Кремний это металл или нет

Обновлено: 04.10.2024

Кремний — элемент главной подгруппы четвёртой группы третьего периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 14. Обозначается символом Si (лат. Silicium ).

Содержание

История

В чистом виде кре́мний был выделен в 1811 году французскими учёными Жозефом Луи Гей-Люссаком и Луи Жаком Тенаром.

Происхождение названия

В 1825 году шведский химик Йёнс Якоб Берцелиус действием металлического калия на фтористый кремний SiF4 получил чистый элементарный кремний. Новому элементу было дано название «силиций» (от лат. silex — кремень). Русское название «кремний» введено в 1834 году российским химиком Германом Ивановичем Гессом. В переводе c др.-греч. κρημνός — «утёс, гора».

Нахождение в природе

Содержание кремния в земной коре составляет по разным данным 27,6—29,5 % по массе. Таким образом по распространённости в земной коре кремний занимает второе место после кислорода. Концентрация в морской воде 3 мг/л [2] .

Чаще всего в природе кремний встречается в виде кремнезёма — соединений на основе диоксида кремния (IV) SiO2 (около 12 % массы земной коры). Основные минералы и горные породы, образуемые диоксидом кремния — это песок (речной и кварцевый), кварц и кварциты, кремень, полевые шпаты. Вторую по распространённости в природе группу соединений кремния составляют силикаты и алюмосиликаты.

Отмечены единичные факты нахождения чистого кремния в самородном виде [3] .

Получение

«Свободный кремний можно получить прокаливанием с магнием мелкого белого песка, который представляет собой диоксид кремния:

При этом образуется бурый порошок аморфного кремния.» [4]

В промышленности кремний технической чистоты получают, восстанавливая расплав SiO2 коксом при температуре около 1800 °C в руднотермических печах шахтного типа. Чистота полученного таким образом кремния может достигать 99,9 % (основные примеси — углерод, металлы).

Возможна дальнейшая очистка кремния от примесей.

  • Очистка в лабораторных условиях может быть проведена путём предварительного получения силицида магния Mg2Si. Далее из силицида магния с помощью соляной или уксусной кислот получают газообразный моносилан SiH4. Моносилан очищают ректификацией, сорбционными и др. методами, а затем разлагают на кремний и водород при температуре около 1000 °C.
  • Очистка кремния в промышленных масштабах осуществляется путём непосредственного хлорирования кремния. При этом образуются соединения состава SiCl4 и SiCl3H. Эти хлориды различными способами очищают от примесей (как правило перегонкой и диспропорционированием) и на заключительном этапе восстанавливают чистым водородом при температурах от 900 до 1100 °C.
  • Разрабатываются более дешёвые, чистые и эффективные промышленные технологии очистки кремния. На 2010 г. к таковым можно отнести технологии очистки кремния с использованием фтора (вместо хлора); технологии предусматривающие дистилляцию монооксида кремния; технологии, основанные на вытравливании примесей, концентрирующихся на межкристаллитных границах.

Содержание примесей в доочищенном кремнии может быть снижено до 10 −8 —10 −6 % по массе. Более подробно вопросы получения сверхчистого кремния рассмотрены в статье Поликристаллический кремний

Способ получения кремния в чистом виде разработан Николаем Николаевичем Бекетовым.

В России технический кремний производится «ОК Русал» на заводах в г. Каменск-Уральский (Свердловская область) и г. Шелехов (Иркутская область); доочищенный по хлоридной технологии кремний производит группа «Nitol Solar» на заводе в г. Усолье-Сибирское.

Физические свойства


Кристаллическая решётка кремния кубическая гранецентрированная типа алмаза, параметр а = 0,54307 нм (при высоких давлениях получены и другие полиморфные модификации кремния), но из-за большей длины связи между атомами Si—Si по сравнению с длиной связи С—С твёрдость кремния значительно меньше, чем алмаза. Кремний хрупок, только при нагревании выше 800 °C он становится пластичным веществом. Интересно, что кремний прозрачен для инфракрасного излучения начиная с длины волны 1,1 мкм. Собственная концентрация носителей заряда — 5,81·10 15 м −3 (для температуры 300 K).


Электрофизические свойства

Элементарный кремний в монокристаллической форме является непрямозонным полупроводником. Ширина запрещённой зоны при комнатной температуре составляет 1,12 эВ, а при Т = 0 К составляет 1,21 эВ [6] . Концентрация собственных носителей заряда в кремнии при нормальных условиях составляет порядка 1,5·10 10 см −3 [7] .

На электрофизические свойства кристаллического кремния большое влияние оказывают содержащиеся в нём примеси. Для получения кристаллов кремния с дырочной проводимостью в кремний вводят атомы элементов III-й группы, таких, как бор, алюминий, галлий, индий. Для получения кристаллов кремния с электронной проводимостью в кремний вводят атомы элементов V-й группы, таких, как фосфор, мышьяк, сурьма.

При создании электронных приборов на основе кремния задействуется преимущественно приповерхностный слой материала (до десятков микрон), поэтому качество поверхности кристалла может оказывать существенное влияние на электрофизические свойства кремния и, соответственно, на свойства готового прибора. При создании некоторых приборов используются приёмы, связанные с модификацией поверхности, например, обработка поверхности кремния различными химическими агентами.

    : 12 [1]
  • Подвижность электронов: 1200—1450 см²/(В·c).
  • Подвижность дырок: 500 см²/(В·c).
  • Ширина запрещённой зоны 1,205-2,84·10 −4 ·T
  • Продолжительность жизни электрона: 5 нс — 10 мс
  • Длина свободного пробега электрона: порядка 0,1 см
  • Длина свободного пробега дырки: порядка 0,02 — 0,06 см

Все значения приведены для нормальных условий.

Химические свойства

Подобно атомам углерода, для атомов кремния является характерным состояние sp 3 -гибридизации орбиталей. В связи с гибридизацией чистый кристаллический кремний образует алмазоподобную решётку, в которой кремний четырёхвалентен. В соединениях кремний обычно также проявляет себя как четырёхвалентный элемент со степенью окисления +4 или −4. Встречаются двухвалентные соединения кремния, например, оксид кремния (II) SiO.

При нормальных условиях кремний химически малоактивен и активно реагирует только с газообразным фтором, при этом образуется летучий тетрафторид кремния SiF4. Такая «неактивность» кремния связана с пассивацией поверхности наноразмерным слоем диоксида кремния, немедленно образующегося в присутствии кислорода, воздуха или воды (водяных паров).

При нагревании до температуры свыше 400—500 °C кремний реагирует с кислородом с образованием диоксида SiO2, процесс сопровождается увеличением толщины слоя диоксида на поверхности, скорость процесса окисления лимитируется диффузией атомарного кислорода сквозь плёнку диоксида.

При нагревании до температуры свыше 400—500 °C кремний реагирует с хлором, бромом и иодом — с образованием соответствующих легко летучих тетрагалогенидов SiHalogen4 и, возможно, галогенидов более сложного состава.

С водородом кремний непосредственно не реагирует, соединения кремния с водородом — силаны с общей формулой SinH2n+2 — получают косвенным путем. Моносилан SiH4 (его часто называют просто силаном) выделяется при взаимодействии силицидов металлов с растворами кислот, например:

Образующийся в этой реакции силан SiH4 содержит примесь и других силанов, в частности, дисилана Si2H6 и трисилана Si3H8, в которых имеется цепочка из атомов кремния, связанных между собой одинарными связями (—Si—Si—Si—).

С азотом кремний при температуре около 1000 °C образует нитрид Si3N4, с бором — термически и химически стойкие бориды SiB3, SiB6 и SiB12.

При температурах свыше 1000С °C можно получить соединение кремния и его ближайшего аналога по таблице Менделеева — углерода — карбид кремния SiC (карборунд), который характеризуется высокой твёрдостью и низкой химической активностью. Карборунд широко используется как абразивный материал. При этом, что интересно, расплав кремния (1415 °C) может длительное время контактировать с углеродом в виде крупных кусков плотноспечённого мелкозернистого графита изостатического прессования, практически не растворяя и никак не взаимодействуя с последним.

Нижележащие элементы 4-й группы (Ge, Sn, Pb) неограниченно растворимы в кремнии, как и большинство других металлов. При нагревании кремния с металлами могут образовываться силициды. Силициды можно подразделить на две группы: ионно-ковалентные (силициды щелочных, щелочноземельных металлов и магния типа Ca2Si, Mg2Si и др.) и металлоподобные (силициды переходных металлов). Силициды активных металлов разлагаются под действием кислот, силициды переходных металлов химически стойки и под действием кислот не разлагаются. Металлоподобные силициды имеют высокие температуры плавления (до 2000 °C). Наиболее часто образуются металлоподобные силициды составов MeSi, Me3Si2, Me2Si3, Me5Si3 и MeSi2. Металлоподобные силициды химически инертны, устойчивы к действию кислорода даже при высоких температурах.

Особо следует отметить, что с железом кремний образует эвтектическую смесь, что позволяет спекать (сплавлять) эти материалы для образования ферросилициевой керамики при температурах заметно меньших, чем температуры плавления железа и кремния.

При восстановлении SiO2 кремнием при температурах свыше 1200 °C образуется оксид кремния (II) — SiO. Этот процесс постоянно наблюдается при производстве кристаллов кремния методами Чохральского, направленной кристаллизации, потому что в них используются контейнеры из диоксида кремния, как наименее загрязняющего кремний материала.

Для кремния характерно образование кремнийорганических соединений, в которых атомы кремния соединены в длинные цепочки за счет мостиковых атомов кислорода —О—, а к каждому атому кремния, кроме двух атомов О, присоединены ещё два органических радикала R1 и R2 = CH3, C2H5, C6H5, CH2CH2CF3 и др.

Для травления кремния наиболее широко используют смесь плавиковой и азотной кислот. Некоторые специальные травители предусматривают добавку хромового ангидрида и иных веществ. При травлении кислотный травильный раствор быстро разогревается до температуры кипения, при этом скорость травления многократно возрастает.

Для травления кремния могут использоваться водные растворы щёлочей. Травление кремния в щелочных растворах начинается при температуре раствора более 60 °C.

Применение


Микроконтроллер 1993 года с УФ стиранием памяти 62E40 европейской фирмы STMicroelectronics. За окошечком виден кристалл микросхемы — кремниевая подложка с выполненной на ней схемой.

Технический кремний находит следующие применения:

  1. сырьё для металлургических производств: компонент сплава (бронзы, силумин); раскислитель (при выплавке чугуна); модификатор свойств металлов или легирующий элемент (например, добавка определённого количества кремния при производстве трансформаторных сталей уменьшает коэрцитивную силу готового продукта) и т. п.;
  2. сырьё для производства более чистого поликристаллического кремния и очищенного металлургического кремния (в литературе «umg-Si»);
  3. сырьё для производства кремнийорганических материалов, силанов;
  4. иногда кремний технической чистоты и его сплав с железом (ферросилиций) используется для производства водорода в полевых условиях;
  5. для производства солнечных батарей.


Cверхчистый кремний преимущественно используется для производства одиночных электронных приборов (нелинейные пассивные элементы электрических схем) и однокристальных микросхем. Чистый кремний, отходы сверхчистого кремния, очищенный металлургический кремний в виде кристаллического кремния являются основным сырьевым материалом для солнечной энергетики.

Монокристаллический кремний — помимо электроники и солнечной энергетики используется для изготовления зеркал газовых лазеров.

Соединения металлов с кремнием — силициды — являются широкоупотребляемыми в промышленности (например, электронной и атомной) материалами с широким спектром полезных химических, электрических и ядерных свойств (устойчивость к окислению, нейтронам и др.). Силициды ряда элементов являются важными термоэлектрическими материалами.

Соединения кремния служат основой для производства стекла и цемента. Производством стекла и цемента занимается силикатная промышленность. Она также выпускает силикатную керамику — кирпич, фарфор, фаянс и изделия из них.

Широко известен силикатный клей, применяемый в строительстве как сиккатив, а в пиротехнике и в быту для склеивания бумаги.

Получили широкое распространение силиконовые масла и силиконы — материалы на основе кремнийорганических соединений.

Биологическая роль

Для некоторых организмов кремний является важным биогенным элементом. Он входит в состав опорных образований у растений и скелетных — у животных. В больших количествах кремний концентрируют морские организмы — диатомовые водоросли, радиолярии, губки. Большие количества кремния концентрируют хвощи и злаки, в первую очередь — подсемейства Бамбуков и Рисовидных, в том числе — рис посевной. Мышечная ткань человека содержит (1-2)·10 −2 % кремния, костная ткань — 17·10 −4 %, кровь — 3,9 мг/л. С пищей в организм человека ежедневно поступает до 1 г кремния.

Соединения кремния относительно нетоксичны. Но очень опасно вдыхание высокодисперсных частиц как силикатов, так и диоксида кремния, образующихся, например, при взрывных работах, при долблении пород в шахтах, при работе пескоструйных аппаратов, при обработке кремнийсодержащих материалов угловой шлифовальной машиной («болгаркой») и т. д. Микрочастицы SiO2, попавшие в лёгкие, кристаллизуются в них, а возникающие кристаллики разрушают лёгочную ткань и вызывают тяжёлую болезнь — силикоз. Чтобы не допустить попадания в лёгкие опасной пыли, следует использовать для защиты органов дыхания респиратор.

КРЕМНИЙ — он нужен всем

Можно перепутать кремний, химический элемент, и кремень — минерал, которым пользовались наши далекие предки.

В истории открытия неметалла много знаменитых имен. Ж. Гей-Люссак и Л. Тенар нашли новый элемент и выделили его в чистом виде. Берцелиус получил новый элемент хорошей чистоты и назвал его «силиций». А русский химик Гесс предложил называть новый элемент кремнием (от древне-греческого кремнос — гора).

Поликристаллический кремний (99,9 %)

Свойства

элемент кремний

Кремний (Silicium, силициум, Si — обозначение в химических соединениях и реакциях). Это не металл, хотя по внешним характеристикам (металлический блеск, цвет) его сложно отличить от настоящих металлов. Он относится к полуметаллам (металлоидам). По типу проводимости относится к полупроводникам.

Существует в двух модификациях (видах): аморфной и кристаллической.

Химические свойства элемента:

  1. Химически малоактивен, «оживляется» только в присутствии газообразного фтора.
  2. При нагреве до 400-500°С происходит реакция с кислородом, образуется SiO2, диоксид кремния.
  3. Карборунд (SiC), очень твердый и химически малоактивный материал получают при высокой (более 1000°С) температуре.
  4. При взаимодействии с металлами образует силициды. Общая формула силицидов MenSim.
Свойства атома
Название, символ, номер Кремний/Silicium (Si), 14
Атомная масса
(молярная масса)
[28,086][комм 1][1] а. е. м. (г/моль)
Электронная конфигурация [Ne] 3s2 3p2; в соед. [Ne] 3s 3p3 (гибридизация)
Радиус атома 132 пм
Химические свойства
Ковалентный радиус 111 пм
Радиус иона 42 (+4e), 271 (−4e) пм
Электроотрицательность 1,90 (шкала Полинга)
Электродный потенциал
Степени окисления −4, 0, +2; +4
Энергия ионизации
(первый электрон)
786,0 (8,15) кДж/моль (эВ)
Термодинамические свойства простого вещества
Плотность (при н. у.) 2,33 г/см³
Температура плавления 1414,85 °C (1688 K)
Температура кипения 2349,85 °C (2623 K)
Уд. теплота плавления 50,6 кДж/моль
Уд. теплота испарения 383 кДж/моль
Молярная теплоёмкость 20,16[2] Дж/(K·моль)
Молярный объём 12,1 см³/моль
Кристаллическая решётка простого вещества
Структура решётки кубическая, алмазная
Параметры решётки 5,4307 Å
Температура Дебая 645 ± 5[3] K
Прочие характеристики
Теплопроводность (300 K) 149 Вт/(м·К)
Номер CAS 7440-21-3

Запасы, руды, минералы

Основной минерал кремния — песок. Кроме него, существуют:

    ;
  • кварциты;
  • полевые шпаты;
  • силикаты;
  • алюмосиликаты.

Нашего героя в земной коре очень много (до 30% по массе). После углерода это второй элемент (по распространенности на планете).

металл кремний

Многие кремниевые соединения являются драгоценными и полудрагоценными камнями. Это аквамарин, изумруд, топаз, аметист, яшмы и топазы.

Сплавы, получение кремния

Silicium не может образовывать сплавы, это привилегия металлов. Зато он способен растворять многие металлы. Такие соединения, силициды, используют в промышленности.

К ним относят:

  • силумин;
  • ферросилиций;
  • сплав РС-1004;
  • сплав РС 1714;
  • сплав РС 4800;
  • сплав РС 5406.

Способы получения кремния:

  1. В печах шахтного типа восстановлением SiO2 коксом (технически чистый Silicium).
  2. Дальнейшую очистку продукта проводят по реакции SiCl4+2H2 = Si+4HCl (восстановление тетрахлорида водородом при высокой температуре).

Кристаллическая структура кремния

Сверхчистый продукт (поликремний) для производства полупроводников и солнечных элементов очищают дополнительно.

Плюсы и минусы

Достоинств у кремния предостаточно. Это:

  1. Доступность в добыче минералов, легкость получения продукта.
  2. Наш герой нетоксичен, это дает возможность использовать его в любой отрасли промышленности.
  3. Электро-и радиотехника не может обойтись без полупроводниковых свойств неметалла.
  4. Кремний способен образовывать множество полезных и разнообразных соединений.

кремний

Области применения кремния трудно перечислить:

  • стекла;
  • цемент;
  • зажигалки;
  • оптоволокно;
  • керамика;
  • микропроцессоры.

В любой зубной пасте есть Е551 — аморфный диоксид кремния.

Большинство наших домов на 20-40%% состоят из кремниевых минералов.

Нитриты и карбиды кремния — одни из самых твердых соединений. Они входят в состав особой жаропрочной и твердой керамики. Ее используют в производстве бронежилетов, абразивы (абразивные диски для всем известных болгарок).

Как сырье технической чистоты Silicium применяют:

  1. В металлургии (как присадки, как раскислители в производстве чугуна и сталей).
  2. В производстве силанов и кремнийорганических материалов.
  3. В производстве солнечных батарей.

Синтетические SiC под названием муассанита с успехом заменяют алмазы в ювелирной промышленности.

Продукцией из песка, соды и извести стеклом — пользуются миллионы людей.

Красота и здоровье: полуметалл необходим человеческому организму для костей, волос, здоровой кожи. А силикон — материал, с помощью которого женщины исправляют свои формы.

Купить

На металлургическом рынке продают кремний трех видов — технический, кристаллический, механический.

Марка (вид) кремния, цена в руб/кг Содержание основного элемента
Кр00 Не менее 99%
Кр0; 300 Не менее 98, 8%
Кр1; от 170 Не менее 98%
Кр2; 180 Не меньше 97%

Стоимость товара у разных производителей может быть выше или ниже — ищите, где выгоднее.

admin

Мне 42 года и я специалист в области минералогии. Здесь на сайте я делюсь информацией про камни и их свойства — задавайте вопросы и пишите комментарии!

КРЕМНИЙ

КРЕМНИЙ
Si (silicium)
химический элемент IVA подгруппы (C, Si, Ge, Sn и Pb) периодической системы элементов, неметалл. Кремний в свободном виде был выделен в 1811 Ж.Гей-Люссаком и Л.Тенаром при пропускании паров фторида кремния над металлическим калием, однако он не был описан ими как элемент. Шведский химик Й.Берцелиус в 1823 дал описание кремния, полученного им при обработке калиевой соли K2SiF6 металлическим калием при высокой температуре, однако лишь в 1854 кремний был получен в кристаллической форме А.Девилем. Кремний - второй по распространенности (после кислорода) элемент в земной коре, где он составляет более 25% (масс.). Встречается в природе в основном в виде песка, или кремнезема, который представляет собой диоксид кремния, и в виде силикатов (полевые шпаты M[[AlSi3O8]] (M = Na, K, Ba), каолинит Al4[[Si4O10]](OH)8, слюды). Кремний можно получить прокаливанием измельченного песка с алюминием или магнием; в последнем случае его отделяют от образующегося MgO растворением оксида магния в соляной кислоте. Технический кремний получают в больших количествах в электрических печах путем восстановления кремнезема углем или коксом. Полупроводниковый кремний получают восстановлением SiCl4 или SiHCl3 водородом с последующим разложением образующегося SiH4 при 400-600° С. Высокочистый кремний получают выращиванием монокристалла из расплава полупроводникового кремния по методу Чохральского или методом бестигельной зонной плавки кремниевых стержней
(см. также ЗОННАЯ ПЛАВКА).
Элементный кремний получают в основном для полупроводниковой техники, в остальных случаях он используется как легирующая добавка в производстве сталей и сплавов цветных металлов (например, для получения ферросилиция FeSi, который образуется при прокаливании смеси песка, кокса и оксида железа в электрической печи и применяется как раскислитель и легирующая добавка в производстве сталей и как восстановитель в производстве ферросплавов). Применение. Наибольшее применение кремний находит в производстве сплавов для придания прочности алюминию, меди и магнию и для получения ферросилицидов, имеющих важное значение в производстве сталей и полупроводниковой техники. Кристаллы кремния применяют в солнечных батареях и полупроводниковых устройствах - транзисторах и диодах. Кремний служит также сырьем для производства кремнийорганических соединений, или силоксанов, получаемых в виде масел, смазок, пластмасс и синтетических каучуков. Неорганические соединения кремния используют в технологии керамики и стекла, как изоляционный материал и пьезокристаллы.
См. также КРЕМНИЙОРГАНИЧЕСКИЕ ПОЛИМЕРЫ. СВОЙСТВА КРЕМНИЯ
Атомный номер 14 Атомная масса 28,086 Изотопы


Температура плавления, ° С 1410 Температура кипения, ° С 2355 Плотность, г/см3 2,33 Твердость (по Моосу) 7,0 Содержание в земной коре, % (масс.) 27,72 Степени окисления -4, +2, +4
Свойства. Кремний - темносерое, блестящее кристаллическое вещество, хрупкое и очень твердое, кристаллизуется в решетке алмаза. Это типичный полупроводник (проводит электричество лучше, чем изолятор типа каучука, и хуже проводника - меди). При высокой температуре кремний весьма реакционноспособен и взаимодействует с большинством элементов, образуя силициды, например силицид магния Mg2Si, и другие соединения, например SiO2 (диоксид кремния), SiF4 (тетрафторид кремния) и SiC (карбид кремния, карборунд). Кремний растворяется в горячем растворе щелочи с выделением водорода: Si + NaOH (r) Na4SiO4 + 2H2­. 4 (тетрахлорид кремния) получают из SiO2 и CCl4 при высокой температуре; это бесцветная жидкость, кипящая при 58° С, легко гидролизуется, образуя хлороводородную (соляную) кислоту HCl и ортокремниевую кислоту H4SiO4 (это свойство используют для создания дымовых надписей: выделяющаяся HCl в присутствии аммиака образует белое облако хлорида аммония NH4Cl). Тетрафторид кремния SiF4 образуется при действии фтороводородной (плавиковой) кислоты на стекло: Na2SiO3 + 6HF -> 2NaF + SiF4­ + 3H2O SiF4 гидролизуется, образуя ортокремниевую и гексафторокремниевую (H2SiF6) кислоты. H2SiF6 по силе близка к серной кислоте. Многие фторосиликаты металлов растворимы в воде (соли натрия, бария, калия, рубидия, цезия малорастворимы), поэтому HF используют для перевода минералов в раствор при выполнении анализов. Сама кислота H2SiF6 и ее соли ядовиты.
Диоксид кремния (кремниевый ангидрид). Природный диоксид кремния встречается преимущественно в форме кварца, хотя существуют и другие минералы - кристобалит, тридимит, китит, коусит. Кристаллический диоксид кремния широко распространен в природе в виде прозрачных бесцветных или окрашенных монокристаллов (горный хрусталь, аметист, дымчатый кварц, тридимит, кварцит, розовый кварц, агат, яшма, сердолик, кремень, опал и халцедон) и в форме обломочных пород (морской песок, гравий, галька, песчаник и конгломерат). Окраска аметиста объясняется примесями Mn и Fe, а дымчатого кварца - органическими включениями. Опал и кремень являются слабогидратированными формами SiO2. Аморфный кремнезем встречается в диатомовых отложениях на дне морей и океанов (трепел, кизельгур); эти отложения образовались из SiO2, входившего в состав диатомовых водорослей и некоторых инфузорий. Диатомитовая земля и трепел обнаружены в Калифорнии, Орегоне и в разных частях Европы. Ежегодно добывается до 2 млн. т SiO2 для производства абразивов, теплоизоляции, фильтрующих сред, наполнителя полимеров, красок и композиций. См. также КВАРЦ.
Кремниевые кислоты. Две оксокислоты кремния H4SiO4 (ортокремниевая) и H2SiO3 (метакремниевая, или кремниевая) существуют только в растворе и необратимо превращаются в SiO2, если выпарить воду. Другие кремниевые кислоты получаются за счет различного количества воды в их составе: H6Si2O7 (пирокремниевая кислота из двух молекул ортокремниевой кислоты), H2Si2O5 и H4Si3O8 (ди- и трикремниевая кислоты из двух и соответственно трех молекул метакремниевой кислоты). Все кислоты кремния слабые. При добавлении в раствор силиката серной кислоты образуется гель (желатинообразное вещество), при нагревании и высушивании которого остается твердый пористый продукт - силикагель, имеющий развитую поверхность и используемый как адсорбент газов, осушитель, катализатор и носитель катализаторов.
Силикаты (соли кремниевых кислот). В тетраэдрической структуре природных силикатов атом кремния окружен четырьмя атомами кислорода; ион щелочного или щелочноземельного металла, слишком малый по сравнению с кислородными атомами, размещается в пространстве между тетраэдрами. Иногда тетраэдры выстраиваются в протяженные цепи (например, асбест), иногда образуется слоистая структура (слюда), в других случаях формируется кольцевая структура (например, берилл). К природным силикатам относятся полевые шпаты, слюды, глины, асбест и др. Силикаты входят в состав горных пород: гранита, гнейса, базальта, различных сланцев и т.д. Многие драгоценные камни (изумруд, топаз, аквамарин и др.) - это прозрачные кристаллы силикатов. Силикаты в большинстве своем (кроме силикатов натрия и калия) нерастворимы в воде. Силикаты натрия и калия внешне напоминают стекло, поэтому их называют растворимым стеклом. Жидкое стекло - это водный раствор силиката натрия или калия. Силикат натрия получается сплавлением кварцевого песка со щелочью (NaOH) или содой (Na2CO3) или кипячением смеси кварца с NaOH под давлением. Коммерческий продукт содержит Na2SiO3 с непостоянной примесью SiO2. Растворимое стекло широко используется как наполнитель в мылах. Некоторые моющие средства тоже содержат силикат натрия. Жидкое стекло используют для придания влаго- и огнестойкости деревянным строениям, в технологии кислото- и огнеупорного цемента и бетона, керосинонепроницаемых штукатурок по бетону, для пропитывания тканей, для приготовления огнезащитных красок по дереву, для химического укрепления слабых грунтов.
Гидриды. Подобно углероду кремний образует ковалентные связи Si-Si и Si-H. Соединения, в которых атомы кремния соединены одинарной связью, называются силанами, а если атомы кремния соединены двойной связью, -силенами. Подобно углеводородам эти соединения образуют цепи и кольца. SiH4 называется моносилан, Si2H6 - дисилан, Si3H8 - трисилан, Si4H10 - тетрасилан и т.д. Соединения, в которых атомы кремния соединены через атом кислорода, называются силоксанами, а через атомы серы - силазанами. Силаны и силены могут образовывать связь с углеводородными радикалами и галогенами, например, метилдихлорсилан CH3SiHCl2. Все силаны могут самовозгораться, образуют взрывчатые смеси с воздухом и легко реагируют с водой.
См. также
КЕРАМИКА ПРОМЫШЛЕННАЯ;
ЭЛЕМЕНТЫ ХИМИЧЕСКИЕ;
СТЕКЛО;
ПОЛУПРОВОДНИКОВЫЕ ЭЛЕКТРОННЫЕ ПРИБОРЫ.
ЛИТЕРАТУРА
Андрианов К.А. Методы элементоорганической химии. Кремний. М., 1968 Воронков М.Г. и др. Кремний и жизнь. Рига, 1978 Самсонов Г.В. и др. Силициды. М., 1979 Айлер Р. Химия кремнезема. М., 1982

Si, химический элемент IV группы периодической системы Менделеева; атомный номер 14, атомная масса 28,086. В природе элемент представлен тремя стабильными изотопами: 28 Si (92,27%), 29 Si (4,68%) и 30 Si (3,05%).

Историческая справка. Соединения К., широко распространённые на земле, были известны человеку с каменного века. Использование каменных орудий для труда и охоты продолжалось несколько тысячелетий. Применение соединений К., связанное с их переработкой, — изготовление стекла (См. Стекло) началось около 3000 лет до н. э. (в Древнем Египте). Раньше других известное соединение К. — двуокись SiO2 (кремнезём). В 18 в. кремнезём считали простым телом и относили к «землям» (что и отражено в его названии). Сложность состава кремнезёма установил И. Я. Берцелиус. Он же впервые, в 1825, получил элементарный К. из фтористого кремния SiF4, восстанавливая последний металлическим калием. Новому элементу было дано название «силиций» (от лат. silex — кремень). Русское название ввёл Г. И. Гесс в 1834.

Распространённость в природе. По распространённости в земной коре К. — второй (после кислорода) элемент, его среднее содержание в литосфере 29,5% (по массе). В земной коре К. играет такую же первостепенную роль, как углерод в животном и растительном мире. Для геохимии К. важна исключительно прочная связь его с кислородом. Около 12% литосферы составляет кремнезём SiO2 в форме минерала Кварца и его разновидностей. 75% литосферы слагают различные Силикаты и Алюмосиликаты (полевые шпаты, слюды, амфиболы и т. д.). Общее число минералов, содержащих кремнезём, превышает 400 (см. Кремнезёма минералы).

При магматических процессах происходит слабая дифференциация К.: он накапливается как в гранитоидах (32,3%), так и в ультраосновных породах (19%). При высоких температурах и большом давлении растворимость SiO2 повышается. Возможна его миграция и с водяным паром, поэтому для пегматитов гидротермальных жил характерны значительные концентрации кварца, с которым нередко связаны и рудные элементы (золото-кварцевые, кварцево-касситеритовые и др. жилы).

Физические и химические свойства. К. образует тёмно-серые с металлическим блеском кристаллы, имеющие кубическую гранецентрированную решётку типа алмаза с периодом а = 5,431Å, плотностью 2,33 г/см 3 . При очень высоких давлениях получена новая (по-видимому, гексагональная) модификация с плотностью 2,55 г/см 3 . К. плавится при 1417°С, кипит при 2600°С. Удельная теплоёмкость (при 20—100°С) 800 дж/(кгК), или 0,191 кал/(гград); теплопроводность даже для самых чистых образцов не постоянна и находится в пределах (25°С) 84—126 вт/(мК), или 0,20—0,30 кал/(смсекград). Температурный коэффициент линейного расширения 2,33․10 -6 К -1 ; ниже 120K становится отрицательным. К. прозрачен для длинноволновых ИК-лучей; показатель преломления (для λ=6 мкм) 3,42; диэлектрическая проницаемость 11,7. К. диамагнитен, атомная магнитная восприимчивость —0,13․10 -6 . Твёрдость К. по Моосу 7,0, по Бринеллю 2,4 Гн/м 2 (240 кгс/мм 2 ), модуль упругости 109 Гн/м 2 (10890 кгс/мм 2 ), коэффициент сжимаемости 0,325․10 -6 см 2 /кг. К. хрупкий материал; заметная пластическая деформация начинается при температуре выше 800°С.

К. — полупроводник, находящий всё большее применение. Электрические свойства К. очень сильно зависят от примесей. Собственное удельное объёмное электросопротивление К. при комнатной температуре принимается равным 2,3․10 3 омм (2,3․10 5 омсм).

Полупроводниковый К. с проводимостью р-типа (добавки В, Al, In или Ga) и n-типа (добавки Р, Bi, As или Sb) имеет значительно меньшее сопротивление. Ширина запрещенной зоны по электрическим измерениям составляет 1,21 эв при 0 К и снижается до 1,119 эв при 300 К.

В соответствии с положением К. в периодической системе Менделеева 14 электронов атома К. распределены по трём оболочкам: в первой (от ядра) 2 электрона, во второй 8, в третьей (валентной) 4; конфигурация электронной оболочки 1s 2 2s 2 2p 6 3s 2 3p 2 (см. Атом). Последовательные потенциалы ионизации (эв): 8,149; 16,34; 33,46 и 45,13. Атомный радиус 1,33Å, ковалентный радиус 1,17Å, ионные радиусы Si 4+ 0,39Å, Si 4- 1,98Å.

В соединениях К. (аналогично углероду) 4-валентен. Однако, в отличие от углерода, К. наряду с координационым числом 4 проявляет координационное число 6, что объясняется большим объёмом его атома (примером таких соединений являются кремнефториды, содержащие группу [SiF6] 2- ).

Химическая связь атома К. с другими атомами осуществляется обычно за счёт гибридных sp 3 -орбиталей, но возможно также вовлечение двух из его пяти (вакантных) 3d-орбиталей, особенно когда К. является шестикоординационным. Обладая малой величиной электроотрицательности, равной 1,8 (против 2,5 у углерода; 3,0 у азота и т. д.), К. в соединениях с неметаллами электроположителен, и эти соединения носят полярный характер. Большая энергия связи с кислородом Si—O, равная 464 кдж/моль (111 ккал/моль), обусловливает стойкость его кислородных соединений (SiO2 и силикатов). Энергия связи Si—Si мала, 176 кдж/моль (42 ккал/моль); в отличие от углерода, для К. не характерно образование длинных цепей и двойной связи между атомами Si. На воздухе К. благодаря образованию защитной окисной плёнки устойчив даже при повышенных температурах. В кислороде окисляется начиная с 400°С, образуя Кремния двуокись SiO2. Известна также моноокись SiO, устойчивая при высоких температурах в виде газа; в результате резкого охлаждения может быть получен твёрдый продукт, легко разлагающийся на тонкую смесь Si и SiO2. К. устойчив к кислотам и растворяется только в смеси азотной и фтористоводородной кислот; легко растворяется в горячих растворах щелочей с выделением водорода. К. реагирует с фтором при комнатной температуре, с остальными галогенами — при нагревании с образованием соединений общей формулы SiX4 (см. Кремния галогениды). Водород непосредственно не реагирует с К., и Кремневодороды (силаны) получают разложением силицидов (см. ниже). Известны кремневодороды от SiH4 до Si8H18 (по составу аналогичны предельным углеводородам). К. образует 2 группы кислородсодержащих силанов — Силоксаны и силоксены. С азотом К. реагирует при температуре выше 1000°С. Важное практическое значение имеет нитрид Si3N4, не окисляющийся на воздухе даже при 1200°С, стойкий по отношению к кислотам (кроме азотной) и щелочам, а также к расплавленным металлам и шлакам, что делает его ценным материалом для химической промышленности, для производства огнеупоров и др. Высокой твёрдостью, а также термической и химической стойкостью отличаются соединения К. с углеродом (Кремния карбид SiC) и с бором (SiB3, SiB6, SiB12). При нагревании К. реагирует (в присутствии металлических катализаторов, например меди) с хлорорганическими соединениями (например, с CH3Cl) с образованием органогалосиланов [например, Si (CH3)3CI], служащих для синтеза многочисленных кремнийорганических соединений (См. Кремнийорганические соединения).

К. образует соединения почти со всеми металлами — Силициды (не обнаружены соединения только с Bi, Tl, Pb, Hg). Получено более 250 силицидов, состав которых (MeSi, MeSi2, Me5Si3, Me3Si, Me2Si и др.) обычно не отвечает классическим валентностям. Силициды отличаются тугоплавкостью и твёрдостью; наибольшее практическое значение имеют ферросилиций (восстановитель при выплавке специальных сплавов, см. Ферросплавы) и силицид молибдена MoSi2 (нагреватели электропечей, лопатки газовых турбин и т. д.).

Получение и применение. К. технической чистоты (95—98%) получают в электрической дуге восстановлением кремнезёма SiO2 между графитовыми электродами. В связи с развитием полупроводниковой техники разработаны методы получения чистого и особо чистого К. Это требует предварительного синтеза чистейших исходных соединений К., из которых К. извлекают путём восстановления или термического разложения.

Чистый полупроводниковый К. получают в двух видах: поликристаллический (восстановлением SiCI4 или SiHCl3 цинком или водородом, термическим разложением Sil4 и SiH4) и монокристаллический (бестигельной зонной плавкой и «вытягиванием» монокристалла из расплавленного К. — метод Чохральского).

Специально легированный К. широко применяется как материал для изготовления полупроводниковых приборов (транзисторы, термисторы, силовые выпрямители тока, управляемые диоды — тиристоры; солнечные фотоэлементы, используемые в космических кораблях, и т. д.). Поскольку К. прозрачен для лучей с длиной волны от 1 до 9 мкм, его применяют в инфракрасной оптике (см. также Кварц).

К. имеет разнообразные и всё расширяющиеся области применения. В металлургии К. используется для удаления растворённого в расплавленных металлах кислорода (раскисления). К. является составной частью большого числа сплавов железа и цветных металлов. Обычно К. придаёт сплавам повышенную устойчивость к коррозии, улучшает их литейные свойства и повышает механическую прочность; однако при большем его содержании К. может вызвать хрупкость. Наибольшее значение имеют железные, медные и алюминиевые сплавы, содержащие К. Всё большее количество К. идёт на синтез кремнийорганических соединений и силицидов. Кремнезём и многие силикаты (глины, полевые шпаты, слюды, тальки и т. д.) перерабатываются стекольной, цементной, керамической, электротехнической и др. отраслями промышленности.

Кремний в организме находится в виде различных соединений, участвующих главным образом в образовании твёрдых скелетных частей и тканей. Особенно много К. могут накапливать некоторые морские растения (например, диатомовые водоросли) и животные (например, кремнероговые губки, радиолярии), образующие при отмирании на дне океана мощные отложения двуокиси кремния. В холодных морях и озёрах преобладают биогенные илы, обогащенные К., в тропических морях — известковые илы с низким содержанием К. Среди наземных растений много К. накапливают злаки, осоки, пальмы, хвощи. У позвоночных животных содержание двуокиси кремния в зольных веществах 0,1—0,5%. В наибольших количествах К. обнаружен в плотной соединительной ткани, почках, поджелудочной железе. В суточном рационе человека содержится до 1 г К. При высоком содержании в воздухе пыли двуокиси кремния она попадает в лёгкие человека и вызывает заболевание — Силикоз.

Лит.: Бережной А. С., Кремний и его бинарные системы. К., 1958; Красюк Б. А., Грибов А. И., Полупроводники — германий и кремний, М., 1961; Реньян В. Р., Технология полупроводникового кремния, пер. с англ., М., 1969; Салли И. В., Фалькевич Э. С., Производство полупроводникового кремния, М., 1970; Кремний и германий. Сб. ст., под ред. Э. С. Фалькевича, Д. И. Левинзона, в. 1—2, М., 1969—70; Гладышевский Е. И., Кристаллохимия силицидов и германидов, М., 1971; Wolf Н. F., Silicon semiconductor data, Oxf. — N. Y., 1965.

Большая советская энциклопедия. — М.: Советская энциклопедия . 1969—1978 .

Кремний – характеристики, особенности и сферы использования

Этим химическим элементом насыщена земная кора и биологические организмы. Кремний признан материалом третьего тысячелетия: IT-столица мира в Калифорнии называется Кремниевой долиной.

Кремний

Что представляет собой

Кремний – это элемент таблицы Д.Менделеева №14.

Не относится к металлам, это неметалл.

Выглядит как коричневатый порошок либо темно-серые, с легким блеском кристаллы.

Международное наименование вещества – Si (Silicium).

Как был открыт

История открытия элемента связана с именем великого шведского химика Йенса Берцелиуса:

  • То, что кремний существует, он предсказал в 1810 году.
  • Через 13 лет выделил аморфную форму чистого вещества, восстановив фторид калием, описал химические свойства продукта.

Кристаллическую форму неметалла первыми добыли в 1811 году французы Луи Гей-Люссак и Жак Тенар.

Поликристаллический кремний (99,9 %)

Поликристаллический кремний (99,9 %)

Новооткрытый элемент получил название « силиций » (silex – латинское наименование кремня).

Русский термин «кремний» ввел в научный оборот (1834 год) отечественный химик Герман Гесс.

Присутствие в природе

По концентрации в литосфере неметалл уступает только кислороду.

Тонна земной коры содержит около 286 кг кремния, литр морской воды – 3 мг.

Но найти самородки – редчайшая удача, почти всегда это кремнезем – конгломерат веществ на основе диоксида вещества (половина всего объема).

Он – основа двух видов минералов и горных пород:

  1. Силикаты, алюмосиликаты.
  2. Песок (кварцевый, речной), кварц, кварциты, полевые шпаты, кремень.

Кремень использовали еще древние люди: с его помощью можно было высечь искру. По этому признаку данный вид кремния легко отличить от других камней.

Физико-химические характеристики

Кремний – это неметалл, но выступает как восстановитель либо окислитель:

  • Образует сплавы (силициды) с большинством металлов.
  • В обычном микроклимате покрывается пленкой-оксидом, становясь инертным.
  • Химическая активность почти нулевая, однако растет с ростом температуры.
  • Физические и химические свойства формируются строением кристаллической решетки (аллотропным форматом). Например, аморфный неметалл активно впитывает влагу, быстрее взаимодействует при обычной температуре.

Подобно углероду, неметалл при взаимодействии образует соединения сродни органическим.

Свойства атома
Название, символ, номер Кремний/Silicium (Si), 14
Атомная масса
(молярная масса)
[28,086] а. е. м. (г/моль)
Электронная конфигурация [Ne] 3s2 3p2; в соед. [Ne] 3s 3p3 (гибридизация)
Радиус атома 132 пм
Химические свойства
Ковалентный радиус 111 пм
Радиус иона 42 (+4e), 271 (−4e) пм
Электроотрицательность 1,90 (шкала Полинга)
Электродный потенциал 0
Степени окисления −4, 0, +2; +4
Энергия ионизации
(первый электрон)
786,0 (8,15) кДж/моль (эВ)
Термодинамические свойства простого вещества
Плотность (при н. у.) 2,33 г/см³
Температура плавления 1414,85 °C (1688 K)
Температура кипения 2349,85 °C (2623 K)
Уд. теплота плавления 50,6 кДж/моль
Уд. теплота испарения 383 кДж/моль
Молярная теплоёмкость 20,16 Дж/(K·моль)
Молярный объём 12,1 см³/моль
Кристаллическая решётка простого вещества
Структура решётки кубическая, алмазная
Параметры решётки 5,4307 Å
Температура Дебая 645 ± 5 K
Прочие характеристики
Теплопроводность (300 K) 149 Вт/(м·К)
Номер CAS 7440-21-3

В ряде химических процессов кремний ведет себя как металл.

Технология получения

Цель переработки сырья – максимально чистое вещество.

В лабораториях процедура следующая:

  1. Добывают силицид магния.
  2. Воздействуют на вещество уксусной либо соляной кислотой.
  3. Образовавшийся моносилан очищают (сорбентами, ректификаторами), нагревают до 1050°C.

В результате получают водород и кремний.

Для промышленников сырьем служит белый песок мелких фракций (диоксид вещества с формулой SiO2).

Кристалл кремния

Кристалл кремния

Способ получения неметалла предусматривает следующие этапы:

  1. Прокаливание смеси сырья с магнием до образования аморфной модификации. Продукт выглядит как буроватый порошок.
  2. Технически чистый материал (99,9%) получают в печи при 1780°C. Из расплава диоксида вещество восстанавливают коксом.
  3. При необходимости изымают углерод, другие примеси.

Очищают кремний прямым хлорированием. Из полученных соединений изымают примеси, восстанавливают водородом при 910-1150°C.

Монокристалл кремния, выращенный по методу Чохральского

Монокристалл кремния, выращенный по методу Чохральского

Новые технологии очистки предусматривают замену хлора фтором: это экологичнее и рентабельнее. Есть способы получения вещества на основе дистилляции оксида неметалла, вытравкой примесей.

Кремний наделен свойствами, полезными либо нет с утилитарной точки зрения.

  1. Энергозатратность при получении чистого материала.
  2. Хрупкость. Но при нагреве выше 810°С кремний обретает пластичность.
  1. Доступность сырья: четверть земной коры – это кремний.
  2. Простота технологии извлечения вещества.
  3. Способность образовывать линейку соединений: диоксид, силаны, силициды, силикаты. Плюс твердые конгломераты – база для создания сотен видов стекла, керамики.
  4. Возможности как полупроводника широкого охвата. На электрические характеристики неметалла влияют примеси. Промышленность «эксплуатирует» этот феномен для создания полупроводников заданного типа.

Главный плюс кремния – нулевая токсичность. Она облегчает использование неметалла всеми сегментами рынка, включая медицину и фармакологию.

Где используется

Применение кремния определяют свойства. Неметалл хрупок, поэтому непригоден в качестве «скелета» конструкций. Однако эта же характеристика позволяет идеально обрабатывать поверхность кристаллов, что ценят производители электроники.

Применение кремния

Применение кремния

Кремний – материал номер один для солнечных батарей, компьютеров, смартфонов, других гаджетов третьего тысячелетия.

Микроконтроллер 1993 года с УФ стиранием памяти 62E40 европейской фирмы STMicroelectronics. За окошечком виден кристалл микросхемы — кремниевая подложка с выполненной на ней схемой.

Промышленность

Кроме IT-индустрии неметалл востребован традиционными сегментами промышленности.

Использование кремния

  • Металлургия. Технический кремний используется как раскислитель при выплавке чугуна, упрочнитель сплавов.
  • Машино-, приборостроение. Сплавы с металлами тверды, тугоплавки. Используются как компоненты турбин, термоэлементы оборудования металлургических комбинатов.
  • Электро-, радиотехника. Из неметалла-полупроводника изготавливают фотоэлементы, интегральные схемы, транзисторы, диоды, другую продукцию.
  • Органический, неорганический синтез.
  • Прозрачность вещества для инфракрасного спектра – главный плюс для производителей оптики.
  • Стекольная промышленность. Силикаты – исходник при производстве стекла, хрусталя, керамики, фарфоро-фаянсового ассортимента.
  • Песок – компонент строительных материалов (цемента, бетона).
  • Почти универсален карбид (кремний + углерод). Соединение закупают металлурги, приборостроители, химпром. Твердое (7 баллов по Моосу) вещество используется как полупроводник широкого диапазона действия и абразив.
  • Кремнийорганические соединения закупают производители силиконовой продукции: герметиков, смазок, других изделий.

То есть применение нашлось чистому веществу и соединениям.

Другие сферы

Фармацевты используют кремниевые продукты как базис препаратов для профилактики и лечения атеросклероза, туберкулеза, артрита.

Вода из резервуаров, выложенных кремнием, опознается по кристальной чистоте, отсутствию микробов и целебным свойствам.

Эстетичные разновидности неметалла – агаты, аметисты, горный хрусталь, опалы, сердолик – закупают ювелиры и собиратели минералогических коллекций.

Биологическое воздействие

Как и в литосфере, в организме человека кремний – один из топовых макроэлементов (до 4%).

О нехватке вещества сигнализирует следующие факторы:

  • Тусклость, ломкость волос, ногтей.
  • Сухость кожи.
  • Частые ОРВИ, ОРЗ.
  • Учащенное сердцебиение.
  • Ослабленность скелета (позвоночные боли, остеопороз).
  • Бесплодие.

Плюс пониженный иммунитет. У детей – замедление роста и общего развития.

Пополнить запас микроэлемента помогают продукты.

Больше всего вещества в продуктах, богатых клетчаткой:

  • Необработанные крупы: рис, овес, ячмень, гречка.
  • Все бобовые.
  • Орехи, овощи, ягоды, фрукты,

Кремнием насыщены лечебные травы: полынь, крапива, хвощ, мать-и-мачеха.

В «животном» сегменте это мясо, яйца, морепродукты, молоко.

Предостережение

Опасно вдыхание кремниевой пыли, постоянный контакт с концентрированной формой вещества. Это проблема людей, занятых на добыче и переработке сырья.

Стоимость

На рынке представлена линейка продукции из кремния – промышленного и аптечного сегмента.

Цена определяется исходя из параметров продукта (руб./ кг):

Стоимость аптечных препаратов, БАДов зависит от страны-производителя, бренда, габаритов упаковки – 200+ руб.

Читайте также: