Курсовая работа по металлам

Обновлено: 27.09.2024

1. Введение. Управление климатическим оборудованием………….

1.1. Резка ручными ножницами………………………………….

3. Охрана труда и окружающей среды………………..…..……………

1. Введение.

Управление климатическим оборудованием

Система климатизации представляет собой сложный комплекс, объединяющий автономные инженерные системы. Обеспечить согласованность действий разрозненного оборудования можно только одним способом - путём интеграции в единую интеллектуальную систему управления.

Действительно, даже такие универсальные агрега­ты, как центральный кондиционер, не являются полностью самодостаточными - основным источ­ ником тепла обычно служит система центрального отопления или котел, и лишь холод производится своими средствами. Наиболее «самостоятельной» в этом отношении является система с зо­ нальными доводчиками, которая про­ изводит и холод, и тепло.

Итак, мы имеем дело с набором инженерных систем и от­дельных устройств, каждое из которых выполняет свои функ­ ции. Но все вместе они решают общую задачу - обеспечение отвечающего санитарным нормам и индивидуальным запро­ сам жильцов микроклимата, то есть создание в помещении требуемых температуры и влажности воздуха, кратности воз духообмена. К слову, сами по себе эти параметры также явля­ ются взаимозависимыми: чем интенсивнее вентиляция, тем больше энергии (особенно во время сильных холодов или жа­ ры) расходуется на поддержание желаемой температуры.

Высокий уровень комфорта предполагает возможность устанавливать разную температуру в различных помещени­ ях. При этом оборудование должно обеспечивать минималь­ный расход энергоресурсов и работать согласованно. Нужно исключить такие ситуации, когда, скажем, центральное ото­пление и кондиционер работают по принципу «кто кого».

Еще один момент - безопасность. Высокие температу­ ры и давление являются неотъемлемыми «атрибутами» ра­ боты котельной. Следовательно, потенциальная опасность должна быть снята с помощью автоматики, не допускающей работы агрегата в критических режимах.

Одним из немногих действенных способов обеспечения нужного уровня комфорта, энергоэффективности и безо­ пасности является интеграции составляющих климатиче­ ского комплекса в единую интеллектуальную систему. И только она дает реальную возможность свести к нулю влияние человеческого фактора. Жильцы дома в данном случае выступают исключительно в роли заказчиков мик­ роклимата. При этом диспетчер незамедлительно получает информацию о неисправностях, а также напоминания о не­обходимости планового техобслуживания. По мере укруп­ нения объекта или усложнения его инфраструктуры по­ требность в подобной интеграции стремительно возрастает.

Каждое отдельное устройство имеет свой встроенный центр управления и протокол, внутренний язык кодировки команд и переменных, отражающих различные параметры среды. Обычно производители используют собственный про­ токол (как правило, один из имеющихся стандартных). Оче­ видно, что в случае интеграции в единую систему для управ­ления всем оборудованием потребуется универсальный внешний язык. И естественно, встроенный в каждый агрегат «переводчик» - конвертер протоколов, или шлюз. Известно несколько международных протоколов, каждый из которых претендует на глобальную роль «технического эсперанто». Инженерное оборудование, применяе­ мое в жилой сфере, постоянно усложняется. На определен­ ном этапе развития технологий «умного дома» наступает мо­ мент, когда Е1В уже не в состоянии реализовать весь спектр функций, связанных с управлением климатическим обору­ дованием, и тогда более предпочтительным оказывается LON с его изначальной «избыточностью». Во многих случаях приходится использовать оба стандарта и, соответственно шлюз LON - EIB ЪОМ-Е1В. Относительно молодой протокол BACNet не уступает LON по своим возможностям. Но при этом он в большей степени ориентирован на сетевые решения и «легко уживается» с быстро набирающим очки протоколом переда­чи данных ТСР/ IP , который все чаще используется в качестве «транспортного средства».

2. Резка металла.

Общие сведения . Резкой называют отделение частей (заготовок) от сортового или листового металла. Резка выполняется как со снятием стружки, так и без нее. Резка со снятием стружки осуществляется ручной ножовкой, на ножовочных, круглопильных, токарно-отрезных станках, а также может быть газовой, дуговой и др. Без снятия стружки материалы раз­ резают ручными рычажными и механическими ножницами, кусачками, труборезами, пресс-ножницами, в штампах. К резке относится также и надрезание металла.

Сущность процесса резки ножницами заключается в отделении ча­ стей металла под действием пары режущих ножей. Разрезаемый лист помещают между верхним и нижним ножами. Верхний нож, опускаясь, давит на металл и разрезает его.

2.1. Резка ручными ножницами


Обыкновенные ручные ножницы применяют для разрезания сталь­ных листов толщиной 0,5. 1 мм и листов из цветных металлов толщиной до 1,5 мм. Ручные ножницы изготовляют с прямыми (рис.1. а, б) и кривыми (рис.1. в) режущими лезвиями.

Рис. 1. Ручные ножницы для резки металла: а - с прямыми лезвиями, б - прямые правые, в - с кривыми лезвиями.

По расположению режущей кромки лезвия ручные ножницы делятся на правые и левые.

Правыми называются ножницы, у которых скос на режущей части каждой половины находится с правой стороны. Правыми ножница­ ми режут по левой кромке изделия в направлении по часовой стрелке (рис. 1. б).

Левыми называются ножницы, в которых на режущей части каждой половины скос расположен с левой стороны. Такими ножницами режут по правой кромке изделия против часовой стрелки (рис. 1. в).


При резке листа правыми ножницами все время видна риска на разрезаемом металле. При работе левыми ножницами, чтобы видеть риску, приходится левой рукой отгибать отрезаемый металл, перекладывая его через правую руку, что очень неудобно. Поэтому листовой металл по прямой линии и по кривой (окружности, закругления) без резких пово­ротов режут правыми ножницами.

Рис.2. Положение руки на рукоятках ножниц при резке (а) и приёмы резки ножницами.

Ножницы держат в правой руке, охватывая рукоятки четырьмя пальцами и прижимая их к ладони; мизинец помещают между рукоятка­ми (рис.2.).

Сжатые указательный, безымянный и средний пальцы разжимают, выпрямляют мизинец и его усилием отводят нижнюю рукоятку ножниц на необходимый угол. Удерживая лист левой рукой, подают его между режущими кромками, направляя верхнее лезвие точно посере­дине разметочной линии, которая при резании должна быть видна. Затем, сжимая рукоятку всеми пальцами правой руки (кроме мизинца) осуществляют резание.

Для прямолинейной резки металла небольшой толщины применя­ют ручные ножницы, одну рукоятку которых зажимают в тисках.

Стуловые ножницы отличаются от обыкновенных большими разме­рами и применяются при разрезании листового металла толщиной до 3 мм. Нижняя рукоятка жестко зажимается в слесарных тисках или крепится (вбивается) на столе или другом жестком основа­нии. Для резки листовой стали толщиной до 3 мм применяют стуловые ножницы, имеющие стационарное закрепление.

Стуловые ножницы малопроизводительны, при работе требуют значительных усилий, поэтому для разрезания большой партии листового металла их не применяют.

Ручные малогабаритные силовые ножницы служат для резки листовой стали толщиной до 2,5 мм и прутков диаметром до 8 мм. Габаритные размеры этих ножниц не превышают размеров обыкновен­ных ручных ножниц. Для резки рукоятку закрепляют в тисках, а рукоятку (рабочую) приводят в действие. Рабочая рукоятка пред­ставляет собой систему двух последовательно соединенных рычагов. Первый рычаг, на одном плече которого закреплен нож, соединен с помощью винта с рукояткой. Второе плечо рычага, являющееся у обыкновенных ножниц рукояткой, выполнено укороченным и закан­чивается шарниром собственно рукояткой ножниц. Концевым шарни­ром рукоятка с помощью двухшарнирного звена соединена с рукоят­кой. Эта система рычагов увеличивает усилие резания примерно в 2 раза по сравнению с обыкновенными ножницами таких же размеров.

Ножи ножниц - сменные и прикреплены к рычагам на потайных заклепках.


Эти ножницы оснащены приспособлением для резки прутков диаметром до 8 мм. Приспособление имеет закрепленные на рычагах нож­ниц диски 4 с отверстиями и представляет собой обыкновенные ножни­цы, но с ножами специальной формы (закаленные втулки). Эти ножи являются сменными и вставляются в гнездо дисков. Для обрезки болтов (шпилек) во втулках одного из дисков имеется нарезка (несколько ниток), которая предохраняет резьбу болтов при обрезке от смятия.

Малогабаритные силовые ножницы обеспечивают хорошее качество реза.

Рис.3. Рычажные ножницы.

Рычажные ножницы применяют для разрезания листовой стали толщиной до 4 мм, алюминия и латуни - до 6 мм. Верхний шар нирно закрепленный нож 5 приводится в действие от рычага 2 Нижний нож 1- неподвижный.

Ножи изготовляют из стали У8 и закаливают до твердости HRC э 52. 60. Углы заострения режущих граней равны 5. 85°.

Перед работой проверяют наличие смазки на трущихся поверхно­ стях, плавность хода рычага, отсутствие зазора между режущими кром­ ками.


При резке металла правой рукой обхватывают рукоятку 2 рычага и плавно перемещают его в верхнее положение, при этом верхний нож 3 отходит вверх. Затем укладывают лист 4 так, чтобы левая рука удержи­ вала его в горизонтальном положении, а линия реза находилась в поле зрения и совпадала с лезвием верхнего ножа 3. Движением руки опуска­ ют рычаг с ножом вниз до тех пор, пока часть металла не будет прореза­ на, после этого рычаг перемещают в верхнее положение. Далее слегка поднимают лист 4 левой рукой, продвигают его по риске вдоль режущей кромки верхнего ножа и повторяют прием резания до полного разреза­ ния. Ножницы обеспечивают получение реза без вмятин и прорезов по краю, а также достаточную точность.

Рис.4. Маховые ножницы.

Маховые ножницы широко используются для рез­ ки листового металла толщиной 13. 2,5 мм с пределом прочности 450. 500 МПа (сталь, дюралюминий и т.д.). Этими ножницами режут металл значительной длины. Маховые ножницы имеют чугунные стани­ ну 1 и стол 2. В последний встроен нижний неподвижный нож 8, а верх­ ний подвижный нож 5 с криволинейной режущей кромкой закреплен в ножедержателе б и имеет противовес 7, уравновешивающий ножедер жатель с ножом.

Размер отрезаемых заготовок намечается предварительной размет­ кой или ограничивается регулируемым упором 10, для чего упор сначала устанавливают на требуемое расстояние от режущей кромки нижнего неподвижного ножа. Лист 3 во время разрезания плотно прижимают боковой кромкой к упору 10, а другой кромкой - к пружинному упо­ ру 12. После этого поворотом рукоятки 11 от себя лист плотно прижи­мают сверху прижимной планкой 9 и, опуская верхний нож с ножедержателем 6, разрезают заготовку.

Ножедержатель при опускании вниз упирается в пружинный упор 12, Перестановка упора осуществляется с помощью рукоятки 4.

Ножницы с наклонными ножами (гильотинные) позволяют разрезать листовой металл толщиной до 32 мм, листы размерами 1000. 32000 мм, реже - полосовой прокат, а также листовые неметалли­ ческие материалы.

Рис.5. Кривошипные листовые ножницы с наклонны­ ми ножами.


На рис. 5. показаны кривошипные листовые ножницы с наклонны­ ми ножами. Они имеют нижний неподвижный и верхний подвижный ножи; последний наклонен под углом 2. 6°. Это делает возможным постепенный вход ножа в работу, облегчает резание и обеспечивает его высокое качество. Нижний нож крепится к задней части стола 2, установленного на станине 1. верхний - к ползуну 7. От элек тродвигателя 6 через клиноременную передачу получает вращение криво­ шипный вал 4.

Два эксцентрика 5, смонтированные на нем, сообщают ползуну возвратно-поступательное перемещение по направляющим стоек 3. Лист укладывают на стол к кронштейну 9 и прижимают прижимом 8, после чего осуществляют резку.

2.2. Резка ножовкой

Общие сведения. Ручная ножовка (пила) - инструмент, предназначенный для разрезания толстых листов полосового, круглого и профильного металла, а также для прорезания шлицев, пазов, обрезки и вырезки заготовок по контуру и других работ. Ручная слесарная но­жовка (рис.6. а) состоит из станка (рамки) 2 и ножовочного полот­на 4. На одном конце рамки имеется неподвижная головка 5 с хвостови­ком и рукояткой 6, а на другом - подвижная головка 3 с натяжным винтом 9 и гайкой (барашком) 1 для натяжения полотна. В головках 5 и 3 выполнены прорези 8, в которые вставляют ножовочное полотно и крепят его штифтами 7.


Рамки для ножовок изготовляют либо цельными (редко) для ножовочного полотна одной определенной длины, либо раздвижными (рис. 117,0), допускающими закрепление ножовочного полотна различ­ной длины.

Для раздвигания ножовки колена перегибают, пока заклепка не выйдет из выреза, и смещают. Заклепку вводят в другой вырез и колена выпрямляют.

Станок с передвижным держателем (рис. 6. в) представляет собой угольник с рукояткой, по которому можно перемещать и закреплять в нужном положении держатель.

Ножовочное полотно представляет собой тонкую и узкую стальную пластину с двумя отверстиями и с зубьями на одном из ребер. Полотна изготовляют из сталей У10А и Х6ВФ, их твердость HRC 3 61. 64. В зависимости от назначения ножовочные полотна разделяются на ручные и машинные. Полотно вставляют в рамку зубьями вперед.

Размер (длина) ручного ножовочного полотна определяется по рас­стоянию между центрами отверстий под штифты (рис. 6. г).

Каждый зуб ножовочного полотна имеет форму клина (резца).

Для резки более твердых материалов применяют полотна, у которых угол заострения зубьев больше, для разрезания мягких материалов угол заострения меньше. Полотна с большим углом заострения более износо устойчивы.

Подготовка к работе ножовкой. Перед работой ножовкой прочно закрепляют разрезаемый материал в тисках (уровень крепления должен соответствовать росту работающего). Затем выбирают ножовочное по­лотно в соответствии с твердостью, формой и размерами разрезаемого металла. При длинных пропилах используют ножовочные полотна с круп­ным шагом зубьев, а при коротких - с мелким.


Ножовочное полотно устанавливают в прорези головки так, чтобы зубья были направлены от рукоятки, а не к ней. При этом сначала вставляют конец полотна в неподвижную головку и фиксируют его штифтом, затем вставляют второй конец полотна в прорезь подвижного штыря и также закрепляют штифтом. Натягивают полотно вручную без большого усилия (запрещается приме­нение плоскогубцев, тисков и др.) вращением барашковой гайки. При этом из-за опасения разрыва полотна ножовку держат в удалении от лица.

Туго натянутое полотно при незначительном перекосе, а слабо натя­нутое - при усиленном нажиме перегибаются и могут сломаться. Степень натяжения полотна проверяют, легко нажимая на него пальцем сбоку; если полотно не прогибается, натяжение достаточно.

Рис.7. Положение при работе: а - корпуса и ножовки, б, в - соответственно правой и левой рук, г - ног.

Положение корпуса работающего. При резке металла ручной ножов­ кой становятся перед тисками прямо, свободно Я устойчиво, вполобо­ рота по отношению к губкам тисков или оси обрабатываемой заготовки (рис. 7.) - Левую ногу несколько выставляют вперед, примерно по линии разрезаемого металла, и на нее опирают корпус. Ступни ног ставят так, чтобы они образовали угол 60. 70° при определенном расстоянии между пятками. Положение рук (хватка). Поза рабочего считается правильной, если между плечевой и локтевой частями согнутой в локте правой руки с но­ жовкой, установленной на губки тисков (в исходное положение), обра­ зуется прямой угол.

Рукоятку обхватывают четырьмя пальцами правой руки так, чтобы она упиралась в ладонь; большой палец накладывают сверху вдоль рукоятки. Пальцами левой руки обхватывают гайку и под­ вижную головку ножовки.

Работа ножовкой. При резке ножовкой, как и при опиливании, долж­на соблюдаться строгая координация усилий (балансировка), заключа­ ющаяся в правильном увеличении нажима рук. Движение ножовки должно быть строго горизонтальным. Нажимают на станок обеими руками, но наибольшее усилие делают левой рукой, а правой осуще­ ствляют главным образом возвратно-поступательное движение ножовки. В процессе резки осуществляется два хода - рабочий, когда ножов­ ка перемещается вперед от работающего, и холостой, когда ножовка перемещается назад, по направлению к работающему. При холостом ходе на ножовку не нажимают, в результате чего зубья только скользят, а при рабочем ходе обеими руками создают легкий нажим так, чтобы но­ жовка двигалась прямолинейно.

При работе ножовкой необходимо выполнять следующие правила:

- короткие заготовки резать по наиболее широкой стороне;

- при резке проката углового, таврового и швеллерного профилей лучше изменять положение заготовки, чем резать по узкой стороне;

- в работе должно участвовать все ножовочное полотно;

- работать ножовкой не спеша, плавно, без рывков, делая не более 30. 60 двойных ходов в минуту ;

- при более быстрых темпах скорее наступает утомляемость и, кроме того, полотно нагревается и бы­ стрее тупится;

- перед окончанием распила ослаблять нажим на ножовку, так как при сильном нажиме ножовочное полотно резко выскакивает из распила, ударяясь о тиски или заготовку, в результате чего может нанести травму;

- при резке не давать полотну нагреваться;

- для уменьшения трения полотна о стенки в пропиле заготовки периодически смазывать полотно минеральным маслом или графитовой смазкой, особенно при резке вязких металлов;

- латунь и бронзу разрезать только новыми полотнами, так как даже малоизношенные зубья не режут, а скользят;

- в случае поломки или выкрашивания хотя бы одного зуба работу немедленно прекратить, удалить из пропила остатки сломанного зуба, полотно заменить новым или сточить на станке два-три соседних зуба;

Металлургия цветных металлов

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Московский Государственный Институт Стали и Сплавов

Кафедра металлургии цветных и благородных металлов

Курсовая работа на тему:

Металлургия цветных металлов

Содержание

Описание технологии получения катодной меди………4

Выбор технологии плавки на штейне…………………. 8

Теоретические основы процесса Ванюкова…………….10

Расчет материального и теплового баланса…………….13

Введение

Металлургия меди, а также других тяжелых цветных ме­таллов является ведущим звеном отечественной цветной металлур­гии. На долю тяжелых цветных металлов в РФ прихо­дится значительная часть валовой продукции отрасли.

Значение меди из года в год возрастает, особенно в связи с бурным развитием энергетики, электроники, машинострое­ния, авиационной, космической и атомной техники. Дальнейшее развитие и технический уровень медного и никелевого производств во многом определяют технический прогресс многих отраслей на­родного хозяйства нашей страны, в том числе микропроцессорной техники. Для получения меди используются всевозможные способы плавок, например, плавка медных концентратов в электрических, отражательных, шахтных печах, при использовании процесса конвертирования медных штейнов, благодаря автогенным плавкам во взвешенном состоянии, на штейне и др. На сегодняшний день существует несколько основных процессов автогенных плавок : процесс «Норанда», «Уоркра», «Мицубиси» и Ванюкова. К сожалению, разработка новый конструкций печей и различных процессов требует значительных капиталовложений, а свободный средств у Российских предприятий недостаточно. В данной курсовой работе будет рассмотрена технология А.В. Ванюкова или ПЖВ.

Технология получения катодной меди

Электролитическое рафинирование меди преследует две цели:

1) получение меди высокой чистоты (99,90—99,99% Си), удовлетворяющей требованиям большинства потребителей;

2) извлечение попутно с рафинированием благородных и других ценных компонентов (Se, Те, Ni, Bi и др.).

Следует отметить, что чем выше в исходной меди содержание благородных металлов, тем ниже будет себестоимость электролит­ной меди. Именно поэтому при конвертировании медных штейнов стремятся использовать в качестве флюса золотосодержащие кварциты.

Для осуществления электролитического рафинирования меди аноды, отлитые после огневого рафинирования, помещают в элект­ролизные ванны, заполненные сернокислым электролитом. Между анодами в ваннах располагаются тонкие медные листы — катод­ные основы.

При включении ванн в сеть постоянного тока происходит элек­трохимическое растворение меди на аноде, перенос катионов через электролит и осаждение ее на катоде. Примеси меди при этом в основном распределяются между шламом (твердым осадком на дне ванн) и электролитом.

В результате электролитического рафинирования получают катодную медь; шлам, содержащий благородные металлы; селен;

теллур и загрязненный электролит, часть которого иногда исполь­зуют для получения медного и никелевого купоросов. Кроме того, вследствие неполного электрохимического растворения анодов получают анодные остатки (анодный скрап).

Электролитическое рафинирование меди основано на различии ее электрохимических свойств и содержащихся в ней примесей. В таблице приведены нормальные электродные потенциалы меди и наиболее часто встречающихся в ней примесей.

Медь относится к группе электроположительных металлов, ее нормальный потенциал +0,34 В, что позволяет осуществлять процесс электролиза в водных растворах (обычно в сернокислых).

На катоде протекают те же электрохимические реакции, но в обратном направлении. Соотношение между одновалентной и двух­валентной медью в растворе определяется равновесием реакции диспропорционирования.

Следовательно, в состоянии равновесия концентрация в растворе ионов Сu+ примерно в тысячу раз меньше, чем кон­центрация ионов Си 2+ . Тем не менее реакция имеет сущест­венное значение для электролиза. Она в частности определяет переход меди в шлам. В начальный момент вблизи анода в раст­воре соотношение двух- и одновалентной меди соответствует кон­станте равновесия. Однако вследствие большего заряда и меньшего ионного радиуса скорость перемещения двухвалентных ионов к катоду превышает скорость переноса ионов одновалентных. В ре­зультате этого в прианодном слое концентрация ионов Си 2+ ста­новится выше равновесной и реакция начинает идти в сто­рону образования тонкого порошка меди, выпадающего в шлам.

Как указывалось выше, электролитическое рафинирование осу­ществляют в сернокислых растворах. Электроположительный потенциал меди позволяет выделить медь на катоде из кислых растворов без опасения выделения водорода. Введение в электро­лит наряду с медным купоросом свободной серной кислоты су­щественно повышает электропроводность раствора. Объясняется это большей подвижностью ионов водорода по сравнению с под­вижностью крупных катионов и сложных анионных комплексов.

Для улучшения качества катодной поверхности в электролиты для рафинирования меди на всех заводах обязательно вводят разнообразные поверхностно-активные (коллоидные) добавки:

клей (чаще столярный), желатин, сульфитный щелок. В процессе электролиза на поверхности катода могут образо­вываться дендриты, что уменьшает в данном месте расстояние между катодом и анодом. Уменьшение межэлектродного расстоя­ния ведет к уменьшению электрического сопротивления, а следо­вательно, к местному увеличению плотности тока. Последнее в свою очередь обусловливает ускоренное осаждение меди на дендри­те и ускоренный его рост. Начавшийся рост дендрита в конечном итоге может привести к короткому замыканию между катодом и анодом. При наличии дендритов сильно развитая поверхность ка­тода удерживает большое количество электролита и плохо промы­вается, что не только ухудшает качество товарных катодов, но и может вызвать брак катодной меди по составу. Одно из объясне­ний механизма действия поверхностно-активных веществ заклю­чается в том, что они адсорбируются на наиболее активных частях поверхности и при этом вызывают местное повышение элек­трического сопротивления, что и препятствует росту дендрита. В результате поверхность катодов получается более ровной, а катод­ный осадок более плотным. После выравнивания катодной поверх­ности коллоидная добавка десорбирует в электролит.

Растворы коллоидных добавок непрерывно вводят в циркули­рующий электролит. Вид и расход поверхностно-активных веществ различны для каждого предприятия. Обычно применяют одновре­менно две добавки. На 1 т получаемой катодной меди расходуют 15—40 г клея, 15—20 г желатина, 20—60 г сульфитных щелоков или 60—100 г тиомочевины.

Основными требованиями, предъявляемыми к электролиту, явля­ются его высокая электропроводность (низкое электрическое сопротивление) и чистота. Однако реальные электролиты, помимо сульфата меди, серной кислоты, воды и необходимых добавок, обязательно содержат растворенные примеси, содержащиеся до этого в анодной- меди. Поведение примесей анодной меди при электролитическом рафинировании определяется их положением в ряду напряжений. По электрохимическим свойствам примеси можно разделить на четыре группы:

I группа — металлы более электроотрицательные, чем медь (Ni, Fe, Zn и др.);

II группа — металлы, близко стоящие в ряду напряжений к-меди (As, Sb, Bi);

III группа — металлы более электроположительные, чем медь (Au, Ag и платиноиды);

IV группа — электрохимически нейтральные в условиях рафи­нирования меди химические соединения (Cu2S, Cu2Se, Cu2Te, AuTe2, Ag2Te).

Примеси первой группы, обладающие наиболее электроотрица­тельным потенциалом, практически полностью переходят в электро­лит. Исключение составляет лишь никель, около 5% которого из анода осаждается в шлам в виде твердого раствора никеля в меди. Твердые растворы по закону Нернста становятся даже более электроположительными, чем медь, что и является причиной их перехода в шлам.

Особо по сравнению с перечисленными группами примесей-ведут себя свинец и олово, которые по электрохимическим свой­ствам относятся к примесям I группы, но по своему поведению в процессе электролиза могут быть отнесены к приме­сям III и IV групп. Свинец и олово образуют нерастворимые в сернокислом растворе сульфат свинца PbS04 и метаоловянную кислоту H2SnO3. Электроотрицательные примеси на катоде в условиях электро­лиза меди практически не осаждаются и постепенно накаплива­ются в электролите. При большой концентрации в электролите металлов первой группы электролиз может существенно рас­строиться.

Накопление в электролите сульфатов железа, никеля и цинка снижает концентрацию в электролите сульфата меди. Кроме того, участие электроотрицательных металлов в переносе тока через электролит усиливает концентрационную поляризацию у катода.

Электроотрицательные металлы могут попадать в катодную медь в основном в виде межкристаллических включений . раство­ра или основных солей, особенно при их значительной концентра­ции в электролите. В практике электролитического рафинирования меди не рекомендуется допускать их концентрацию в растворе свыше следующих значений, г/л: 20 Ni; 25 Zn; 5 Fe.

Примеси II группы (As, Sb, Bi), имеющие близкие к меди электродные потенциалы, являются наиболее вредными с точки зре­ния возможности загрязнения катода. Будучи несколько более электроотрицательными по сравнению с медью, они полностью растворяются на аноде с образованием соответствующих суль­фатов, которые накапливаются в электролите. Однако сульфаты этих примесей неустойчивы и в значительной степени подверга­ются гидролизу, образуя основные соли (Sb и Bi) или мышьяко­вистую кислоту (As). Основные соли сурьмы образуют плавающие в электролите хлопья студенистых осадков («плавучий» шлам), которые захватывают частично и мышьяк.

В катодные осадки примеси мышьяка, сурьмы и висмута могут попадать как электрохимическим, так и механическим путем в результате адсорбции тонкодисперсных частичек «плавучего» шлама. Таким образом, примеси II группы распределяются между электролитом, катодной медью и шламом. Предельно допустимые концентрации примесей II группы в электролите составляют, г/л:

9 As; 5 Sb и 1,5 Bi.

Более электроположительные по сравнению с медью примеси (III группа), к которым относятся благородные металлы (главным образом, Au и Ag), в соответствии с положением в ряду напряже­ний должны переходить в шлам в виде тонкодисперсного остатка. Это подтверждается практикой электролитического рафинирования меди.

Переход золота в шлам составляет более 99,5% от его содер­жания в анодах, а серебра — более 98%. Несколько меньший переход серебра в шлам по сравнению с золотом связан с тем, что серебро способно в небольшом количестве растворяться в электролите и затем из раствора выделяться на катоде. Для умень­шения растворимости серебра и перевода его в шлам в состав электролита вводят небольшое количество иона хлора.

Несмотря на практически полный переход золота и серебра в шлам, они все же в небольшом количестве попадают в катодные осадки. Объясняется это механическим захватом взмученного шлама и отчасти явлением катофореза. На механический перенос шлама на катод влияют применяемая плотность тока и взаимосвя­занная с ней скорость циркуляции электролита. С увеличением скорости циркуляции вследствие взмучивания шлама переход золо­та и серебра на катод возрастает. При выборе плотности тока и способа циркуляции электролита необходимо учитывать содержание благородных металлов в анодах. В случае их повышенного содер­жания плотность тока должна быть меньше. Снижению переноса шлама на катод способствует также наличие в ванне зоны отстаи­вания (область от нижнего конца катода до дна ванны). На многих заводах электролит перед его возвращением в ванну в цикле цирку­ляции подвергают фильтрованию, что уменьшает потери шлама и обеспечивает получение более чистой меди.

Аналогично электроположительным примесям ведут себя при электролизе меди химические соединения (примеси IV группы). Хотя в принципе химические соединения и могут окисляться на аноде и восстанавливаться на катоде, что используют в специаль­ных процессах, в условиях электролитического рафинирования меди анодного потенциала недостаточно для их окисления. Поэтому при электролизе меди в электродных процессах они не участвуют и по мере растворения анода осыпаются на дно ванны. В виде селенидов и теллуридов переходят в шлам более чем 99% селена и теллура.

Таким образом, в результате электролитического рафинирования анодной меди все содержащиеся в ней примеси распределяются между катодной медью, электролитом и шламом'.

Основными характеристиками, определяющими параметры и пока­затели электролитического рафинирования меди, являются плот­ность тока, выход металла по току, напряжение на ванне, удельный расход электроэнергии.

Плотность тока является важнейшим параметром процесса элек­тролиза. Она выражается в амперах на единицу поверхности элек­трода (D=I/S). В металлургии меди ее принято выражать в ампе­рах на квадратный метр площади катодов. По закону Фарадея на каждый 1 А • ч электричества осаждается 1 электрохимический эквивалент металла. Для меди он равен 1,1857 г/А • ч. Следова­тельно, с увеличением плотности тока интенсивность (производи­тельность) процесса электролиза возрастает. Величина плотности тока, при которой проводят процесс элек­тролитического рафинирования, определяет все его основные техни­ко-экономические показатели: напряжение на ванне, выход по току, расход электроэнергии, а также капитальные и эксплуатационные затраты. С увеличением плотности тока при прочих равных услови­ях увеличивается производительность цеха, уменьшаются число потребных ванн, затраты на капитальное строительство и рабочую силу, но возрастают затраты на электроэнергию. Следует отметить, однако, что с увеличением плотности тока увеличиваются потери благородных металлов за счет большего взмучивания шлама и захвата его растущим катод­ным осадком. В настоящее время применение особых режимов элек­тролиза (реверсивного тока, измененной системы циркуляции элек­тролита и др.) позволяет довести плотность тока до 500 А/м 2 и более.

Электрохимический эквивалент меди составляет 1,1857 г/А • ч. Однако практически при электролизе для выделения 1 г-экв метал­ла расходуется электричества больше. Это кажущееся противоречие объясняется тем, что часть электрического тока расходуется на побочные электрохимические процессы и утечку тока. Степень использования тока на основной электрохимический процесс назы­вается выходом металла по току.

В практике электрометаллургии цветных металлов в большин­стве случаев приходится иметь дело с катодным выходом по току, так как масса катодного осадка определяет конечный выход товар­ной продукции. Преднамеренный повышенный перевод меди в электролит за счет химического растворения часто обусловливают конъюнктурными соображениями. Избыточная медь может быть выделена из электроли­та в виде медного купороса при его регенерации. В тех случаях, когда потребность в медном купоросе, используемом в основном для борьбы с болезнями и вредителями сельскохозяйственных растений, очень велика (например, в НРБ), допускается работа электролиз­ных цехов с повышенной температурой электролита.

Выбор технологии плавки на штейне

Почти столетие в металлургии меди и около полувека в металлур­гии никеля (в Канаде) «господствует» отражательная плавка. Свое широкое распространение она получила благодаря освоенности плавки применительно к переработке различных видов мелких руд­ных материалов, главным образом флотационных концентратов, простоте организации процесса почти в любых условиях металлургического производства. Основными причинами острой необходи­мости замены отражательной плавки стали высокие требования к предотвращению загрязнения окружающей среды выбросами окси­дов серы. В условиях отражательной плавки, характеризующейся образованием огромных количеств очень бедных по SO2 газов, их обезвреживание требует больших капитальных затрат и обходится дорого в эксплуатации. В связи с этим, а также в связи с необхо­димостью активного использования теплотворной способности суль­фидов и ряда других рассмотренных выше факторов были разрабо­таны и освоены новые способы плавки медного сырья. Главным образом это — автогенные процессы, совмещающие в себе обжиг, плавку и конвертирование. В этих процессах большая часть серы переходит в отходящие газы с достаточно высоким и постоянным содержанием SO2.

Ниже приведены сравнительные основные технико-эконо­мические показатели применяемых в настоящее время в медной промышленности пирометаллургических процессов.

Уже в начальной стадии освоения процесса плавки в жидкой ванне достигнута удельная производительность, превышающая более чем в 15 раз производительность отражательной печи при плавке сырой шихты, и в 6—8 раз производительность КВП и фин­ской технологии. Возможно широкое управление составом штейна и получение на богатых штейнах относительно бедных отвальных шлаков.

Процесс характеризуется низким пылеуносом и получением возгонов, богатых по содержанию ценных компонентов. Для осущест­вления процесса создана надежная и долговечная аппаратура. Про­цесс не требует сложной подготовки сырья и пригоден для переработки как кусковой руды, так и концентратов различного состава. По своим показателям он превосходит все известные в мировой практике процессы. Процесс следует считать в основном освоенным и заслуживающим широкого и быстрого внедрения в отечественной медной и никелевой промышленности.

Помимо основного использования для плавки сульфидных кон­центратов на штейн, плавка в жидкой ванне пригодна для более широкого применения. При внедрении процесса в жидкой ванне необходимо учитывать его возможности, пути и направления раз­вития, которые будут осуществляться уже в недалеком будущем.

К перспективным направлениям относятся прежде всего прямое получение черновой меди и глубокое обеднение шлаков, прямое получение медно-никелевого файнштейна, плавка коллективных медно-цинковых концентратов, комплексная переработка отвальных шлаков. Заслуживает внимания также использование принципов плавки в жидкой ванне для переработки окисленных никелевых и железных руд.

Сравнительные технико-экономические показатели некоторых видов плавки сульфидных медных концентратов

Курсовая работа: Тяжелые металлы

Тяжелые металлы.

Тяжелые металлы — это элементы периодической системы с относительной молекулярной массой больше 40. Так сложилось, что термины «тяжелые металлы» и «токсичные металлы» стали синонимами.

На сегодняшний день безоговорочно к числу токсичных относят кадмий, ртуть, свинец, сурьму. Деятельность значительной части остальных в живых организмах можно оценить только на «отлично». Действительно, металлы в ионной форме входят в состав витаминов, гормонов, регулируют активность ферментов. Установлено, что для белкового, углеводного и жирового обмена веществ необходимы Mo, Fe, V, Co, W, B, Mn, Zn; в синтезе белков участвуют Mg, Fe, Cu, Zn, Mn, Co; в кроветворении — Co, Cu, Mn, Ni, Zn; в дыхании — Mg, Fe, Cu, Zn, Mn, Co. Справедливо утверждение о том, что нет вредных веществ, есть вредные концентрации. Поэтому ионы меди, кобальта или даже хрома, если их содержание в живом организме не превышает естественного, можно именовать микроэлементами, если же они генеалогически связаны с заводской трубой, то это уже тяжелые металлы.Тяжелые металлы (ртуть, свинец, кадмий, цинк, медь, мышьяк,) относятся к числу распространенных и весьма токсичных загрязняющих веществ. Они широко применяются в различных промышленных производствах, поэтому, несмотря на очистные мероприятия, содержание соединения тяжелых металлов в промышленных сточных водах довольно высокое. Большие массы этих соединений поступают в океан через атмосферу. Для морских биоценозов наиболее опасны ртуть, свинец и кадмий. Ртуть переносится в океан с материковым стоком и через атмосферу.

При кажущейся ясности понятия «тяжелые металлы» его значение следует определить более четко из-за встречающихся в литературе неоднозначных оценок. Термин «тяжелые металлы» связан с высокой относительной атомной массой. Эта характеристика обычно отождествляется с представлением о высокой токсичности. Одним из признаков, которые позволяют относить металлы к тяжелым, является их плотность. В современной цветной металлургии различают тяжелые цветные металлы — плотность 7,14-21,4 г/см3 (цинк, олово, медь, свинец, хром и др.) и легкие цветные металлы — плотность 0,53-3,5 г/см3 (литий, бериллий и др.).

Согласно одной классификации, к группе тяжелых металлов принадлежит более 40 элементов с высокой относительной атомной массой и относительной плотностью больше 6. По другой классификации, в эту группу включают цветные металлы с плотностью большей, чем у железа (свинец, медь, цинк, никель, кадмий, кобальт, олово, сурьма, висмут, ртуть).

Согласно сведениям, представленным в «Справочнике по элементарной химии» под ред. А.Т.Пилипенко (1977), к тяжелым металлам отнесены элементы, плотность которых более 5 г/см3. Если исходить их этого показателя, тяжелыми следует считать 43 из 84 металлов Периодической системы элементов. Среди этих 43 металлов 10 обладают наряду с металлическими свойствами признаками неметаллов (представители главных подгрупп VI, V, IV, III групп Периодической системы, являющиеся р-элементами), поэтому более строгим был бы термин «тяжелые элементы», но в данной публикации мы будем пользоваться общепринятым в литературе термином «тяжелые металлы».

Таким образом, к тяжелым металлам относят более 40 химических элементов с относительной плотностью более 6. Число же опасных загрязнителей, если учитывать токсичность, стойкость и способность накапливаться во внешней среде, а также масштабы распространения указанных металлов, значительно меньше.

Прежде всего представляют интерес те металлы, которые наиболее широко и в значительных объемах используются в производственной деятельности и в результате накопления во внешней среде представляют серьезную опасность с точки зрения их биологической активности и токсических свойств. К ним относят свинец, ртуть, кадмий, цинк, висмут, кобальт, никель, медь, олово, сурьму, ванадий, марганец, хром, молибден и мышьяк.

Биогеохимические свойства тяжелых металлов

Минеральная форма распространения

Органическая форма распространения

Тенденция к биоконцентрированию

Склонность к гидролизу

В- высокая, У — умеренная, Н — низкая

Формы нахождения в окружающей среде. В атмосферном воздухе тяжелые металлы присутствуют в форме органических и неорганических соединений в виде пыли и аэрозолей, а также в газообразной элементной форме (ртуть). При этом аэрозоли свинца, кадмия, меди и цинка состоят преимущественно их субмикронных частиц диаметром 0,5-1 мкм, а аэрозоли никеля и кобальта — из крупнодисперсных частиц (более 1 мкм), которые образуются в основном при сжигании дизельного топлива.

В водных средах металлы присутствуют в трех формах: взвешенные частицы, коллоидные частицы и растворенные соединения. Последние представлены свободными ионами и растворимыми комплексными соединениями с органическими (гуминовые и фульвокислоты) и неорганическими (галогениды, сульфаты, фосфаты, карбонаты) лигандами. Большое влияние на содержание этих элементов в воде оказывает гидролиз, во многом определяющий форму нахождения элемента в водных средах. Значительная часть тяжелых металлов переносится поверхностными водами во взвешенном состоянии.

Сорбция тяжелых металлов донными отложениями зависит от особенностей состава последних и содержания органических веществ. В конечном итоге тяжелые металлы в водных экосистемах концентрируются в донных отложениях и биоте.

В почвах тяжелые металлы содержатся в водорастворимой, ионообменной и непрочно адсорбированной формах. Водорастворимые формы, как правило, представлены хлоридами, нитратами, сульфатами и органическим комплексными соединениями. Кроме того, ионы тяжелых металлов могут быть связаны с минералами как часть кристаллической решетки.

Добыча и переработка не являются самым мощным источником загрязнения среды металлами. Валовые выбросы от этих предприятий значительно меньше выбросов от предприятий теплоэнергетики. Не металлургическое производство, а именно процесс сжигания угля является главным источником поступления в биосферу многих металлов. В угле и нефти присутствуют все металлы. Значительно больше, чем в почве, токсичных химических элементов, включая тяжелые металлы, в золе электростанций, промышленных и бытовых топок. Выбросы в атмосферу при сжигании топлива имеют особое значение. Например, количество ртути, кадмия, кобальта, мышьяка в них в 3-8 раз превышает количество добываемых металлов. Известны данные о том, что только один котлоагрегат современной ТЭЦ, работающий на угле, за год выбрасывает в атмосферу в среднем 1-1,5 т паров ртути. Тяжелые металлы содержатся и в минеральных удобрениях.

Наряду со сжиганием минерального топлива важнейшим путем техногенного рассеяния металлов является их выброс в атмосферу при высокотемпературных технологических процессах (металлургия, обжиг цементного сырья и др.), а также транспортировка, обогащение и сортировка руды.

Техногенное поступление тяжелых металлов в окружающую среду происходит в виде газов и аэрозолей (возгона металлов и пылевидных частиц) и в составе сточных вод.

Металлы сравнительно быстро накапливаются в почве и крайне медленно из нее выводятся: период полуудаления цинка — до 500 лет, кадмия — до 1100 лет, меди — до 1500 лет, свинца — до нескольких тысяч лет.

Существенный источник загрязнения почвы металлами — применение удобрений из шламов, полученных из промышленных и канализационных очистных сооружений.

В выбросах металлургических производств тяжелые металлы находятся, в основном, в нерастворимой форме. По мере удаления от источника загрязнения наиболее крупные частицы оседают, доля растворимых соединений металлов увеличивается, и устанавливаются соотношения между растворимой и нерастворимыми формами. Аэрозольные загрязнения, поступающие в атмосферу, удаляются из нее путем естественных процессов самоочищения. Важную роль при этом играют атмосферные осадки. В итоге выбросы промышленных предприятий в атмосферу, сбросы сточных вод создают предпосылки для поступления тяжелых металлов в почву, подземные воды и открытые водоемы, в растения, донные отложения и животных.

Дальность распространения и уровни загрязнения атмосферы зависят от мощности источника, условий выбросов и метеорологической обстановки. Однако в условиях промышленно-городских агломераций и городской застройки параметры распространения металлов в воздухе еще плохо прогнозируются. С удалением от источников загрязнения уменьшение концентраций аэрозолей металлов в атмосферном воздухе чаще происходит по экспоненте, вследствие чего зона их интенсивного воздействия, в которой имеет место превышение ПДК, сравнительно невелика.

В условиях урбанизированных зон суммарный эффект от регистрируемого загрязнения воздуха является результирующей сложения множества полей рассеяния и обусловлен удалением от источников выбросов, градостроительной структурой и наличием необходимых санитарно-защитных зон вокруг предприятий. Естественное (фоновое) содержание тяжелых металлов в незагрязненной атмосфере составляет тысячные и десятитысячные доли микрограмма на кубический метр и ниже. Такие уровни в современных условиях на сколько-нибудь обжитых территориях практически не наблюдается. Фоновое содержание свинца принято равным 0,006 мкг/м3, ртути — 0,001-0,8 мкг/м3 (в городах — на несколько порядков выше). К основным отраслям, с которыми связано загрязнение окружающей среды ртутью, относят горнодобывающую, металлургическую, химическую, приборостроительную, электровакуумную и фармацевтическую. Наиболее интенсивные источники загрязнения окружающей среды кадмием — металлургия и гальванопокрытия, а также сжигание твердого и жидкого топлива. В незагрязненном воздухе над океаном средняя концентрация кадмия составляет 0,005 мкг/м3, в сельских местностях — до 0,05 мкг/м3, а в районах размещения предприятий, в выбросах которых он содержится (цветная металлургия, ТЭЦ, работающие на угле и нефти, производство пластмасс и т.п.), и промышленных городах — до 0,3-0,6 мкг/м3.

Атмосферный путь поступления химических элементов в окружающую среду городов является ведущим. Однако уже на небольшом удалении, в частности, в зонах пригородного сельского хозяйства, относительная роль источников загрязнения окружающей среды тяжелыми металлами может измениться и наибольшую опасность будут представлять сточные воды и отходы, накапливаемые на свалках и применяемые в качестве удобрений.

Максимальной способностью концентрировать тяжелые металлы обладают взвешенные вещества и донные отложения, затем планктон, бентос и рыбы.

Осадки. Зона максимальных концентраций металлов в воздухе распространяется до 2 км от источника. В ней содержание металлов в приземном слое атмосферы в 100-1000 раз выше местного геохимического фона, а в снеге — в 500-1000 раз. На удалении 2-4 км располагается вторая зона, где содержание металлов в воздухе приблизительно в 10 раз ниже, чем в первой. Намечается третья зона протяженностью 4-10 км, где лишь отдельные пробы показывают повышенное содержание металлов. По мере удаления от источника соотношения разных форм рассеивающихся металлов меняются. В первой зоне водорастворимые соединения составляют всего 5-10 %, а основную массу выпадений образуют мелкие пылевидные частицы сульфидов и оксидов. Относительное содержание водорастворимых соединений возрастает с расстоянием.

10 наиболее загрязненных городов бывшего СССР.

Металлы приведены в порядке убывания уровня приоритетности для данного города.

Реферат "Общая характеристика металлов и неметаллов

Все многообразие окружающей нас природы состоит из сочетаний сравнительно небольшого числа химических элементов.

В различные исторические эпохи в понятие «элемент» вкладывался различный смысл. Древнегреческие философы в качестве «элементов» рассматривали четыре «стихии» – тепло, холод, сухость и влажность. Сочетаясь попарно, они образовывали четыре «начала» всех вещей – огонь, воздух, воду и землю. В средние века к этим началам добавились соль, сера и ртуть. В XVII веке Р. Бойль указал на то, что все элементы носят материальный характер и их число может быть достаточно велико.

В 1787 году французский химик А. Лавуазье создал «Таблицу простых тел». В нее вошли все известные к тому времени элементы. Под последними понимались простые тела, которые не удавалось разложить химическими методами на еще более простые. Впоследствии выяснилось, что в таблицу вошли и некоторые сложные вещества.

В настоящее время понятие «химический элемент» установлено точно.

Химический элемент – вид атомов с одинаковым положительным зарядом ядра. (Последний равен порядковому номеру элемента в таблице Менделеева.)

В настоящее время известно 107 элементов. Около 90 из них существуют в природе. Остальные получены искусственно с помощью ядерных реакций. 104-107 элементы были синтезированы учеными - физиками в Объединенном институте ядерных исследований в городе Дубне. В настоящее время продолжаются работы по искусственному получению химических элементов с более высокими порядковыми элементами.

Все элементы делятся на металлы и неметаллы. Из 107 элементов 85 относятся к металлам. Однако это деление условное. При определенных условиях некоторые металлы могут проявлять неметаллические свойства, а некоторые неметаллы – металлические свойства.

ГЛАВА I. МЕТАЛЛЫ

1.1. Строение атомов металлов. Положение металлов в периодической

системе. Группы металлов.

Причисляя тот или иной элемент к разряду металлов, мы имеем в виду наличие у него определенного комплекса свойств: Плотная кристаллическая структура, характерный металлический блеск, высокая теплопроводность и электрическая проводимость, уменьшение электрической проводимости с ростом температуры, низкие значения потенциала ионизации, т.е. способность легко отдавать электроны, ковкость и тягучесть, способность к образованию сплавов.

Все металлы и сплавы, применяемые в настоящее время в технике, можно разделить на две основные группы. К первой из них относят черные металлы - железо и все его сплавы, в которых оно составляет основную часть. Этими сплавами являются чугуны и стали.

Ко второй группе относят цветные металлы и их сплавы. Они получили такое название потому, что имеют различную окраску.

Это деление на черные и цветные металлы условно.

Наряду с черными и цветными металлами выделяют еще группу благородных металлов: серебро, золото, платину, рутений и некоторые другие. Они названы так потому, что практически не окисляются на воздухе.

1. 2. Физические свойства металлов.

Очень важным свойством металлов является их сравнительно легкая механическая деформируемость. Металлы пластичны, они хорошо куются, вытягиваются в проволоку, прокатываются в листы и т.п.

По плотности металлы условно подразделяются на две большие группы: легкие металлы, плотность которых не больше 5 г/см 3 , и тяжелые металлы - все остальные.

Частицы металлов, находящихся в твердом и жидком состоянии, связаны особым типом химической связи - так называемой металлической связью.

1.3.Химические свойства металлов.

Основным химическим свойством металлов является способность их атомов легко отдавать свои валентные электроны и переходить в положительно заряженные ионы. Типичные металлы никогда не присоединяют электронов; их ионы всегда заряжены положительно.

Легко отдавая при химических реакциях свои валентные электроны, типичные металлы являются энергичными восстановителями.

Проведем опыт - опустим кусочек цинка в раствор какой - нибудь свинцовой соли. Цинк начинает растворяться, а из раствора выделяется свинец.

Реакция выражается уравнением: Zn + Pb(NO3)2 = Pb + Zn(NO3)2

Из уравнения следует, что эта реакция является типичной реакцией окисления - восстановления. Сущность ее сводится к тому, что атомы цинка отдают свои валентные электроны ионам двухвалентного свинца, тем самым превращаясь в ионы цинка, а ионы свинца восстанавливаются и выделяются в виде металлического свинца.

Вытеснение одних металлов из их соединений другими металлами впервые было подробно изучено русским ученым Бекетовым, расположившим металлы по их убывающей химической активности в так называемый «вытеснительный ряд». В настоящее время вытеснительный ряд Бекетова носит название ряда напряжений.

Ряд напряжений характеризует химические свойства металлов:

1. Чем меньше электродный потенциал металла, тем больше его восстановительная способность.

2. Каждый металл способен вытеснять (восстанавливать) из растворов солей те металлы, которые стоят в ряду напряжений после него.

3. Все металлы, имеющие отрицательный стандартный электродный потенциал, то есть находящиеся в ряду напряжений левее водорода, способны вытеснять его из растворов кислот.

Необходимо отметить, что представленный ряд характеризует поведение металлов и их солей только в водных растворах и при комнатной температуре.

1.4. Коррозия металлов.

Почти все металлы, приходя в соприкосновение с окружающей их газообразной или жидкой средой, более или менее быстро подвергаются с поверхности разрушению. Всякий процесс химического разрушения металлов под действием окружающей среды называют коррозией.

Проще всего протекает коррозия при соприкосновении металлов с газами. Иначе обстоит дело при соприкосновении металла с жидкой средой - водой и растворенными в ней веществами. Образующиеся при этом соединения могут растворяться, благодаря чему коррозия распространяется дальше вглубь металла.

Чистые металлы в большинстве случаев почти не подвергаются коррозии. Даже такой металл, как железо, в совершенно чистом виде почти не ржавеет.

Убытки, причиняемые коррозией металлов, огромны. Вычислено, например, что вследствие коррозии ежегодно гибнет такое количество стали, которое равно приблизительно четверти всей мировой добычи его за год. Поэтому изучению процессов коррозии и отысканию наилучших средств ее предотвращения уделяется очень много внимания.

ГЛАВА II. НЕМЕТАЛЛЫ

2.1. Положение неметаллических элементов в периодической системе химических элементов. Нахождение в природе. Общие химический и

физические свойства.

Неметаллических элементов по сравнению к металлическими элементами относительно немного. Их размещение в периодической системе химических элементов Д.И. Менделеева отражено в таблице №1.

расположены в правой верхней части периодической системы. В связи с этим у неметаллов преобладают окислительные свойства. Особенно сильные окислительные свойства, т.е. способность присоединять электроны, проявляют неметаллы, находящиеся во 2-ом и 3-м периодах VI-VII групп. Самым сильным окислителем является фтор. В соответствии с численными значениями относительных электроотрицательностей окислительные способности неметаллов увеличивается в следующем порядке:

Si, B, H, P, C, S, I, N, Cl, O, F.

Фтор - самый типичный неметалл, которому нехарактерны восстановительные свойства, т.е. способность отдавать электроны в химических реакциях.

Кислород же, судя по его соединениям с фтором, может проявлять и положительную степень окисления, т.е. являться восстановителем.

Все остальные неметаллы проявляют восстановительные свойства.

Перейдем к рассмотрению строения молекул неметаллов. Неметаллы образуют как одноатомные, так и двухатомные молекулы.

К одноатомным неметаллам относятся инертные газы, практически не реагирующие даже с самыми активными веществами.

Некоторые неметаллы образуют двухатомные молекулы. Это H3, F2, Cl2, Br2, I2 (элементы VII группы Периодической системы), а также кислород O2 и азот N2. Из трехатомных молекул состоит газ озон (O3).

Неметаллы в виде простых тел находятся в твердом или газообразном состоянии (исключая бром - жидкость). Они не имеют физических свойств, присущих металлам. Твердые неметаллы не обладают характерным для металлов блеском, они обычно хрупки, плохо проводят электрический ток и тепло (за исключением графита).

2.2. Общие химические свойства неметаллов.

С водородом неметаллы образуют летучие соединения, как, например, фтороводород HF, сероводород H3S, аммиак NH4, метан CH5. При растворении в воде водородные соединения галогенов, серы, селена и теллура образуют кислоты той же формулы, что и сами водородные соединения: HF, HCl, HCl, HBr, HI, H3S, H3Se, H3Te.

С кислородом неметаллы образуют кислотные оксиды. В одних оксидах они проявляют максимальную степень окисления, равную номеру группы (например, SO2, N2O5), а других - более низкую (например, SO2, N2O3).

2.3. Строение и свойства простых веществ - неметаллов.

Самые типичные неметаллы имеют молекулярное строение, а менее типичные - немолекулярное. Этим и объясняется отличие их свойств.

Наглядно это отражено в схеме №2.

Простые вещества

С немолекулярным строением

С молекулярным строением

F2, O2, Cl2, Br2, N2, I2, S8

У этих неметаллов атомные кристаллические решетки, поэтому они обладают большой твердостью и очень высокими температурами плавления.

У этих неметаллов в твердом состоянии молекулярные кристаллические решетки. При обычных условиях это газы, жидкости или твердые вещества с низкими температурами плавления.

Кристаллический бор В (как и кристаллический кремний) обладает

очень высокой температурой плавления (2075°С) и большой твердостью. Электрическая проводимость бора с повышением температуры сильно увеличивается, что дает возможность широко применять его в полупроводниковой технике. Добавка бора к стали и к сплавам алюминия, меди, никеля и др. улучшает их механические свойства.

Как видно из схемы №2, углерод С, кремний Si, бор В имеют сходное строение и обладают некоторыми общими свойствами.

2.4. Кислородные и водородные соединения неметаллов. Краткая характеристика их свойств.

Характеристики кислородных соединений неметаллов:

1. Свойства высших оксидов (т.е. оксидов, в состав которых входит элемент данной группы с высшей степенью окисления) в периодах слева направо постепенно изменяются от основных к кислотным.

2. В группах сверху вниз кислотные свойства высших оксидов постепенно ослабевают. Об этом можно судить по свойствам кислот, соответствующих этим оксидам.

3. Возрастание кислотных свойств высших оксидов соответствующих элементов в периодах слева направо объясняется постепенным возрастанием положительного заряда ионов этих элементов.

4. В главных подгруппах периодической системы химических элементов в направлении сверху вниз кислотные свойства высших оксидов неметаллов уменьшаются.

С металлами водород образует (за некоторым исключением) нелетучие соединения, которые являются твердыми веществами немолекулярного строения. Поэтому их температуры плавления сравнительно высоки.

С неметаллами водород образует летучие соединения молекулярного строения. В обычных условиях это газы или летучие жидкости.

Читайте также: