Лазерная обработка металлов это

Обновлено: 15.06.2024

Полезность и применяемость лазеров была понята далеко не сразу. А первые установки, генерирующие лазерное излучение, вообще считали приборами, для которых сначала нужно найти задачи, которые они способны решать. Сейчас ценность таких установок не подлежит сомнению. Сначала их активно начали использовать автомобильные, авиационные и судостроительные предприятия. Позднее они нашли применение и в других отраслях промышленности.

Как работают установки лазерного излучения

Чтобы понять, как работают установки лазерного излучения, можно вспомнить всем нам знакомый способ выжигания по дереву с помощью увеличительного стекла. В этом случае сфокусированный солнечный свет нагревает ограниченный участок поверхности, на которую направлен.

Лазерное излучение тоже является световым. Для его появления поток света пропускают через несколько оптических призм и зеркал, добиваясь появления сфокусированного узконаправленного луча. Он способен нагревать поверхность, на которую направлен, значительно быстрее и сильнее луча, сфокусированного с помощью линзы, потому что имеет намного меньшую площадь поперечного сечения и значительно бо́льшую силу потока.

Строго говоря, воздействие на поверхность оказывает поток квантов электромагнитного излучения – фотонов.

Хорошей установкой считается та, которая может точно фокусировать и сохранять стабильность лазерного луча. Обработка металла происходит в три этапа: сначала луч нагревает его до температуры плавления, затем материал закипает и начинает испаряться, а после этого рабочий орган установки начинает двигаться по заданной траектории, вырезая деталь нужной конфигурации.

При большой глубине реза для выведения расплавленного металла из рабочей зоны используют струю вспомогательного газа. Это может быть инертный газ, кислород или воздушная смесь. Установки, в которых используется вспомогательный газ, называют «газолазерными резаками».

Кислород очень удобен в качестве вспомогательного газа. Он не только выводит расплавленный металл и его оксиды из рабочей зоны, но и увеличивает скорость работы.

Лазерная резка металла

Это установка лазерной резки, которую использует наша компания

Какие установки используют для лазерной резки металла

Для лазерной резки металла можно использовать три вида установок:

  1. В твердотельных в качестве рабочего тела используют соединения редкоземельных элементов или кристаллы (сапфир, гранат, рубин).
  2. В газовых – смеси инертных газов.
  3. В волоконных – оптическое волокно.

Рабочее тело – это основная часть лазерной установки, которая и создает поток фотонов, воздействующих на металл. Для этого его заряжают (накачивают) с помощью источника энергии. Им может быть импульсная или дуговая лампа, лазерный диод, электрический разрядник или взрывчатое вещество.

Современные высокоточные установки лазерной резки металла с ЧПУ способны обрабатывать заготовки площадью несколько квадратных метров и обеспечивать точность работы до 0,005 мм. За счет автоматизации процесса в них минимизирован человеческий фактор.

Так, управление рабочим столом и лазером выполняет программный блок, эффективность резки обеспечивает автоматическая система настройки фокуса, за поддержание температуры установки в приемлемых пределах отвечают теплообменники, а клапанные механизмы своевременно подают в зону реза вспомогательный газ.

Какие металлы можно резать лазером

Самое важное свойство металла для лазерной резки – теплопроводность. Чем она ниже, тем проще сконцентрировать тепло на ограниченном участке. Например, сталь имеет низкую теплопроводность, поэтому плавится и режется быстро. А медь, наоборот, отличается высокой теплопроводностью. В результате тепло быстро распространяется по всему объему разрезаемой заготовки, поэтому для успешной работы понадобится больше энергии.

В целом услуги лазерной резки металла востребованы для таких материалов:

  • сталь толщиной до 30 мм;
  • алюминиевые сплавы толщиной до 20 мм;
  • медь толщиной до 15 мм;
  • латунь и нержавеющая сталь толщиной до 12 мм.

Минимальная толщина листового металла для лазерной резки – 0,2 мм.

Металлоизделия

Такие детали можно изготавливать с помощью установки лазерной резки

Плюсы и минусы лазерной резки металлов

К преимуществам лазерной резки мы можем отнести:

  • высокую точность работы, позволяющую изготавливать детали сложной конфигурации, а также изделия, имеющие дизайнерскую ценность, и декоративные элементы;
  • возможность экономно расходовать металл за счет очень малой площади сечения лазерного луча и низкого процента отходов;
  • способность работать с очень тонкими металлами без нанесения повреждений и деформации;
  • высокую скорость резки, достигающую 60 м/ч;
  • отсутствие необходимости дополнительно обрабатывать кромки полученных деталей после резки лазером;
  • возможность обрабатывать разные металлы и сплавы.

Из недостатков следует выделить ограничение по толщине разрезаемого листового металла и высокую стоимость установок.

Заключение

С помощью лазера металл лучше резать в тех случаях, когда нужна высокая точность и качество работы, а заготовка имеет небольшую толщину (чаще всего до 20 мм). При значительной толщине листового проката отличной альтернативной этому способу обработки считается плазменная резка.

Лазерная металлообработка

В промышленном производстве в последнее время все чаще стали использовать лазер. С помощью лазерных установок выполняют такие операции, как формовка, резка, стыковка и т. п., причем работать можно с самыми разнообразными материалами – деревом, пластмассой, бумагой и пр. В этой статье мы поговорим о том, что собой представляет лазерная металлообработка, которую относят к одной из передовых техник работы с металлом.

Благодаря современному оборудованию, позволяющему выполнять необходимые настройки мощности лазера и выбирать глубину проникновения луча, можно резать и выполнять гравировку в соответствии с любыми потребностями клиента. Какие типы лазерной металлообработки существуют и в чем ее основные преимущества, узнаете из нашей статьи.

Особенности лазерной металлообработки

Из названия сразу становится понятно, что лазерную металлообработку выполняют посредством лазерного луча, который подается из специальной установки. Благодаря своим свойствам луч на небольшой площади обрабатываемой поверхности фокусирует энергию высокой плотности. В результате обрабатываемый материал начинает активно разрушаться (плавиться, сгорать, испаряться и т. п.).

Особенности лазерной металлообработки

Оборудование для лазерной металлообработки способно сконцентрировать на обрабатываемой поверхности энергию плотностью 108 Ватт на квадратный сантиметр. Понять, каким образом получается подобный эффект, невозможно, не разобравшись предварительно со свойствами лазерного луча. Для него характерны:

  • Постоянство длины и частоты волн (монохроматичность). В этом состоит его основное отличие от световых волн. Благодаря такому свойству не составляет труда сфокусировать луч на любой поверхности, воспользовавшись обычными оптическими линзами.
  • Высокая направленность и небольшой угол наклона. Это дает возможность получить сфокусированный луч.
  • Когерентность, означающее согласованность и резонирование большого числа волновых процессов, происходящих в лазерном луче. Благодаря этому суммарная мощность излучения возрастает в разы.

В двух словах лазерную металлообработку можно описать следующим образом. Луч, воздействуя на обрабатываемую поверхность, быстро нагревает и расплавляет ее. А так как он продолжает действовать на подвергаемый обработке металл, то температура в месте контакта достигает точки кипения, заставляя материал испаряться.

Какие существуют типы лазеров

Есть несколько технологий лазерной резки металла, определяемых в зависимости от вида рабочего элемента – лазера, и его мощности. На сегодняшний день можно выделить три основных вида лазерных установок:

  • твердотельные с мощностью, не превышающей 6 кВт;
  • мощность газовых установок достигает 20 кВт;
  • самыми мощными являются газодинамические установки, минимальная мощность которых составляет 100 кВт.

VT-metall предлагает услуги:

Лазерная резка металла Гибка металла Порошковая покраска металла Сварочные работы

В промышленности в основном используются твердотельные установки, предназначенные для лазерной металлообработки.

Какие существуют типы лазеров

Лазерное излучение в подобных установках, за счет которого и происходит резка металла, может быть как импульсным, так и непрерывным. Рабочие элементы (рабочее тело) в таких устройствах представлены рубином, стеклом с примесью неодима или флюорита кальция. Основным преимуществом этого типа оборудования является возможность создания мощнейшего лазерного импульса за доли секунды. Газовые лазерные установки больше соответствуют научным либо техническим целям, в промышленности они находят применение нечасто.

Типы лазеров

Рабочим телом в такого рода оборудовании является смесь газообразных веществ, которая применяется в процессе лазерной металлообработки. Установки работают за счет азота, углекислого газа и гелия. Электрический ток, воздействуя на атомы этих газов, возбуждает их, благодаря чему начинают проявляться такие свойства, как монохроматичность и направленность. Именно их и можно назвать основными достоинствами газовых лазерных установок.

Самыми мощными являются газодинамические лазеры, рабочим веществом которых является углекислый газ.

Газодинамические лазеры

Процесс лазерной металлообработки выглядит следующим образом: нагретый до определенной температуры углекислый газ поступает в узкий канал, в котором происходит расширение его структуры, после чего газ охлаждается. В результате образуется необходимая энергия, за счет которой и выполняется лазерная резка металлов.

Что можно сделать с помощью лазерной металлообработки

Среди основных технологий лазерной металлообработки можно выделить прямое лазерное спекание, лазерную и лазерно-механическую гибку, лазерную сварку, лазерное сверление и лазерную резку. Остановимся на каждом из этих процессов немного подробнее.

1. Прямое лазерное спекание металлов.

Прямое лазерное спекание металлов – обладающий высоким потенциалом способ, позволяющий быстро изготавливать металлические прототипы. С его помощью производят металлические формообразующие вставки пресс-форм, которые в дальнейшем используются в процессе литья пластмасс под давлением, а также изготавливают образцы и прототипы разного рода деталей.

Что можно сделать с помощью лазерной металлообработки

В процессе лазерного спекания металлический порошок при помощи лазерного луча постепенно наплавляют по контуру заготовки. Для этого при таком виде лазерной металлообработки используются 3D-данные. Для изготовленных посредством данной технологии деталей характерны высокая прочность, а также устойчивость к разного рода механическим воздействиям.

При помощи лазерного спекания обрабатывают следующие материалы:

  • высококачественную сталь;
  • инструментальную сталь;
  • титан;
  • алюминий.

Рекомендуем статьи по металлообработке

2. Лазерная и лазерно-механическая гибка металлов.

Этот вид лазерной металлообработки предполагает, что заготовки будут загибаться под воздействием лазерного луча. Узконаправленный нагрев металлической пластины приводит к тому, что она начинает расширяться в определенном месте, однако ее расширение невозможно из-за расположенных рядом холодных частей поверхности, не подвергавшихся воздействию лазера. Возникающее в процессе механическое напряжение приводит к сгибанию плоской пластины. Процесс сопровождается пластическими деформациями металла, за счет которых пластина не возвращается к прежней форме, а остается деформированной и после того, как остынет.

Лазерная и лазерно-механическая гибка металлов

При выполнении лазерно-механической гибки металлов места сгиба нагревают лазерным лучом, а затем механически сгибают. Использование этой технологии позволяет снизить прилагаемые механические усилия для деформации заготовки, увеличив при этом относительное удлинение при разрыве металла. Таким образом, обеспечивается возможность придать заготовке больший угол, хотя радиус изгиба будет при этом меньшим.

3. Лазерное сверление металлов.

При подобном способе обработки металлов не образуется стружка. Лазерная установка направляет внутрь детали такое количество энергии, что она ионизирует и испаряет материал в месте воздействия.

Лазерное сверление металлов

Большая разница в давлении между всей деталью и местом сверления приводит к отбрасыванию ионизированного пара (точнее, плазмы) в сторону. При использовании этого способа металлообработки необходимо следить за тем, чтобы по краям просверленного отверстия не образовывалось наплавление металла.

4. Лазерная сварка металлов.

Технология лазерной сварки металлов предполагает соединение деталей конструкций за счет воздействия лазерного луча. Он выступает в роли источника сконцентрированной тепловой энергии. При лазерной сварке образуется тонкий сварочный шов, достигается большая глубина и высокая скорость работы. Технология находит применение в промышленном производстве крупных партий деталей, например, в автомобилестроении.

Лазерная сварка металлов

Лазерную сварку можно отнести к универсальным способам соединения деталей, она одинаково хороша для обработки углеродистой стали, высокопрочной низколегированной стали, а также для заготовок из нержавеющей стали, алюминия и титана. Этот вид лазерной металлообработки отличается высоким качеством, схожим с электронно-лучевым методом соединения металлов. На скорость работы влияет количество затраченной энергии, а также тип и толщина заготовок. Мощные газовые установки прекрасно справляются с производством крупных серий деталей.

5. Лазерная резка металлов.

К этой технологии обращаются при необходимости разрезания листового металла, а также для изготовления трехмерных заготовок, например, таких, как трубы или профили.

Лазерная резка металлов незаменима при работе с заготовками, имеющими сложную геометрическую форму (двух- или трехмерную). Без данной технологии не обойтись в случаях, когда обработка должна быть выполнена не только точно, но и быстро (в основном, со скоростью от 10 до 100 и более м/мин), при необходимости производства трехмерных вырезов (включая, работу с труднодоступными местами заготовки), а также при выполнении бесконтактной работы с деталями практически без приложения усилий.

Если сравнивать лазерную металлообработку с прочими видами обработки металлов (например, вырубкой в штампе), она будет экономически обоснованной, даже если речь идет об изготовлении деталей небольшими партиями.

Лазерная резка металлов

В наши дни производятся комбинированные установки, сочетающие в себе, кроме преимуществ лазера, также и достоинства, которыми обладают вибрационная высечка и вырубка в штампе. С их помощью можно осуществлять не только лазерную резку контуров заготовок, но и работать с вырубной головкой. Подобные установки оснащаются фокусированными мощными лазерами. В основном пользуются углекислотными (газовыми) аппаратами, однако все чаще обращаются к твердотельному и волоконному лазеру. Последний обладает большей эффективностью и лучше поддается фокусировке.

Лазерная металлообработка, резка и гибка осуществляется путем:

  • плавления обрабатываемого материала;
  • испарения металла.

Второй вариант предполагает использование более мощного оборудования, что повышает расход электроэнергии и может быть необоснованным с экономической точки зрения. Кроме того, подвергать такой обработке можно только детали определенной толщины (тонкостенные).

Чаще всего прибегают к лазерной резке металлов путем плавления обрабатываемого материала. С недавних пор при ее выполнении используются газы (кислород, азот, воздух, инертные), направляемые в место реза за счет специальных установок.

Этот способ лазерной металлообработки снижает затраты электроэнергии, увеличивает скорость обработки, позволяет пользоваться установками невысокой мощности для обработки толстостенных металлов. Такую технологию нельзя назвать именно лазерной резкой, скорее, этому способу подойдет название газолазерного.

Преимущества лазерной резки металлов

Среди прочих видов лазерной металлообработки наибольшим спросом пользуется резка металлов, обладающая следующими достоинствами:

  • Универсальностью. При помощи лазера можно резать различные материалы – хрупкие и более прочные металлы, пластик или дерево. Использование лазера не предполагает механического контакта с заготовкой. При этом получаемые детали могут иметь совершенно любую форму.
  • Точностью. Лазерная металлообработка позволяет получить максимально точный разрез. К тому же деталь не будет деформирована или поцарапана, она выйдет совершенно ровной и гладкой.
  • Широким диапазоном толщины металла. При помощи лазера можно резать медь и латунь, толщина которых составляет от 0,2 до 14 мм, сталь и изделия из алюминиевых сплавов толщиной от 0,2 до 20 мм, нержавеющую сталь, толщина которой может достигать 50 мм.
  • Отсутствием необходимости в дальнейшей обработке. Детали, которые получают в результате лазерной резки, можно сразу же использовать по назначению.
  • Оперативностью. Лазурные установки позволяют в сжатые сроки работать как с тонкими стальными листами, так и с конструкциями, изготовленными из твердых сплавов.
  • Экономической выгодой. Благодаря лазерной резке можно отказаться от дорогостоящих работ по штамповке и литью. Это особенно актуально при необходимости работы с малыми партиями деталей. Так как заготовки не нуждаются в дальнейшей обработке, а производительность установок и скорость их работы высока, эти факторы снижают себестоимость готовых деталей.

Преимущества лазерной резки металлов

Благодаря лазерной резке можно изготавливать детали, имеющие любую герметическую форму, в том числе сложную. При этом сама резка осуществляется очень быстро и предельно точно.

К недостаткам лазерной металлообработки можно отнести высокую цену, отсутствие постоянства в скорости производства, а также работу лишь с заготовками ограниченных размеров. Лазерной резке можно подвергать листы, величина которых не превышает 150 на 300 см. Технология также не подходит для работы с толстостенными металлами. Не стоит забывать и о том, что на эффективность обработки в большей части влияет тип используемого лазера.

Имейте в виду, что отличный результат может гарантировать только профессионал. Неправильная либо неумелая работа с лазерной установкой может повлечь за собой порчу материала.

Почему следует обращаться к нам

Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.

Наши производственные мощности позволяют обрабатывать различные материалы:

  • цветные металлы;
  • чугун;
  • нержавеющую сталь.

При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.

Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.

Преимуществом обращения к нашим специалистам является соблюдение ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.

Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.

Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.

Технология лазерной резки металла

Лазерная резка металла — это процесс нагревания и разрушения металла при помощи лазерного луча. Международное название технологии — Laser Beam Cutting (LBC).

На сегодняшний день существует 3 основных способа работы лазера по металлу:

лазерная резка металла

  1. Плавление — наиболее распространенный способ, который подходит для большого количества материалов. Луч лазера разогревает поверхность металла до температуры плавления, которая различается у видов сырья. При правильно подобранном режиме металл расплавляется только по срезу, целостность кромок сохраняется. В зону обработки бьет поток сжатого газа, который выдувает расплавленный металл, охлаждает края, предотвращает плавление и деформации на срезах. Например, присутствие кислорода при резке нержавеющей стали или алюминия грозит окислением места среза, поэтому поверхность обдувается азотом. Алгоритм движения составлен на базе информации о материале (толщине, температуре плавления) и заложен в программное обеспечение, которое управляет действиями оборудования. Эта технология отличается высокой точность, скоростью и экономичностью.
  2. Горение — способ лазерной резки металла, который оптимизирует обработку черных металлов, но не подходит для цветных металлов и стали с высоким содержанием легирующих элементов. Воздействие кислорода дает в несколько раз больше тепловой энергии, чем работа лазера. Себестоимость процесса и время обработки уменьшаются. Методика имеет недостаток — горят кромки некоторых материалов. Затраты на постобработку срезов могут превысить экономию непосредственно резки. Выбор технологии лазерной резки “горение” определяет материал. Например, черная сталь в процессе обработки не образует оксидов или позволяет легко удалить их. Сплавы алюминия и нержавеющая сталь при контакте с O₂ окисляются, поэтому при раскрое этих материалов поступление кислорода отсекают струей азота.
  3. Испарение — используется редко, востребован только при резке тонкостенных изделий или листов малой толщины. Луч работает не сплошной струей, а короткими импульсами, рассчитанными на то, чтобы расплавить и испарить металл, не задев ничего вокруг, например, подложку (в изделиях). Воздушный напор удаляет технический мусор из рабочей области. Эта методика требует значительно большего нагрева материала. Например, алюминий плавится при 660 ํС, а закипает при 2 519 ํС. Соответственно, нужно почти в четыре раза больше энергии. Процесс более затратный, поэтому оправдан только в случаях, где не справляются другие технологии.

Таким образом, лазерная резка методом плавления — оптимальное соотношение цены и качества для большинства материалов.

Оборудование для лазерной резки

Устройства классифицируют по разным параметрам. По типу рабочей среды — источника лазерного излучения — выделяют три вида приборов:

  • Твердотельные системы. В осветительном модуле располагается твердое рабочее тело и газоразрядная лампа высокой мощности. Рабочим телом может служить стержень из рубина, неодимового стекла и других материалов. Края стержня оснащены зеркалами: полупрозрачным и отражающим. Луч лазера, созданный рабочим телом, набирает мощность, благодаря множественным отражениям и выходит наружу через полупрозрачное зеркало.
  • Газовые устройства. В них работает CO₂ (отдельно или в комплексе с гелием и азотом). Углекислый газ активизируют электроразряды. Для увеличения мощности также используют систему зеркал.
  • Газодинамические приборы обладают самой высокой мощностью. Активным веществом тоже является оксид углерода (CO₂), разогретый до температуры в диапазоне от 726 до 2726 °С. Он активизируется при помощи дополнительного лазерного луча небольшой мощности. Проходя через специальное сопло, газ меняет состояние и становится источником излучения. Этот вид оборудования самый дорогостоящий.

Выбор вида лазерной резки зависит от материала, который необходимо обработать.

станок для лазерной резки

ЧПУ, использующие углекислый газ, отлично справляются со сваркой, раскроем, гравировкой металла, стекла, пластика и другого сырья. Оборудование твердотельного типа эффективно для резки алюминия, меди, серебра, латуни. Не работают с неметаллическими материалами.

Качество лазерной резки. От чего оно зависит?

лазерная резка металлических изделий

Под качеством лазерной резки обычно понимают точность, качество реза (минимальную шероховатость, прямые стенки), скорость предоставления услуг.

Результат работ зависит от многих составляющих:

  • Типа и размеров детали;
  • Правильной настройки оборудования для лазерной резки;
  • Технического состояния ЧПУ-станка;
  • Качества разработки макета.

Чтобы получить нужный результат, необходимо учесть все эти параметры. При соблюдении правил использования, лазерные резаки обеспечивают точность до 0,1 мм.

Скорость резки обусловлена мощностью оборудования, толщиной и теплопроводностью обрабатываемого материала. Чем выше показатель, тем быстрее отводится тепло с рабочего участка, соответственно требуется больше энергии. Например мощности лазера в 600 Ватт достаточно для резки титана или черных металлов, но мало для меди или алюминия.

Особенности резки отдельных металлов

лазерная резка металлических деталей

Индивидуальные свойства материалов требуют применения различных технологий лазерной резки. Сплавы и цветные металлы обрабатывают на станках мощностью не ниже 1 кВт, для работы с черными металлами будет достаточно мощности от 0,5 кВт.

Раскрой высокоуглеродистых сталей осуществляется в основном по газолазерной технологии с применением кислорода. Благодаря сильной тепловой реакции в зоне воздействия лазера, увеличивается скорость обработки металлического листа.

Этот метод дает высокое качество реза. Для фигурной резки, например, заготовок с острыми углами или отверстиями, в комплексе с лазерным лучом используют инертный газ.

При обработке изделий или листов из нержавеющей стали, используют азот, который транспортируют в рабочую область под давлением до двадцати атмосфер. Учитывая высокую прочность сырья, лазерная резка — практически единственный метод качественной обработки нержавеющей и оцинкованной стали.

Работа с цветными металлами требует аппаратов больше мощности, например твердотельного типа.

Для взаимодействия с латунью, алюминием и сплавами с его содержанием используют инертный газ под давлением до десяти атмосфер. Кромки получаются хорошего качество, возможно небольшое образование грата, который легко удалить.

Медь обладает высокими теплопроводными свойствами. Оптимальная толщина листов для раскроя лазером не больше 0,5 мм. Большая толщина требует значительных расходов, что не является экономически целесообразным.

Альтернатива лазерной резке металла

В современной металлообработке эффективно используют четыре технологии резки металла:

  1. Лазерная;
  2. Плазменная;
  3. Газовая;
  4. Гидроабразивная.

Каждый способ имеет свои преимущества и недостатки по отношению к различным видам материалов.

Плазменная резка металла

Плазменная резка — технология раскроя металла, при которой в качестве режущего инструмента выступает струя плазмы. К преимуществам относится возможность работы с любыми сырьем: цветными, тугоплавкими и другими сложными металлами. Еще один плюс технологии — создание резы любой формы, в том числе сложной геометрической.

Плазменная резка немного проигрывает лазерной в качестве кромок, соответственно и в точности. При лазерной обработке кромки имеют большую степень соответствия по перпендикулярности.

Для материалов толще 6 мм плазменный метод занимает меньше времени и затрат энергии по сравнению с лазерным. Однако при работе с тонкими материалами и изготовлении деталей сложной геометрии использование лазера эффективнее ввиду большей точности и максимального соответствия техническому заданию.

плазменная резка металла

Газовая резка металла

Суть процесса газовой резки заключается в следующем: газ ацителен или пропан разогревает материал обработки до 1000-1200⁰С, затем подключается кислород, который загорается при контакте с раскаленным металлом и режет его. Технология подходит для материалов, температура горения которых ниже, чем плавления: для сталей с низким и средним содержанием легирующих элементов. Преимущества метода в невысокой стоимости, простоте, мобильности оборудования. Однако он подходит не для всех материалов, точность резки значительно уступает лазерной и плазменной.

газовая резка металла

Гидроабразизная резка металла

Рабочим инструментом при гидроабразивной резке выступает смесь воды с абразивными частицами (зерна карбида кремния, электрокорунда, других твердых веществ, гранатовый песок). Вода поступает в режущую головку под давлением до 6000 атмосфер, оттуда она со скоростью около 1000 м/сек (и выше) вырывается в камеру, где смешивается с абразивом. Смешанная струя разрушает целостность металла и смывает отрезанные частицы. Важная особенность гидроабразивной резки состоит в том, что обрабатываемые поверхности практически не нагреваются, что дает методу массу неоспоримых преимуществ.

Технология имеет ряд плюсов:

  • Работа с любыми материалами;
  • Высокое качество реза благодаря отсутствию пригорания и плавления поверхности;
  • Возможность обработки термочувствительного сырья;
  • Отсутствие вредных выделений в рабочем процессе;
  • Пожаробезопасность работ.

К недостаткам можно отнести более низкую скорость в сравнении с плазменной и лазерной обработкой, высокую стоимость оборудования и себестоимость процесса.

гадроабразивная резка металла

Из рассмотренных вариантов лазерная резка — наиболее универсальный инструмент. Кроме непосредственного раскроя устройства используют для лазерной гравировки металла, маркировки, разметки и прочих операций.

Практическое применение технологии лазерной резки

Производство изделий при помощи лазерного оборудование состоит из нескольких этапов:

  1. Формирование идеи продукта.
  2. Разработка художественного эскиза.
  3. Создание технического макета модели.
  4. Изготовление тестовой детали на ЧПУ-станке.
  5. Контроль параметров и доработки в случае необходимости.
  6. Запуск серийного производства.

Созданию технического макета нужно уделить особое внимание, так как от его точности будет зависеть качество готового изделия.

технология лазерной резки

Станки используют форматы программ AutoCAD, CorelDraw, поэтому чертежи для лазерной гравировки или резки должны быть выполнены в этих программах.

Требования к макетам для лазерной резки

  • Масштаб чертежа 1:1.
  • Замкнутые внешние и внутренние контуры.
  • CIRCLE, LINE, ARC — команды для создания контуров.
  • Команды ELLIPSE, SPLINE не поддерживаются.
  • При наложении линий друг на друга лазерный резак будет проходить по одной и той же траектории несколько раз.
  • В чертеже для лазерной резки должно быть указано количество деталей и рабочий материал.
  • Вся информация о чертеже должна быть размещена в одном файле.

Ценообразование в услугах лазерной резки металлов

Цена услуг зависит от ряда составляющих и меняется в зависимости от технического задания.

Что влияет на стоимость услуг лазерной резки металла

  • Вид металла. Например, резка черных металлов, стали и нержавейки стоит в 2-3 раза дешевле резки меди, латуни, титана, алюминия и его сплавов.
  • Толщина листа. Чем больше толщина, тем выше цена. Нестандартные технические задания рассчитываются индивидуально.
  • Сложные формы деталей. Чем больше требуется резов для достижения результата, тем выше цена.

Эти и ряд других параметров, которые оговариваются с заказчиком, формируют стоимость лазерной резки и гравировки.

О компании

Адрес: Санкт-Петербург, Петровский пр., д.20 литер Я (около д. 20 литер В)

Режим работы:
Понедельник - пятница
10:00 - 18:00

Полезные статьи
Работаем по всей России
Высокоточное производство
Пользовательское соглашение

Основы технологии лазерной резки металла

Лазерная резка металла

Из школьного курса элементарной физики вы знаете о сильном тепловом воздействии сфокусированного света. Познавательный трюк с увеличительным стеклом ясно показывает возможности преломленного потока солнечного луча.

Принципом действия работы лазера может служить его перевод с английского: усиление света вынужденным излучением. По-простому — это световое излучение, вызванное атакой фотонов на рабочую среду с усилением за счет ответной реакции. Световой поток через систему оптических призм и зеркал фокусируется в узконаправленный луч импульсной или непрерывной модуляции. Мощность и интенсивность лазера зависит от используемого активатора и сложности резонирующих систем.

В качестве первичного активного вещества используют все возможные агрегатные состояния: твердое, газообразное, жидкое и плазменное. Важнейшим критерием является способность к возбуждению и отдаче свободных квантов-фотонов. Накачка первичных световых атомов производится разными способами. Это может быть сфокусированное солнечное излучение, специальные лампы, другие лазеры, электрическое воздействие или химические процессы. Для увеличения силы потока делают многоуровневые атакующие каскады. В основе резонаторов применяют плоскопараллельные и сферические зеркала или их комбинации. Главный параметр хорошего прибора — устойчивое сохранение светового луча и его точная фокусировка.

Принцип лазерной резки

Первый лазер был сделан на рубине в 1960 году, он работал в инфракрасном диапазоне и являлся началом эры световых помощников человека. История развития прикладной квантовой науки шла по пути усиления первоначальных систем накачки и совершенствования оптических резонаторов для достижения мощного и управляемого луча. Выискивались новые рабочие среды, были испробованы и получили путевку в жизнь лазерные установки на красителях, на свободных электронах, химические модели и полупроводниковые исполнения.

Производственное использование лазера


Лазер называют самым красочным и одним из важнейших изобретений XX века. Многие годы никто не понимал его практического применения, прибор называли устройством, которое само ищет задачи для решения. Теперь лазерные аппараты лечат людей, исследуют звезды и применятся для развлекательных мероприятий.

Машиностроительные производства давно начали использовать резку металла лазером. Пионерами выступили судостроительные верфи, авиационные заводы и автомобильные гиганты, искавшие передовые методы работы для увеличения производительности труда. Возрастающая конкуренция стимулировала появление инновационных обрабатывающих центров с принципиально новыми системами влияния на рабочий процесс.

К настоящему времени на промышленных предприятиях лазерная резка металла представлена следующими видами установок:

  • твердотельные — основанные на кристаллических драгоценных камнях или соединениях редкоземельных элементов, для накачки фотонов используется импульсные лампы или лазерные диоды;
  • газовые — в качестве активаторов применяются смеси инертных газов с источником возбуждения в виде электрических разрядов или направленной химической реакции;
  • волоконные — активная среда и резонатор сделаны целиком из оптического волокна или скомбинированы с другими конструктивными элементами.

Следующее видео представляет волоконный лазерный станок.


Для работы с цветными металлами и антикоррозионными сталями, имеющими высокую отражающую способность, прикладными исследовательскими институтами разработаны специальные модели традиционных лазеров с резонатором из оптико-волоконной трубки. Световой луч в таких установках более сфокусированный и концентрированный и не рассеивается о зеркальную поверхность алюминиевых, титановых или нержавеющих заготовок.

Широко распространенные газовые СО₂-лазеры работают на рабочей смеси углекислого газа, азота и гелия, зеркала резонатора покрыты серебряным или золотым напылением для увеличения отражающей способности.

Технология лазерной резки металлов постоянно совершенствуется: пробуются новые типы установок, усложняются системы управления процессом, применяются компьютерные комплексы для контроля режимов обработки. Основной упор делается на увеличение точности, чистоты реза и производительности.

Особенности технологического процесса


В результате воздействия светового луча материал заготовки проходит несколько промежуточных изменений для превращения в обработанную деталь:

  • первая стадия — воздействие лазера на металл в точке начала реза вызывает нагревание вещества до температуры плавления и появлению усадочной раковины;
  • вторая стадия — энергия излучения приводит к кипению и испарению металла;
  • третья стадия — при проплавлении заготовки на полную глубину начинается поступательное движение рабочего органа в соответствии с заданной траекторией.

В действительности, процесс испарения металла наблюдается только у тонких заготовок, при средней и большой толщине реза удаление остатков вещества из рабочей зоны производится с помощью струи вспомогательного газа (азот, кислород, воздушная смесь или инертные газы).

Такие установки, работа которой представлена на видео, называют газолазерными резаками.



Активный кислород, подаваемый в зону резания не только выводит продукты плавления металла и охлаждает поверхность среза, но и способствует поддержанию температуры и ускоряет режимы обработки. При лазерной резке не происходит деформации заготовки, следовательно, отсутствуют затраты материала на припуск линейных размеров и необходимость в дополнительных чистовых операциях.

сравнительная таблица лазерной резки

Сравнительные характеристики лазерной и плазменной резки приведены

Современные лазерные комплексы


Мировая станочная индустрия идет в ногу со временем и предлагает своим потребителям самое разнообразное оборудование для лазерной резки металла. Многокоординатные аппараты призваны заменить шумные и низко производительные механические резаки. Мощность лазера зависит от специфики производства и экономического обоснования выбранного агрегата.

Новое поколение прецизионных обрабатывающих станков с ЧПУ позволяют проводить обработку материалов с точностью до 0,005 мм. Площадь обработки некоторых моделей лазерных установок достигает нескольких квадратных метров. Большим достоинством является минимизация человеческого фактора, заключающаяся в высокой автоматизации производственного процесса.

Геометрия детали задается в программный блок, осуществляющий управление лазером и рабочим столом с заготовкой. Системы настройки фокуса автоматически выбирают оптимальное расстояние для эффективного резания. Специальные теплообменники регулируют температуру лазерной установки, выдавая оператору контрольные данные текущего состояния инструмента.

Лазерный станок оснащается клапанными механизмами для подключения газобаллонного оборудования, чтобы обеспечить подачу вспомогательных газов в рабочую зону. Система дымоулавливания призвана оптимизировать расходы на вытяжную вентиляцию, включая её непосредственно в момент обработки. Область обработки полностью экранируется защитным кожухом для безопасности обслуживающего персонала.


Лазерная резка листового металла на современном оборудовании превращается в легкий процесс задания числовых параметров и получения на выходе готовой детали. Производительность оборудования напрямую зависит от параметров станочного комплекса и квалификации оператора, создающего программный код. Технология лазерной резки металлов гармонично вписывается в концепцию роботизированного производства, призванного полностью освободить человека от тяжелого труда.

Производители предлагают различные типы лазерных станков: универсальные и специализированные. Стоимость первых на порядок больше, но они позволяют производить несколько операций и выпускать детали более сложной формы. Большое количество рыночных предложений дает возможность выбора для заинтересованных потребителей.

Преимущества и недостатки


Специалисты машиностроительных предприятий понимают перспективы использования данной технологии для получения точных деталей с хорошей шероховатостью. Область применения обширна: от простого раскроя листового металлопроката до получения сложных кузовных деталей автомобилей. Явные плюсы лазерной резки металлов сводятся к нескольким резюмирующим аспектам:

  • высокое качество обработанной поверхности;
  • экономия материала;
  • способность работы с хрупкими материалами и тонкими заготовками;
  • возможность получения деталей сложной конфигурации.

Среди минусов: высокая стоимость оборудования и расходных материалов.

Лазерная резка стали и цветных металлов пользуется большим рыночным спросом. Способность быстро выдавать чистовые детали нестандартной формы привлекает в профильные предприятия заказчиков малых партий разнообразных изделий. Лазерные технологии активно используются в декоративном творчестве при изготовлении дизайнерских украшений и оригинальных сувениров.

Решение о применении лазерной обработки должно приниматься с учетом расчета окупаемости оборудования и величине эксплуатационных расходов. В настоящее время такие установки могут себе позволить, в основном, крупные предприятия с большим производственным циклом. С развитием технологии будут снижаться стоимость станков и количество потребляемой энергии, поэтому в будущем лазерные аппараты вытеснят своих конкурентов из сферы резки любых материалов.

Читайте также: