространяется на значительную глу­бину и быстро приводит изделие в негодность. Чаще всего точеч­ная коррозия наблюдается в местах механических повреждений поверхности изделия (риски, царапины, задиры), поэтому она особенно опасна для герметичных конструкций (трубопроводы, емкости, аппараты химической промышленности и т.п.), по­скольку контроль за состоянием их поверхностей затруднен.

Межкристаллитная коррозия представляет собой хрупкое коррозионное разрушение по границам кристаллов, возникающее в результате структурных превращений в процессе эксплуатации.

Коррозия начинается с поверхности и распространяется в глубь изделия, в основном по границам зерен. Этот вид коррозии имеет место также при термической обработке стали или при обработке давлением, если неправильно выбраны режимы нагрева. Такая коррозия мало заметна при визуальном осмотре, поэтому пред­ставляет определенную опасность.

Коррозионная усталость — это разрушение металла при од­новременном воздействии циклических нагрузок и агрессивной среды. Установлено, что разрушение металлов при коррозион­ной усталости более значительно, чем при раздельном воздейст­вии циклических нагрузок и коррозионной среды. Вследствие этого выносливость металлов в коррозионной среде существен­но уменьшается.

Химическая коррозия — разрушение металла вследствие хи­мического взаимодействия с внешней коррозионной средой. Про­дуктами химической коррозии являются химические соединения металла с окислительными компонентами среды, например об­разование ржавчины, вызванное действием кислорода и влаги:

Химическая коррозия развивается при воздействии на металл сухих газов (например, продуктов сгорания топлива), сухого во­дяного пара, кислорода, а также жидкостей, не проводящих элек­трический ток.

В чистом виде химическая коррозия наблюдается, например, при высокотемпературном нагреве стали для горячей обработки давлением или термической обработки (образование окалины), на деталях топок и котлов, тепловых двигателей, газо- и нефте­проводов.

В отдельных случаях пленки из образовавшихся при хими­ческой коррозии соединений предохраняют металлы от дальней­шего разрушения. Например, плотная оксидная защитная пленка образуется на поверхности алюминия, никеля, хрома и некото­рых других металлов. Пленки оксидов железа на стальных дета­лях непрочные, они неплотно прилегают к поверхности металла и не препятствуют проникновению коррозии в глубь деталей.

Для оценки степени разрушения металлов в процессе корро­зии принят показатель, называемый коррозионной стойкостью. Коррозионную стойкость металлов можно оценить внешним ос­мотром, при этом определяют характер распространения корро­зии, особенности продуктов коррозии, прочность их сцепления с поверхностью металла и т.п.

Мерой коррозионной стойкости металлов может быть ско­рость коррозии, которую определяют по изменению массы ме­талла в результате коррозии, отнесенной к единице площади поверхности, в единицу времени. В частности, скорость коррозии выражают массой (в граммах) металла, превращенного в про­дукты коррозии за единицу времени (1 ч) и отнесенной к единице его поверхности (1 м 2 ).

На скорость коррозии влияет состав металлов, их механиче­ская и термическая обработка, состояние поверхности, а также температура, характер среды и нагрузки. С повышением темпе­ратуры скорость коррозионных процессов возрастает. Полиро­ванные поверхности окисляются медленнее, так как пленка оксидов более равномерна по толщине и поэтому более прочно сцеплена с поверхностью металла.

По способности противостоять коррозионному воздействию внешней среды металлы подразделяют:

• на коррозионно-стойкие, обладающие стойкостью к элек­трохимической коррозии (например, высоколегированные хро­мистые стали);

• жаростойкие, способные сопротивляться коррозионному воздействию агрессивных газов в ненагруженных или слабо на­груженных конструкциях, при высоких температурах (выше

• жаропрочные, работающие в нагруженных узлах машин и длительно сохраняющие работоспособность при высоких темпе­ратурах;

• кислотостойкие, не разрушающиеся в агрессивных кислот­ных средах.

• Все конструкционные и инструментальные материалы в боль­шей или меньшей степени подвержены коррозионному дейст­вию внешней среды. Большая часть изделий в машиностроении изготовлена из сталей и чугунов, поэтому их защита от корро­зии представляет наибольший интерес.

• Существует много способов защиты металлов от коррозии. Вы­бор того или иного способа определяется конкретными условия­ми работы или хранения изделия. В настоящее время с целью увеличения срока службы изделий и обеспечения надежности их работы используют следующие способы защиты от коррозии: нанесение металлических и неметаллических покрытий, при­менение ингибиторов коррозии, химическая и электрохимиче­ская защита.

• Металлические покрытия применяют для защиты от кор­розии деталей машин и приборов, а также различных металло­конструкций. При этом выбирают металл, обладающий доста­точной коррозионной стойкостью в данной среде. В ряде случаев нанесенные покрытия могут повысить износостойкость не только отдельных деталей, но и изделия в целом.

• Различают два типа металлических покрытий — анодное и катодное. При анодном покрытии изделие защищают метал­лом с большим отрицательным электродным потенциалом. Срок службы анодных покрытий возрастает при увеличении их тол­щины. Анодное покрытие защищает основной металл готовых изделий электрохимически. Для железоуглеродистых сплавов в качестве анодного покрытия может быть использован цинк или кадмий. Покрытие из цинка наносят также на медь, латунь, алюминий. Цинковые покрытия широко применяют для защиты листовой стали, а также водопроводных труб и различных ре­зервуаров от действия воды и других жидкостей.

• Катодные покрытия производят металлами, электродный потенциал которых в данном электролите выше потенциала ос­новного металла. Катодные покрытия создают механическую защиту основного металла. Нарушение сплошности покрытия (например, механическое повреждение) приводит к усилению электрохимической коррозии основного металла. Для сталей катодным покрытием может быть олово, медь, никель.

• Металлические покрытия наносят различными способами. Наиболее часто применяют горячий способ, гальванизацию, а также напыление и плакирование.

• При горячем способе получения покрытия изделие погружают в расплавленный металл, который смачивает поверхность и по­крывает ее тонким слоем. Затем изделие вынимают из ванны и охлаждают. Горячий способ применяют для нанесения тонкого слоя олова (лужение) или цинка (цинкование).

• Лужение применяется в производстве белой жести, для по­крытия внутренних поверхностей пищевых котлов и для дру­гих целей, цинкование — для защиты проволоки, кровельного железа, труб.

• Гальванизация, т.е. нанесение металлических покрытий галь­ваническим путем, основана на физических законах о прохож­дении постоянного электрического тока через жидкую среду- электролит. При этом в качестве анода применяют металл, кото­рый необходимо нанести в качестве покрытия. Катодом служит изделие. При пропускании тока через электролит анод раство­ряется в электролите и наполняет его катионами, которые затем разряжаются на катоде (изделии). Гальванизация обеспечивает нанесение покрытия практически из любого металла на заго­товки также из любого металла. Толщину гальванического по­крытия можно регулировать в достаточно широких пределах.

• Напылением плазменной струей наносят антикоррозионные покрытия из расплавленного металла (металлизация), оксидов, боридов, нитридов и других соединений. Они могут применяться в виде проволоки, прутков или порошков. Аппараты для напыле­ния называются металлизаторами. Преимуществом плазменного напыления является формирование покрытий высокой плотности при хорошей сцепляемости с основанием.

• Плакирование (термомеханическое покрытие) заключается в совместной горячей прокатке основного и защитного металлов. Сцепление между металлами осуществляется в результате диф­фузии под влиянием совместной деформации горячей заготовки. Защищаемый металл покрывают с одной или с обеих сторон ме­дью, медными сплавами, алюминием или нержавеющей сталью.

• Неметаллические покрытия выполняются из лаков, кра­сок, эмалей, смазок, пластмасс и других органических и неорга­нических веществ.

• Наиболее распространенным способом защиты металлокон­струкций, машин и механизмов от воздействия различных аг­рессивных сред являются лакокрасочные покрытия, которые имеют значительные преимущества перед металлическими. Они легко наносятся на изделие, хорошо закрывают поры, не влияют на свойства металла и являются сравнительно недорогими. При правильном подборе лаков и красок и соблюдении технологии их нанесения срок службы покрытий около 5 лет.

• Технологический процесс нанесения лакокрасочного покры­тия включает подготовку поверхности, приготовление лакокра­сочных материалов, нанесение покрытий и их сушку.

• При длительном хранении и транспортировке металлические изделия покрывают специальными консервационными смазками и жирами. При необходимости смазки периодически обновляют.

• Ингибиторы коррозии — это органические и неорганические соединения, которые вводят в небольших количествах в агрес­сивную среду для предотвращения коррозии или уменьшения ее скорости. Ингибиторы коррозии используют, например, для защиты различных трубопроводов, теплообменных аппаратов, нефтедобывающего и химического оборудования.

• Химическая защита заключается в искусственном создании на поверхности изделия защитных пленок. Защитные пленки получают при воздействии на металл сильных химических реа­гентов. Наведение оксидных пленок называют оксидированием. Наиболее широко применяют оксидирование для защиты от кор­розии алюминия, магния и их сплавов.

• На стальных изделиях наводят также пленки из фосфатов мар­ганца и железа. Этот процесс называют фосфатированием. По­лучаемые при этом пленки прочнее оксидных.

• Электрохимическая защита — защита металлов от коррозии при помощи протекторов. Протекторы применяют для защиты конструкций, соприкасающихся с электролитом. Протекторы. — пластины из металла, имеющего в данной среде меньший элек­тродный потенциал, чем потенциал основного металла. Протекто­ры прикрепляют к поверхности защищаемого изделия, в результа­те образуется гальваническая пара, в которой анодом является протектор, а катодом — изделие. В таких условиях протектор будет постепенно разрушаться, защищая основной металл. После полного разрушения протектор заменяют. Таким способом за­щищают, например, подводные части морских судов, прикрепляя к ним цинковые протекторы.

• Катодную защиту применяют для защиты подземных метал­лических сооружений (трубопроводов, кабелей и др.), которые присоединяют к отрицательному полюсу источника постоянного тока, а положительный полюс заземляют.

• Следует заметить, что значительное повышение антикорро­зионных свойств сталей достигается введением в их состав неко­торых легирующих элементов. При оптимальном сочетании таких элементов можно создать композиции, практически не корроди­рующие в данной среде. Так, сталь, содержащая 12 % хрома, коррозионно-стойкая в атмосфере и других средах. Введение в сталь никеля повышает ее кислотостойкость, дополнительная присадка меди повышает антикоррозионность в кислых средах при повы­шенных температурах.

Коррозия металлов и способы защиты от нее

Коррозионная стойкость металла зависит от его природы, характера среды и температуры.

  • Благородные металлы не подвергаются коррозии из-за химической инертности.
  • Металлы Al, Ti, Zn, Cr, Ni имеют плотные газонепроницаемые оксидные плёнки, которые препятствуют коррозии.
  • Металлы с рыхлой оксидной плёнкой – Fe, Cu и другие – коррозионно неустойчивы. Особенно сильно ржавеет железо.

Различают химическую и электрохимическую коррозию.

Химическая коррозия сопровождается химическими реакциями. Как правило, химическая коррозия металлов происходит при действии на металл сухих газов, её также называют газовой.

При химической коррозии также возможны процессы:

Fe + 2HCl → FeCl2 + H2

2Fe + 3Cl2 → 2FeCl3

Как правило, такие процессы протекают в аппаратах химических производств.

Электрохимическая коррозия – это процесс разрушения металла, который сопровождается электрохимическими процессами. Как правило, электрохимическая коррозия протекает в присутствии воды и кислорода, либо в растворах электролитов.

В таких растворах на поверхности металла возникают процессы переноса электронов от металла к окислителю, которым является либо кислород, либо кислота, содержащаяся в растворе.

При этом электродами являются сам металл (например, железо) и содержащиеся в нем примеси (обычно менее активные металлы, например, олово).

В таком загрязнённом металле идёт перенос электронов от железа к олову, при этом железо (анод) растворяется, т.е. подвергается коррозии:

Fe –2e = Fe 2+

На поверхности олова (катод) идёт процесс восстановления водорода из воды или растворённого кислорода:

2H + + 2e → H2

O2 + 2H2O + 4e → 4OH –

Например, при контакте железа с оловом в растворе соляной кислоты происходят процессы:

Анод: Fe –2e → Fe 2+

Катод: 2H + + 2e → H2

Суммарная реакция: Fe + 2H + → H2 + Fe 2+

Если реакция проходит в атмосферных условиях в воде, в ней участвует кислород и происходят процессы:

Анод: Fe –2e → Fe 2+

Катод: O2 + 2H2O + 4e → 4OH –

Суммарная реакция:

Fe 2+ + 2OH – → Fe(OH)2

4Fe(OH)2 + O2+ 2H2O → 4Fe(OH)3

При этом образуется ржавчина.

Методы защиты от коррозии

Защитные покрытия

Защитные покрытия предотвращают контакт поверхности металла с окислителями.

  • Катодное покрытие – покрытие менее активным металлом (защищает металл только неповреждённое покрытие).
  • Покрытие краской, лаками, смазками.
  • Создание на поверхности некоторых металлов прочной оксидной плёнки химическим путём (анодирование алюминия, кипячение железа в фосфорной кислоте).

Создание сплавов, стойких к коррозии

Физические свойства сплавов могут существенно отличаться от свойств чистых металлов. Добавление некоторых металлов может приводить к повышению коррозионной стойкости сплава. Например, нержавеющая сталь, новые сплавы с большой коррозионной устойчивостью.

Изменение состава среды

Коррозия замедляется при добавлении в среду, окружающую металлическую конструкцию, ингибиторов коррозии. Ингибиторы коррозии — это вещества, подавляющие процессы коррозии.

Электрохимические методы защиты

Протекторная защита: при присоединении к металлической конструкции пластинок из более активного металла – протектора. В результате идёт разрушение протектора, а металлическая конструкция при этом не разрушается.

Читайте также: