Красная граница фотоэффекта для металла 6 2

Обновлено: 16.05.2024

Задача 1. Математический маятник длиной l1=40 см и физический маятник в виде тонкого прямого стержня длиной l2=60 см синхронно колеблются около одной и той же горизонтальной оси. Определить расстояние a центра масс стержня от оси колебаний.

При синхронном колебательном движении маятников их периоды равны ,

Момент инерции физического маятника определяется по теореме Штейнера:

Подставив (2) в (1), получим квадратное уравнение

Из (3) найдем два корня: a1=10 см, a2=30 см.

Таким образом, при одном и том же периоде колебаний физического маятника возможны два варианта расположения оси.

Величину (1) называют приведенной длиной физического маятника.

Задача 2.В вакууме распространяется плоская электромагнитная волна. Амплитуда напряженности магнитного поля волны 0,1 А/м. Определить энергию, переносимую этой волной через поверхность площадью 1 м 2 , расположенную перпендикулярно направлению распространения волны, за время t = 1 с. Период волны T

Плотность потока энергии электромагнитной волны определяется вектором Пойнтинга:

, где и – векторы напряженности электромагнитного и магнитного полей. Учитывая, что векторы и электромагнитной волны взаимно перпендикулярны, для модуля вектора p получим

Так как величины E и H в каждой точке волны меняются со временем по гармоническому закону, находясь в одинаковых фазах, то мгновенное значение p равно

Энергия, переносимая через площадку S, перпендикулярную направлению распространения волны, в единицу времени,

Учитывая, что в электромагнитной волне

Тогда выражение (*) принимает вид

Энергия, переносимая волной за время t, равна

Подставляя числовые значения, получим

W = (0,1 А/м) 2 1 м 2 1 с = 1,88 Дж

Ответ: W = 1,88 Дж.

Задача 3.Радиусы кривизны поверхностей линзы R1 = R2 = 20 см. Определить: а) фокусное расстояние линзы в воздухе; б) фокусное расстояние этой же линзы, погруженной в жидкость (nж = 1,7). Показатель преломления материала линзы nл = 1,5.

Формула тонкой линзы

Применим данную формулу для случая (a), когда линза находится в воздухе, учитывая, что R1 = R2 = R

Для случая (б), когда линза погружена в жидкость

Задача 4.Установка для получения колец Ньютона освещается монохроматическим светом, падающим по нормали к поверхности пластинки. Наблюдение ведется в отраженном свете. Расстояние между вторым и двадцатым темными кольцами Δ τ2,20 = 4,8 мм

Найти расстояние между девятым и шестнадцатым темными кольцами Ньютона.

Радиус темных колец в отраженном свете определяется формулой:

𝑘 – порядковый номер кольца;

R – радиус кривизны линзы.

Δ τ9,16 = = = 1,57 10 – 3 м

Ответ: Δ τ9,16 = 1,57 10 – 3 м = 1,57 мм

Задача 5.На дифракционную решетку нормально падает монохроматический свет. Определить угол дифракции для линии λ1 = 550 нм в четвертом порядке, если этот угол для линии λ2 = 600 нм в третьем порядке составляет 30˚.

Формула дифракционной решетки для двух линий

Поделим уравнение (1) на уравнение (2) и получим

откуда sinφ1 = = = 0,61

φ1 = arcsin 0,61 = 37˚42΄

Задача 6.Найдите угол полной поляризации (iБр) при отражении света от стекла (nc = 1,57), помещенного в воду (nв = 1,33). Определить скорость света в воде.

Согласно закону Брюстера tg iБр = при этом n1 = nв; n2 = nс

Тогда tg iБр = = 1,18, следовательно, iБр = arctg 1,18 ≈ 50˚

Абсолютный показатель преломления среды n = , тогда, зная nв, найдем скорость распространения света в воде: V = = = 2,26 10 8

Ответ: iБр ≈ 50˚; V = 2,26 10 8

Задача 7.Температура внутренней поверхности электрической печи

T = 700˚C. Определите мощность излучения печи через небольшое отверстие диаметром d = 5 см, рассматривая его как излучение абсолютно черного тела.

Из закона Стефана – Больцмана энергетическая светимость (излучательность) черного тела R = σ T 4 . Другой стороны, N = R S, где S – площадь отверстия.

S = П τ 2 = П ( ) 2 = , подставим

N = R S = σ T 4 * = = 9,97 10 1 = 99,7 Вт

Ответ: N = 99,7 Вт

Задача 8.Красная граница фотоэффекта для металла λк = 6,2 10 – 5 см. Найти величину запирающего напряжения для фотоэлектронов при освещении металла светом длиной волны λ = 330 нм.

Запирающее напряжение – это напряжение на электродах, способное остановить электроны, вылетевшие из металла. Следовательно, работа сил электрического поля Аэ равна кинетической энергии фотоэлектронов. Аэ = Ек или е U = Ек. Кинетическую энергию определяем из уравнения Эйнштейна.

Если известна красная граница фотоэффекта, то работа выхода определяется из выражения Aвых = h νк = h

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Задача 1. Определите красноволновую границу фотоэффекта для натрия, если работа выхода электрона из фотокатода А=2,3 эВ.

Задача 2. Работа выхода электронов из пластины Авых=6,3 эВ. Определить, произойдет ли внешний фотоэффект, если на пластину падает свет с частотой ν1=8·10 14 Гц, ν2=3·10 16 Гц.

Дано: СИ: Решение:
Авых=6,3 эВ 1·10 -18 Дж Внешний фотоэлектрический эффект
ν1=8·10 14 Гц произойдет в том случае, если ν>νкр.
ν2=3·10 16 Гц Уравнение для красной границы фотоэффекта
Найти: крвых (1)
νкр-? Из (1) определяем νкрвых/h.
Вычисления дают νкр=1,5·10 15 Гц
При этой частоте фотоэффекта не произойдет.
Во втором случае вычисления покажут, что фотоэффект произойдет.

Задача 3. При облучении фотоэлемента светом с частотой 1,6·10 15 Гц фототок прекращается при задерживающем напряжении U=4,1 В. Определить А- работу выхода электрона с поверхности фотокатода, λ- красную границу фотоэффекта.

Дано: Решение:
ν=1,6·10 15 Гц Электрон может пролететь через тормозящее поле, разность потенциалов которого U, если
U=4,1В eU ≤ (1)
h=6,63·10 -34 Дж·с Уравнение Эйнштейна для фотоэффекта в данном случае имеет вид:
е=1,6·10 -19 Кл е·U=Авых +еU (2), откуда А=hv-еU (3)
Найти: вых, откуда λ=
Авых-? A=6,63·10 -34 ·1,6·10 15 -1,6·10 -19 ·4,1=4·10 -19 Дж
λкр-? λ= 5·10 -7 м.
Ответ: А=4·10 -19 Дж, λ=5·10 -7 м.

Задание 2. Решите количественные задачи.

Задача 1. Длина волны света λ, частота ν, масса фотона mf, импульс Pf, энергия Ef. Определите значение величин, обозначенных «?».

Вариант 1 2 3 4 5 6 7 8 9 10
λ, нм ? ? 600 ? ? ? ? 10 ? ?
ν, Гц ? 5·10 14 ? ? ? ? 10 17 ? ? ?
mf mе ? ? ? ? mр ? ? ? ?
Pf, ? ? ? ? 1,2·10 -27 ? ? ? ? 2·10 -30
Ef, Дж ? ? ? 6,4·10 -19 ? ? ? ? 1,5·10 -20 ?

Задача 2. Работа выхода электронов с поверхности металла равна Ав. Металл облучается светом с длиной волны λ и частотой ν. Скорость электронов выбитых с поверхности металла . Красная граница λк. Определите значение величин, обозначенных «?».

Вариант 1 2 3 4 5 6 7 8 9 10
Ав, эВ 4,3 ? 2,2 ? ? ? 4,4 ? 4 3,8
λ , нм 200 ? ? 250 ? 200 ? ? 280 ?
ν , 10 15 Гц ? ? ? ? 1,25 ? 1,5 0,6 ? 1
, Мм/с ? 0,5 1 ? ? ? ? ? ? ?
λк , нм ? 280 ? 309 326 288 ? 563 ? ?

Задача 3. Задерживающая разность потенциалов в опыте по фотоэффекту равна Uз. Скорость фотоэлектронов , энергия - E. Определите значение величин, обозначенных «?».

Вариант 1 2 3 4 5 6 7 8 9 10
Uз, В 3 ? ? 9 ? ? 4 ? ? 5
, Мм/с ? 1,8 ? ? 3 ? ? 1,2 ? ?
E,10 -19 Дж ? ? 6,4 ? ? 10 ? ? 3,2 ?

Задача 4. Работа выхода электронов с поверхности металла Ав, задерживающая разность потенциалов Uз, частота падающего света ν, масса фотонов mf. Определите значение величин, обозначенных «?».

Вариант 1 2 3 4 5 6 7 8 9 10
Ав, эВ 4 ? 4,4 ? 4,3 4 ? ? 3,8 ?
Uз, В 3,2 4,5 ? 6 ? 5,3 2,8 4,4 ? 5
ν,10 15 Гц ? ? 1,5 2,4 2,17 ? ? 2,1 1,75 ?
mf,10 -35 кг ? 1,17 ? ? ? ? 0,9 ? ? 1,5

Задача 5. При торможении электронов, проходящих разность потенциалов Uобразуется рентгеновское излучение с частотой ν, и длиной волны λ. Определите значение величин, обозначенных «?».

Решение задач по физике на тему "Фотоэффект" (11 класс)

1. Какой скоростью обладают электроны, вырванные из натрия светом, длина волны которого 66нм? Работа выхода электрона из натрия Дж. Из уравнения Эйнштейна для фотоэффекта, энергия одного кванта света уходит на работу выхода и кинетическую энергию:

где - работа выхода (по условию Дж), - постоянная Планка ( Дж*с), – масса электрона ( кг), – его скорость.
Энергия фотона:

где - постоянная Планка ( Дж*с), c - скорость света ( м), - длинна волны (по условию 66 нм) Откуда:

2. В опытах по фотоэффекту взяли пластину из металла с работой выхода Дж и стали освещать ее светом частотой Гц. Как изменится работа выхода фотоэлектронов из металла и максимальная кинетическая энергия фотоэлектронов , вылетающих с поверхности металла, если увеличить интенсивность падающего света, не изменяя его частоту? Для каждой величины определите соответствующий характер изменения:

Увеличится, уменьшится, не изменится

Работа выхода - это работу, которую должна совершить частица, чтобы вылететь из пластинки. И она (работа) зависит только от материала пластины. Так как пластина не меняется от опыта к опыту, то и работа выхода остается неизменной.

Запишем уравнение Эйнштейна для фотоэффекта:

где - постоянная Планка; - максимальная кинетическая энергия.

Из первой формулы видно, что максимальная кинетическая энергия зависит только от частоты света, следовательно, при увеличении интенсивности она не изменяется.

3. Скорость фотоэлектрона зависит от энергии фотона, вызывающего фотоэффект: если энергия фотона много меньше энергии покоя электрона то можно применять формулу (3), если же энергия фотона сравнима с , то вычисление необходимо вести по формуле (4).

1. Вычислим энергию покоя электрона:

2. Вычислим энергию фотона по формуле (2):

Энергия фотона много меньше энергии покоя электрона, поэтому

4. При облучении металлической пластинки квантами света с энергией 3 эВ из нее выбиваются электроны, которые проходят ускоряющую разность потенциалов 5 В . Какова работа выхода Авых , если максимальная энергия ускоренных электронов Ее равна удвоенной энергии фотонов, выбивающих их из металла?

Уравнение Эйнштейна для фотоэффекта:

Энергия ускоренных электронов:

5 .Красная граница фотоэффекта для серебра 0,26 мкм. Определите работу выхода.

1.Длина волны красной границы фотоэффекта для некоторого металла составляет 307 нм. Максимальная кинетическая энергия фотоэлектронов – 1 эВ. Найти отношение работы выхода электрона к энергии падающего фотона.

2.Частота света красной границы фотоэффекта для некоторого металла составляет 6*1014 Гц, задерживающая разность потенциалов для фотоэлектронов – 2В. Определить частоту падающего света и работу выхода электронов.

3. Работа выхода электрона из металла составляет 4,28эВ. Найти граничную длину волны фотоэффекта.

4. На медный шарик падает монохроматический свет с длиной волны 0,165 мкм. До какого потенциала зарядится шарик, если работа выхода электрона для меди 4,5 эВ?

6. Какая доля энергии фотона израсходована на работу вырывания фотоэлектрона, если красная граница фотоэффекта λ0=307 нм и максимальная кинетическая энергия Tmax фотоэлектрона равна 1 эВ?

7. На поверхность лития падает монохроматический свет (λ=310 нм). Чтобы прекратить эмиссию электронов, нужно приложить задерживающую разность потенциалов U не менее 1,7 В. Определить работу выхода А.

8. Для прекращения фотоэффекта, вызванного облучением ультрафиолетовым светом платиновой пластинки, нужно приложить задерживающую разность потенциалов U1=3,7 В. Если платиновую пластинку заменить другой пластинкой, то задерживающую разность потенциалов придется увеличить до 6 В. Определить работу А выхода электронов с поверхности этой пластинки.

9. На цинковую пластинку падает монохроматический свет с длиной волны λ=220 нм. Определить максимальную скорость vmax фотоэлектронов.

10. Определить длину волны λ ультрафиолетового излучения, падающего на поверхность некоторого металла, при максимальной скорости фотоэлектронов, равной 10 Мм/с. Работой выхода электронов из металла пренебречь.

11. Определить максимальную скорость vmax фотоэлектронов, вылетающих из металла под действием γ-излучения с длиной волны λ=0,3 нм.

12. Определить максимальную скорость vmax фотоэлектронов, вылетающих из металла при облучении γ-фотонами с энергией ε=1,53 МэВ.

13. Максимальная скорость vmax фотоэлектронов, вылетающих из металла при облучении его γ-фотонами, равна 291 Мм/с. Определить энергию ε γ-фотонов.

Примеры решенных задач по физике на тему "Фотоэффект"

Ниже размещены условия задач и отсканированные решения. Если вам нужно решить задачу на эту тему, вы можете найти здесь похожее условие и решить свою по аналогии. Загрузка страницы может занять некоторое время в связи с большим количеством рисунков. Если Вам понадобится решение задач или онлайн помощь по физике- обращайтесь, будем рады помочь.

Явление фотоэффекта заключается в испускании веществом электронов под действием падающего света. Теория фотоэффекта разработана Эйнштейном и заключается в том, что поток света представляет собой поток отдельных квантов(фотонов) с энергией каждого фотона h n . При попадании фотонов на поверхность вещества часть из них передает свою энергию электронов. Если этой энергия больше работы выхода из вещества, электрон покидает металл. Уравнение эйнштейна для фотоэффекта: где — максимальная кинетическая энергия фотоэлектрона.

Длина волны красной границы фотоэффекта для некоторого металла составляет 307 нм. Максимальная кинетическая энергия фотоэлектронов – 1 эВ. Найти отношение работы выхода электрона к энергии падающего фотона.

Пример решения задачи на тему фотоэффект

Частота света красной границы фотоэффекта для некоторого металла составляет 6*10 14 Гц, задерживающая разность потенциалов для фотоэлектронов – 2В. Определить частоту падающего света и работу выхода электронов.

Пример решения задачи на тему фотоэффект

Работа выхода электрона из металла составляет 4,28эВ. Найти граничную длину волны фотоэффекта.

Пример решения задачи на тему фотоэффект

На медный шарик радает монохроматический свет с длиной волны 0,165 мкм. До какого потенциала зарядится шарик, если работа выхода электрона для меди 4,5 эВ?

Пример решения задачи на тему фотоэффект

Работа выхода электрона из калия составляет 2,2эВ, для серебра 4,7эВ. Найти граничные длину волны фотоэффекта.

Пример решения задачи на тему фотоэффект

Пример решения задачи на тему фотоэффект

Длина волны радающего света 0,165 мкм, задерживающая разность потенциалов для фотоэлектронов 3В. Какова работа выхода электронов?

Красная граница фотоэффекта для цинка 310 нм. Определить максимальную кинетическую энергию фотоэлектронов, если на цинк падает свет с длиной волны 200нм.

Пример решения задачи на тему фотоэффект

На металл с работой выхода 2,4эВ падает свет с длиной волны 200нм. Определить задерживающую разность потенциалов.

Пример решения задачи на тему фотоэффект

На металл падает свет с длиной волны 0,25 мкм, задерживающая разность потенциалов при этом 0,96В. Определить работу выхода электронов из металла.

Пример решения задачи на тему фотоэффект

При изменении длины волны падающего света максимальные скорости фотоэлектронов изменились в 3/4 раза. Первоначальная длина волны 600нм, красная граница фотоэффекта 700нм. Определить длину волны после изменения.

Пример решения задачи на тему фотоэффект

Пример решения задачи на тему фотоэффект

Работы выхода электронов для двух металлов отличаются в 2 раза, задерживающие разности потенциалов - на 3В. Определить работы выхода.

Пример решения задачи на тему фотоэффект

Максимальная скорость фотоэлектронов равно 2,8*10 8 м/с. Определить энергию фотона.

Пример решения задачи на тему фотоэффект

Энергии падающих на металл фотонов равны 1,27 МэВ. Найти максимальную скорость фотоэлектронов.

Пример решения задачи на тему фотоэффект

Максимальная скорость фотоэлектронов равно 0,98с, где с - скорость света в вакууме. Найти длину волны падающего света.

Пример решения задачи на тему фотоэффект

Энергия фотона в пучке света, падающего на поверхность металла, равно 1,53 МэВ. Определить максимальную скорость фотоэлектронов.

Пример решения задачи на тему фотоэффект

На шарик из металла падает свет с длиной волны 0,4 мкм, при этом шапик заряжается до потенциала 2В. До какого потенциала зарядится шарик, если длина волны станет равной 0,3 мкм?

Пример решения задачи на тему фотоэффект

После изменения длины волны падающего света в 1,5 раза задерживающая разность потенциалов изменилась с 1,6В до 3В. Какова работа выхода?

Пример решения задачи на тему фотоэффект

Красная граница фотоэффекта 560нм, частота падающего света 7,3*10 14 Гц. Найти максимальную скорость фотоэлектронов.

Пример решения задачи на тему фотоэффект

Красная граница фотоэффекта 2800 ангстрем, длина волны падающего света 1600 ангстрем. Найти работу выхода и максимальную кинетическую энергию фотоэлектрона.

Пример решения задачи на тему фотоэффект

Задерживащая разность потенциалов 1,5В, работа выхода электронов 6,4*10 -19 Дж. Найти длину волны падающего света и красную границу фотоэффекта.

Пример решения задачи на тему фотоэффект

Работа выхода электронов из металла равна 3,3 эВ. Во сколько раз изменилась кинетическая энергия фотоэлектронов. если длина волны падающего света изменилась с 2,5*10 -7 м до 1,25*10 -7 м?

Пример решения задачи на тему фотоэффект

Найти максимальную скорость фотоэлектронов для видимого света с энергией фотона 8 эВ и гамма излучения с энергией 0,51 МэВ. Работа выхода электронов из металла 4,7 эВ.

Пример решения задачи на тему фотоэффект

Фототок прекращается при задерживающей разности потенциалов 3,7 В. Работа выхода электронов равна 6,3 эВ. Какая работа выхода электронов у другого металла, если там фототок прекращается при разности потенциалов, большей на 2,3В.

Пример решения задачи на тему фотоэффект

Работа выхода электронов из металла 4,5 эВ, энергия падающих фотонов 4,9 эВ. Чему равен максимальный импульс фотоэлектронов?

Пример решения задачи на тему фотоэффект

Красная граница фотоэффекта 2900 ангстрем, максимальная скорость фотоэлектронов 10 8 м/с. Найти отношение работы выхода электронов к энергии палающих фотонов.

Пример решения задачи на тему фотоэффект

Длина волны падающего света 400нм, красная граница фотоэффекта равна 400нм. Чему равна максимальная скорость фотоэлектронов?

Пример решения задачи на тему фотоэффект

Длина волны падающего света 300нм, работа выхода электронов 3,74 эВ. Напряженность задерживающего электростатического поля 10 В/см.Какой максимальный путь фотоэлектронов при движении в направлении задерживающего поля?

Пример решения задачи на тему фотоэффект

Длина волны падающего света 100 нм, работа выхода электронов 5,30эВ. Найти максимальную скорость фотоэлектронов.

Пример решения задачи на тему фотоэффект

При длине волны радающего света 491нм задерживающая разность потенциалов 0,71В. Какова работа выхода электронов? Какой стала длина волны света, если задерживающая разность потенциалов стала равной 1,43В?

Пример решения задачи на тему фотоэффект

Кинетическая энергия фотоэлектронов 2,0 эВ, красная граница фотоэффекта 3,0*10 14 Гц. Определить энергию фотонов.

Пример решения задачи на тему фотоэффект

Красная граница фотоэффекта 0,257 мкм, задерживающая разность потенциалов 1,5В. Найти длину волны падающего света.

Пример решения задачи на тему фотоэффект

Красная граница фотоэффекта 2850 ангстрем. Минимальное значение энергии фотона, при котором возможен фотоэффект?

Пример решения задачи на тему фотоэффект

Ниже вы можете посмотреть обучаюший видеоролик на тему фотоэффекта и его законов.

Читайте также: