Литий это редкоземельный металл

Обновлено: 02.07.2024

(лантаноиды), представлены группой из 15 весьма близких по свойствам элементов (№ 57–71 в системе Д. И. Менделеева). Название группы происходит от лат. «terra rarae» – «редкая земля», поэтому их обозначают общим символом TR. К редкоземельным металлам относятся: лантан (La), церий (Се), празеодим (Рr), неодим (Nd), прометий (Рm), самарий (Sm), европий (Eu), гадолиний (Gd), тербий (Тb), диспрозий (Dy), гольмий (Но), эрбий (Еr), тулий (Тm), иттербий (Yb), лютеций (Lu). В эту группу включен близкий к TR по свойствам иттрий (Y). Редкоземельные элементы широко используются в высокотехнологичных производствах. Ежегодно спрос на них возрастает на 10–15 %. Осн. минералы-носители редких земель: бастнезит, монацит, лопарит, ксенотим, черчит, иттросинхизит, браннерит, апатит. Гл. промышленные типы месторождений: карбонатитовый, коры выветривания карбонатитов, редкометалльные щелочные граниты и коры выветривания на них, прибрежно-морские россыпи. Суммарные мировые запасы редких земель оцениваются в 100–110 млн. т, что может обеспечить мировое промышленное производство на 1,5 тыс. лет. Наиболее крупные запасы: Китай (41 % мировых), Россия (18 %), США (12 %). Более половины запасов сосредоточено в рудах двух эндогенных месторождений: Баюнь-Обо (Китай) и Маунтин-Пасс (США). Мировое производство (в пересчёте на триоксиды) составляет ок. 80 тыс. т. Осн. продуценты: Китай (43 %), США (38 %), Австралия (7,6 %), Индия (5,2 %).

География. Современная иллюстрированная энциклопедия. — М.: Росмэн . Под редакцией проф. А. П. Горкина . 2006 .

Полезное

Смотреть что такое "редкоземельные металлы" в других словарях:

РЕДКОЗЕМЕЛЬНЫЕ МЕТАЛЛЫ — (РЗМ) см … Большая политехническая энциклопедия

редкоземельные металлы — РЗМ Группа РЗМ включает Sc, Y, La и лантаноиды (редкие земли) — 14 элементов III группы Периодич. системы с ат. н. от 58 (Се) до 71 (Lu). РЗМ отличаются высокой химич. активностью и образуют прочные оксиды, галогениды, сульфиды, реагируют с … Справочник технического переводчика

Редкоземельные металлы — Rare earth metal. Редкоземельные металлы. Группа из 17 химически подобных металлов, которая включает скандий и иттрий (атомные номера 21 и 39, соответственно) и элементы лантанового ряда (атомные номера от 57 до 71). (Источник: «Металлы и сплавы … Словарь металлургических терминов

редкоземельные металлы — Смотри редкоземельные металлы (РЗМ) … Энциклопедический словарь по металлургии

Редкоземельные металлы — Редкоземельные элементы (редкие земли) группа из 17 элементов, включающая лантан, скандий, иттрий и лантаноиды. Все эти элементы металлы серебристо белого цвета, притом все имеют сходные химические свойства (наиболее характерна степень окисления… … Википедия

редкоземельные металлы (РЗМ) — [rare earth metals] группа РЗМ включает Sc, Y, La и лантаноиды (редкие земли) 14 элементов III группы Периодической системы с атомный номер от 58 (Се) до 71 (Lu). РЗМ отличаются высокой химической активностью и образуют прочные оксиды, галогениды … Энциклопедический словарь по металлургии

РЕДКОЗЕМЕЛЬНЫЕ МЕТАЛЛЫ (РЗМ) — смотри Редкоземельные элементы … Металлургический словарь

РЕДКОЗЕМЕЛЬНЫЕ ЭЛЕМЕНТЫ — (редкоземельные металлы) химические элементы побочной подгруппы III группы периодической системы: скандий, иттрий, лантан и лантаноиды. Распространены в земной коре сравнительно редко, образуют нерастворимые оксиды (устаревшее выражение земли)… … Большой Энциклопедический словарь

РЕДКОЗЕМЕЛЬНЫЕ ЭЛЕМЕНТЫ — (РЗЭ) группа из 15 хим. элементов, размещённых в 57 й клетке Периодической системы элементов Д. И. Менделеева (см.) (лантано), а также скандий и иттрий. Все они химически активны (как правило, трёхвалентны) и сходны по своим хим. и некоторым физ … Большая политехническая энциклопедия

РЕДКОЗЕМЕЛЬНЫЕ ЭЛЕМЕНТЫ — (редкоземельные металлы), хим. элементы побочной подгруппы III гр. периодич. системы: скандий, иттрий, лантан и лантаноиды. Распространены в земной коре сравнительно редко, образуют нерастворимые оксиды (устар. земли) отсюда название. Серебристо… … Естествознание. Энциклопедический словарь

Крупнейшие страны по добыче и производству лития в мире

Из статьи вы узнаете о ценности лития и всех способах его применения. Мы разберем, где и как он добывается, каковы мировые запасы редкого металла, кто его производит, отправляет на экспорт, как обстоят дела на мировом рынке Lithium.

Без Lithium трудно представить современное производство электроники и электрокаров — это важнейший элемент литий-ионных аккумуляторов наших смартфонов и ноутбуков, а также батарей хранения энергии электрических машин. Спрос на литий ежегодно увеличивается, как и цены на редкий металл.

Литий — это (краткая справка о веществе)

Литий (Lithium, Li) — мягкий и легкий щелочной металл с бело-серебристым оттенком. Человечество знает о его существовании с 1817 года, когда вещество было открыто шведским минералогом Юханом Августом Арфведсоном. Металлический Li впервые был добыт в 1818 британским химиком сэром Гемфри Дэви. Название химического элемента происходит от древнегреческого λίθος — «камень» (из-за того, что первоначально был обнаружен в минералах петалит, лепидолит, сподумен). Интересно, что первоначально именовался «литионом» — известное нам название было предложено несколько позже химиком Йенсом Берцелиусом.

  • мягкий и пластичный металл, чья твердость находится между твердостью натрия и свинца;
  • материал, который можно обрабатывать посредством прокатки и прессования;
  • отличается малыми размерами атомов, что придает ряд особых свойств: к примеру, не смешивается с жидким цезием, рубидием или калием;
  • наивысшая температура плавления (180,5 °C) и кипения (1340 °C) среди всего спектра щелочных металлов;
  • самая низкая плотность в условиях комнатной температуры — 0,533 г/куб.см, что в два раза ниже плотности воды (это позволяет литию всплывать не только в Н2О, но в керосиновой массе).
  • наименее активный щелочной металл, который не дает реакции при комнатных температурах даже на сухой кислород;
  • относительно устойчив на открытом воздухе, отчего может недолгий период храниться в подобных условиях;
  • единственный из щелочных металлов, который не держат в керосине по причине его всплытия;
  • средой для хранения выступают герметично закупоренные жестяные тары, минеральное масло, парафин, газолин или петролейный эфир;
  • металлический Lithium оставляет ожоги на слизистых оболочках, роговице глаза и влажной коже.

С 1818 Li определяют по качественному признаку: литий и литийные соли способны окрасить пламя в красный оттенок (метод Леопольда Гмелина).

Крупнейшие месторождения лития — где они находятся?

Ученые установили, что содержание Lithium в верхней материковой коре доходит до 21 г/т, а в морских и океанских водах — до 0,17 мг/л. Традиционно месторождения щелочного металла разделяют на две категории:

  • гранитные редкоземельные интрузии с литиеносными пегмалитами, специфическими онгонитами (магматический топаз + вода, фтор и редкие металлы, среди которых Li) или комплексными гидротермальными богатствами, включающими также висмут, вольфрам, олово и иные металлы;
  • рассолы древних солончаков и естественных водных линз сильно засоленных озер.

Теоретически литий в аномально больших количествах находится в звездах-сверхгигантах или красных гигантах, системах Ландау-Торна-Житков с нейтронными звездами.

Среди важнейших месторождений Lithium:

  • «Литиевый треугольник» в Латинской Америке, охватывающий сразу три государства — Аргентину, Боливию и Чили. Именно здесь сосредоточено 70 % глобальных запасов металла, притом ⅔ из них обнаружены на территории Боливии.
  • Солончак Уюни в Боливии — крупнейшее в мире высохшее соленое озеро.
  • Бессточное сверхсоленое озеро Чабьер-Цака в Китае, давшее название минералу Zabuyelite — карбонату лития.
  • Река Амур на российско-китайской границе.
  • Тахуа, Боливия.

Месторождения щелочного металла обнаружены в государствах:

  • Чили;
  • Боливия;
  • Аргентина;
  • США;
  • Конго;
  • Китай;
  • Бразилия;
  • Австралия;
  • Сербия;
  • Афганистан.

В случае с Россией более ½ местных литиевых запасов сосредоточены в северной Мурманской области. Относительно крупные месторождения разведаны на юге, в Дагестане — это Южно-Сухокумское (где объемы добычи и производства теоретически могут доходить до 5000-6000 тонн/год), Берикейское и Тарумовское. Также Lithium обнаружен на территории Якутии и Восточной Сибири. При этом страна активно не добывает вещество: затратной добыче предпочитает более дешевый импорт. В РФ действуют экспериментальные установки, а промышленная добыча материала была прекращена после распада Советского Союза.

Добыча лития: где и сколько?

По данным Геологической службы США, темпы добычи редкого металла увеличивается с каждым годом. Так в 2015 было добыто около 32,5 тысячи тонн, а в 2019 — уже 315 тысяч тонн лития. Прогнозируется, что к 2027 это число увеличится восьмикратно. Четверка лидеров добычи остается неизменной — Аргентина, Австралия, Китай и Чили.

The Economist оценил уровень добычи редкого металла в 2021 году:

  • Общий объем: 100 000 тонн (больше, чем в 2020, на 21 %).
  • Австралия — 55 000 тонн.
  • Чили — 26 000 тонн.
  • Китай — 14 000 тонн.
  • Аргентина — 6 200 тонн.

Интересно, что лидер по запасам металла, Боливия, добыла всего лишь 600 тонн ценного лития.

Из чего получают литий: основное сырье и способы обработки

Главное сырье для добычи Lithium:

Что касается металлического лития, для его получения в современном мире обращаются к электролизу расплавов солей и дальнейшему восстановлению из оксида. Полученный металл очищается вакуумной дистилляцией — последовательным выпариванием при заданных температурах.

Глобальные ресурсы лития: топ-18 стран с крупнейшими запасами

Оценка и статистика по Lithium осложняется тем, что каждый из источников предоставляет свои данные, которые разнятся между собой (в тоннах):

  1. Аргентина: от 2 до 6 млн.
  2. Австралия: от 220 тысяч до 1,6 млн.
  3. Австрия: от 100 до 113 тысяч.
  4. Боливия: от 5,4 до 5,5 млн.
  5. Бразилия: от 85 до 910 тысяч.
  6. Финляндия: от 13 до 14 тысяч.
  7. Испания: 72 тысячи.
  8. Ирландия: 13 тысяч.
  9. Канада: от 255 тысяч до 1,073 млн.
  10. Конго: 1,14 млн.
  11. Чили: от 3 до 7,52 млн.
  12. Китай: от 1,1 до 6,173 млн.
  13. Португалия: 10 тысяч.
  14. Россия: 2,48 млн.
  15. Сербия: 957 тысяч.
  16. США: от 410 тысяч до 6,62 млн.
  17. Заир: 2,3 млн.
  18. Зимбабве: от 27 до 57 тысяч.

Таким образом, в сумме мир может богат объемами лития от 11 400 000 до 39 300 000 тонн.

В 2021 году USGS (работа Геологической службы Соединенных Штатов) выпустила собственный отчет по мировым запасам лития:

  1. Боливия — 21 млн тонн.
  2. Аргентина — 19,3 млн тонн.
  3. Чили — 9,6 млн тонн.
  4. Австралия — 6,4 млн тонн.
  5. Китай — 5,1 млн тонн.
  6. ДР Конго — 3 млн тонн;
  7. Канала — 2,9 млн тонн.
  8. Германия — 2,7 млн тонн.
  9. Россия — 1 млн тонн.

Всего же в мире, по данным США, 86 млн тонн доказанных запасов лития.

Мировое производство лития: 5 крупнейших предприятий

Глобальный рынок редкоземельного металла, в основном, формируют азиатские, американские и австралийские поставщики. Среди самых значимых производств работают:

  1. Albemarle (США-Чили). Добывает бром и литий в Салар-де-Атакама (Чили) и долине Клейтон (Соединенные Штаты). Этой же компании принадлежит 49 % доли литиевого месторождения Greenbushes.
  2. Pilbara Minerals (Австралия). Разрабатывает литиевый и танталовый актив в западной части континента, является одним из значительных глобальных поставщиков сподумена.
  3. Sichuan Tianqi Lithium (Китай). Крупнейший мировой производитель минерала сподумена, который владеет литий-активами в КНР, Чили и в Австралии.
  4. Jiangxi Ganfeng Lithium (Китай). Один из мега-поставщиков металлического лития, горнодобывающая компания, разрабатывающая месторождения не только в КНР, но и в Аргентине, Ирландии и Австралии.
  5. Sociedad Quimica y Minera de Chile, SQM (Чили). Этому крупному производителю принадлежит 19 % глобального рынка лития. Поставляет, кроме Li, йод, калий и подкормки для с/х культур. Основная зона разработки — Салар-де-Атакама (Латинская Америка).

На сколько лет планете хватит лития?

Проследим за графиком потребления редкого металла, составленным Global Data (в тысячах тонн):

  • 2010: 30.
  • 2011: 40.
  • 2012: 40.
  • 2013: 40.
  • 2014: 40.
  • 2015: 35.
  • 2016: 40.
  • 2017: 50.
  • 2018: 60.
  • 2019: 70.
  • 2020: 110.
  • 2021: 140.
  • 2022: 160.

Эксперты прогнозируют: ожидается, что к 2025 человечество будет потреблять до 200 тысяч тонн лития ежегодно.

Насколько хватит при таких темпах потребления и без того редкого металла? На вопрос трудно ответить даже аналитикам, ведь ученые пока лишь подсчитали литиевые запасы в месторождениях пегматитовых минералов. Сколько ценного элемента скрывают солончаки, до сих пор доподлинно неизвестно. Так, в 2019 на слуху была информация, что планета располагает только 17 млн тонн лития, затем эта цифра увеличилась до 62 млн тонн. Chemetall утверждает, что на планете 28 млн тонн лития и 150 млн тонн карбоната лития (впрочем, данные не раз критиковались как заниженные).

От дефицита Lithium может спасти вторичная переработка литий-ионных аккумуляторов. Уже есть технологии, позволяющие вернуть полноценный металлический литий, однако процесс пока что сложный и дорогой, отчего ведется в малочисленных объемах. Однако на сегодняшний день подсчитано: если человечество будет потреблять 150-200 тысяч тонн лития в год, то запасов материала хватит на 75-100 лет.

Глобальный рынок лития: покупатели и динамика цен

Стоимость редкоземельного металла увеличивается год от года:

  • 2007: 6,3 доллара/килограмм.
  • 2018: 16,5 долларов/килограмм.
  • 2019: 67,5 долларов/килограмм.
  • 2022: 77 долларов/килограмм.

Что касается карбоната лития, он в 2022 году стоит 70 000 долларов за тонну, поскольку в прошлом году максимальная цена составила 13 000 долларов. Причиной увеличения стоимости является огромный спрос со стороны производителей литий-ионных батарей.

Представим важные данные от экспертных агентств:

  • В январе 2022 карбонат лития на фоне сокращения поставок и роста глобального спроса стал стоить до 48 300 долларов за тонну.
  • S&P Global свидетельствует: «цены на поставку карбоната лития выросли на 413 % с начала 2021 года по середину декабря до 32 600 долларов США за тонну на условиях CIF (стоимость, страхование, фрахт) в Северной Азии, а цены на гидроксид лития выросли на 254 % за тот же период до 31 900 долларов США за тонну».
  • Объем глобального рынка металла оценивается в $2,7 млрд.
  • Суммарные темпы роста литиевого рынка в 2021-2028 годах: от 14,8 % до 26 %.
  • Весь 2022 год цены на Li будут держаться стабильно высокими.

Среди главных приобретателей лития на глобальных рынках — автомобильная промышленность. Для аккумуляторной батареи одного электрокара Tesla Model S требуется 63 кг лития. В среднем же на аккумулятор электромобиля уходит 44,1 кг чистого лития. К 2023 главными мировыми покупателями (до 100 000 тонн Li в год) станут:

    ; ;
  • Toyota; ;
  • Audi;
  • Porsche;
  • Volvo;
  • Hyundai;
  • Tesla;
  • Honda.

Помимо производителей электро-авто, металл в больших объемах интересен двум секторам:

  • Изготовителям смартфонов, ноутбуков, планшетов — для аккумуляторов. Например, Apple покупает 0,58 % от мировых поставок металла.
  • Поставщикам огромных аккумуляторных систем для нивелирования скачков потребления электроэнергии в часы пик. Для каждого такого супер-аппарата требуется не менее 1 тонны чистейшего лития. Основным производителем является та же «Тесла».

Конкуренция на мировом литиевом рынке происходит по четырем признакам: качество материала, стабильность поставок, богатство ассортимента и наличие полезных закупщикам дополнительных услуг.

Экспорт лития в мире

Основной экспорт редкого металла идет из «Литиевого треугольника» в Южной Америки: вещество обрабатывается на обогатительных заводах SQM (Чили), откуда поступает в чилийский порт Антофагаста для дальнейших зарубежных отправлений. Важнейшими экспортерами выступают (в тысячах тонн в год):

  • Австралия — 18,3.
  • Чили — 14,1.
  • Аргентина — 5,5.

К слову, не все крупнейшие корпорации покупают литий: так, Tesla уже получила от американских властей «зеленый свет» на добычу Li в местности, расположенной в Неваде. Илон Маск сообщил, что его компания может обрабатывать и использовать 10 000 акров глины, обогащенной металлом.

«Вторая нефть»: все способы применения лития

Lithium недаром называется «новой нефтью» — полный спектр его технологических применений необычайно широк:

  • Химические источники тока: аноды аккумуляторов и гальванических (литиевых) элементов, снабженных твердыми электролитами. Среди самых популярных — литий-ионные, литий-йодные, литий-хлорные, щелочные аккумуляторные батареи.
  • Полезные сплавы: с медью, золотом и серебром — высокоэффективный припой, со скандием, алюминием, магнием и кадмием — инновационный сверхлегкий материал в космонавтике и авиации, с алюминием — сверхпрочная керамика для металлургии, военной техники, термоядерного сектора, с алюминием и карбидом кремния — огромной прочности стекла, со свинцом — пластичные и коррозионно-устойчивые сплавы.
  • Электроника: оптический компонент (лития-цезия триборат) в радиотехнике, нелинейные оптико-материалы в оптоэлектронике, акустооптике и нелинейной оптике, наполнение металлогалогенных газоразрядных осветительных конструкций, наполнение электролита щелочных аккумуляторных батарей для увеличения их долговечности.
  • Общая металлургия: раскисление, увеличение прочности и пластичности сплавов, восстановление редких металлов.
  • Производство алюминия: важнейший вспомогатель при выплавке цветного металла, а также элемент, позволяющий выделить новые алюминиевые сплавы с повышенной удельной прочностью, стойкостью к ржавлению, растрескиванию, образованию рыхлин.
  • Лазерная продукция: высокоэффективные лазеры центров свободной окраски, оптика с широкой спектр-полосой пропускания.
  • Атомный сектор: лития гафниат — элемент покрытия, используемого для захоронений атомных отходов высокой активности с содержанием плутония.
  • Ядерная энергетика: литий-7 используется в атомных реакторах в роли эффективного теплоносителя.
  • Термоядерная энергетика: литий-6 при воздействии тепловых нейтронов преображается в радиоактивный тритий 3H.
  • Термоэлектрический материал: полупроводники для термоэлектропреобразования.
  • Регенерация кислорода: очистка воздуха пероксидом и гидроксидом лития на пилотируемых космических кораблях и подводных лодках.
  • Смазочные материалы: «литиевое мыло» (лития стеарат) — загуститель, применяемый в производстве высокотемпературных паст-смазок для различных агрегатов и машин.
  • Силикатное производство: литиевые соединения применяются в выпуске специального стекла, для упрочнения фарфора.
  • Окислитель: лития перхлорат в качестве акцептора электронов.
  • Дефектоскопия: лития сульфат для обнаружения дефектов материалов.
  • Осушение воздуха и иных газов: бромид и хлорид лития обладают образцовыми гигроскопичными свойствами.
  • Медицина: лития карбонат и ряд других солей лития — стабилизаторы настроения в психотерапии.
  • Пиротехника: лития нитрат для окраски фейерверка в красный цвет.
  • Другое применение: отбеливание швейной ткани, производство косметики, консервация пищевых продуктов, наполнение поплавков батискафов, топливо (металлический Lithium) для силовых паротурбинных установок.
  • Биологическое, естественное использование: 100-200 мкг лития в сутки необходимо взрослому человеку для нормализации жирового и углеводного обмена, профилактики аллергических реакций, укрепления нервной системы, снижения чрезмерной возбудимости.

Аналитики также выяснили, в каких долях и в каком виде используется литий мировыми производствами: стекло и керамика — 29 %, источники тока — 27 %, смазочные материалы — 12 %, разливка стали — 5 %, регенерация кислорода — 4 %, полимеры — 3 %, производство алюминия — 2 %, фармпродукция — 2 %, иные цели — 16 %. Согласно другому источнику: 40 % — литий-ионные аккумуляторы, 26 % — керамические изделия, 13 % — смазочные материалы, 7 % — металлургия, 4 % — охлаждающие установки, 3 % — полимеры и медицина.

Редкоземельные металлы

Редкоземельные металлы – группа из 17 химических элементов таблицы Менделеева. Они обладают одинаковым строением атомов, а также имеют схожие химические и физические свойства. Редкоземельные элементы применяются в различных промышленных сферах: в радиоэлектронике, атомной энергетике, машиностроении, химической промышленности и металлургии.

Редкоземельные металлы

Металлы, составляющие группу редкоземельных

По состоянию на 2019 г., в список редкоземельных металлов входят следующие химические элементы:

  1. Скандий: назван в честь Скандинавии.
  2. Иттрий: получил наименование в честь населенного пункта Иттербю, расположенного на территории современной Швеции.
  3. Лантан: в переводе с греческого языка наименование этого элемента означает «таинственный, скрытный».
  4. Церий: назван в честь римской богини Цереры и одноименной карликовой планеты в солнечной системе.
  5. Празеодим: в переводе с греческого языка наименование этого элемента обозначает «зеленый близнец».
  6. Прометий: назван в честь древнегреческого мифического персонажа Прометея.
  7. Неодим: в переводе с греческого языка означает «новый близнец».
  8. Самарий: получил наименование в честь минерала самарскит.
  9. Европий: назван в честь одноименной части света.
  10. Гадолиний: получил наименование в честь финского химика Юхана Гадолина.
  11. Диспрозий: в переводе с греческого языка наименование этого элемента означает «труднодоступный».
  12. Гольмий: назван в честь столицы Швеции – Стокгольма.
  13. Эрбий: получил наименование в честь шведской деревни Иттербю.
  14. Лютеций: назван в честь старинного названия столицы Франции, используемого древними римлянами.
  15. Иттербий: получил наименование в честь населенного пункта Иттербю.
  16. Тулий: получил наименование в честь сказочного острова Туле, описанного в скандинавской мифологии.
  17. Тербий: назван в честь деревни Иттербю.

Термин «редкоземельные» образован от словосочетания «редкие земли». Он объединяет химические элементы по следующим признакам:

  1. Вещества редко встречаются в естественной среде. В нынешнее время только 2% редкоземельных металлов добываются в земной коре. Извлечение металлов в большинстве случаев осуществляется из отходов производства минеральных удобрений. Добыча осуществляется с применением инновационных технологий.
  2. При взаимодействии с кислородом элементы образуют тугоплавкие, нерастворимые оксиды, называемые «землями».
  3. Представляют собой серебристо-белые металлы, тускнеющие при взаимодействии с воздухом в результате образования оксидной пленки.

Редкоземельный металл лантан является одним из самых дорогих химических элементов. При взаимодействии с алюминием он образует вещества с повышенной интенсивностью поглощения углерода и азота. Благодаря низкой активности по отношению к H2, его можно применять для изоляции водорода от окружающих газов.

Лантан

Редкоземельные соединения отличаются между собой по химической активности. Этот параметр возрастает от скандия до лантана. До лютеция химическая активность снижается до минимальных значений. Это явления обусловлено постепенным снижением расстояния между атомами и энергетическими уровнями.

В научной литературе редкоземельные металлы имеют следующие обозначения:

  1. TR: аббревиатура, обозначающая “редкие земли” (Terrae rarae).
  2. REE: сокращение английского словосочетания Rare-earth elements (редкоземельные элементы).
  3. REM: сокращение английского словосочетания Rare-earth metals (редкоземельные металлы).

В российских учебниках редкоземельные элементы обозначаются аббревиатурами РЗЭ или РЗМ.

История открытия редкоземельных металлов

Впервые редкоземельные металлы были изучены финским химиком Юханом Гадолином в конце XVIII столетия. В 1794 г. ученый во время изучения рудных образцов, найденных вблизи деревни Иттербю, открыл “редкую землю”, названную иттриевой. В начале XIX в. немецкий химик Мартин Клапрот создал первую классификацию редкоземельных соединений. Он раздел эти элементы 2 группы: иттриевые и цериевые.

Иттрий

Спустя несколько десятилетий шведский химик Мосандер выявил наличие новых редкоземельных металлов. В 1840-х г. ученый выделил из образцов “редких земель” окись церия, тербиевую и эрбиевую земли. К концу XIX столетия в мире было открыто 16 редкоземельных элементов. В XX в. был открыт последний редкоземельный металл — прометий. Ее исследованием занимались русские химики Маринский и Гленделин. На основе их экспериментов были проведены опыты по использованию осколков деления атомов урана в ядерном реакторе. По состоянию на 2019 г. группа редкоземельных металлов состоит из 17 химических соединений. В таблице Менделеева они расположены в ячейках 21, 39 – 57, 57 – 61.

Запасы редкоземельных элементов

Общее количество по массе редкоземельных металлов в природе составляет не более 0,02%. Чаще всего в недрах Земли находятся церий, лантан и неодим. Наименее распространенным соединением является Европий. Ее процентное содержание в недрах Земли составляет не более 0,0013% от его общей массе.

Запасы редкоземельных элементов

В мире редкоземельные металлы находятся в 240 минеральных веществах: фторидах, силикатах и фосфатах. 62 минерала используются в качестве промышленного сырья: монацит, апатит, бастнезит и эвксенит. Процентное соотношение РЗЭ в составе минеральных веществ неодинаково. В бастнезитах содержатся преимущественно представители цериевой подгруппы, в апатитах – иттриевой.

Редкоземельные элементы содержаться в естественной среде совместно, образуя сульфиды или галоидные соединения. Валентность веществ составляет не более 3+. В природе церий может образовывать четырехвалентные соединения, что обусловлено особенностями строения его электронной оболочки.

Основные запасы редкоземельных металлов содержатся в следующих странах:

  • США: 13000000 т;
  • Австралия: 1600000 т;
  • Бразилия: 36000 т;
  • Китай: 55000000 т;
  • Индия: 3100000 т;
  • Малайзия: 30000 т.

В России 90% редкоземельных элементов импортируется из других стран. Это обусловлено тем, что на российском рынке наблюдается низкий спрос на данные соединения. Из-за развития научно-технического прогресса наибольшее количество редкоземельных ресурсов потребляется развитыми странами Европы и Северной Америки.

Добыча

Добыча редкоземельных металлов из отходов фосфорных удобрений является одной из самых инновационных технологий. Наличие в породном отвале большого количества гипса обуславливает высокую водостойкость и механическую прочность сырья. Эта технология извлечения РЗМ позволяет добыть до 800 000 ценных химических элементов и утилизировать отходы при производстве фосфорных удобрений. Она представляет собой замкнутый цикл. В результате переработки минеральных удобрений выделяются строительный гипс и оксиды редкоземельных металлов: неодима, тербия, церия, диспрозия, празеодима и лантана.

Существуют 3 метода переработки отходов от производства удобрений:

  1. Разложение материала с помощью плавиковых или серных кислот: позволяет удалять из веществ оксиды азота в процессе реакции обмена.
  2. Хлорирование: атомы неметаллов сменяются на хлор в результате химической реакции замещения.
  3. Сплавление гидроксидами, растворимыми в воде: в результате реакции гидролиза из РЗМ удаляются сульфированные поверхностно-активные вещества.
  4. Химическое восстановление кальцием: осуществляется в бескислородной среде или в атмосфере аргона. Эта процедура позволяет избавиться от самых прочных химических окислов.

В результате образуется хлориды, сульфаты и оксиды, из которых извлекаются редкоземельные соединения. Для очистки РЗЭ от примесей используются технологии вакуумного переплава или дистилляции.

Добыча РЗМ

Наибольшее количество РЗМ добывается на территории США, Канады, Австралии и КНР. С 2010 г. спрос на эти химические соединения растет во многих индустриальных отраслях: машиностроении, электронике, ядерной энергетике и химической промышленности. Одним из крупнейших месторождений редкоземельных металлов является Bayan Obo, расположенное в Китае. Здесь содержится 44 млн. оксидов. Китай экспортирует сырье во многие страны Европы, Азии, Северной Америки и Африки. С 2010 г. КНР сокращает экспорт РЗМ, что связано с ростом потребления на внутреннем рынке. В результате во многих странах возникла физическая нехватка редкоземельных ресурсов.

В Российской Федерации добыча РЗМ из горных пород является нерентабельным занятием, что обусловлено низким потреблением этих металлов. Наибольшее количество редкоземельных элементов используют государственная корпорация “Ростехнологии” и предприятия оборонной промышленности. В России РЗМ добываются на территории Мурманской области и Республики Саха (Якутии). В данных регионах находятся крупнейшие месторождения редкоземельных металлов: Ловозерское и Томторское. С 2016 г. в РФ действует госпрограмма по созданию отраслевых предприятий, обеспечивающих российскую промышленность редкоземельными элементами. Она позволила улучшить методы добычи РЗМ и ликвидировала зависимости экономики России от импортных материалов.

Свойства редкоземельных металлов

Редкоземельные металлы имеют серебристый или желтый окрас. Они поддаются механической обработке и проводят электрический ток. Свойства РЗМ могут изменяться при переходе веществ из металлического состояния в парообразное. При высоком давлении и большой разнице в энергии атомные радиусы уменьшаются, что приводит к увеличению плотности простых веществ.

Тепловые свойства РЗМ

Физические свойства

Плотность РЗЭ составляет 6000–7000 кг/м 3 . Температура плавления вещества равняется 900 °С. Переход веществ в газообразное состояние осуществляется при температуре от 3500 °С. Наибольшим захватом тепловых нейтронов обладают гадолиний, самарий и европий. При нагревании до высоких температур элементы становятся пластичными и легко поддаются прокатке или ковке.

РЗМ обладают магнитными свойствами. Они относятся к классу парамагнетиков. Магнитная восприимчивость соединений зависит от их температуры. Гадолиний, Диспрозий и Гольмий располагают ферромагнитными свойствами. Они могут увеличить свое магнитное поле в несколько раз при нагреве до критических температур. В естественной среде большая часть редкоземельных металлов являются сверхпроводниками. Переход сверхпроводящее состояние осуществляется при охлаждении веществ до температуры -268,15 °С. Величина данного показателя зависит от избыточного давления.

Механические свойства

Механические свойства РЗЭ находятся в зависимости от количества примесей, содержащихся в веществе: кислорода, серы, азота и углерода. Ими обладают большинство представителей иттриевой и цериевой подгрупп. Чистые металлы, в которых содержится меньше 1% примесей, имеют твердость 500 Мпа. Этот показатель зависит от температуры химического соединения. При охлаждении вещества до 800 °С твердость элемента составляет 30 МПа. Если понизить температуру вещества до 550 °С, то оно полностью размягчится, что обусловлено полиморфным превращением.

Физические свойства лантаноидов

При температурах 20-800 °С повышается пластичность редкоземельных металлов. Во время нагревания внутренняя структура элементов переходит на кубическую модификацию. Во время растяжения РЗМ полностью разрушаются при давлении в 150 Мпа. При более низких значениях этого показателя соединения деформируются. Удельное растяжения металлов составляет не менее 12%.

Химические свойства

При взаимодействии с молекулами кислорода РЗЭ покрываются тонкой оксидной пленкой, защищающей металлы от физических деформаций и воздействия иных химических элементов. При высокой влажности вещества начинаются окисляться с большей интенсивностью и превращаются в щелочи. Данный химический процесс осуществляется при температурах до 250 °С. При дальнейшем нагревании в кислородной среде металлы начнут окисляться с выделением большого количества тепловой энергии.

Наибольшей реакционной способностью располагают скандий и иттрий. При нагревании до 400 °С они вступают в реакции с водородом, образуя гидриды. Полученные вещества имеют высокую плотность и могут взаимодействовать с солями. Церий обладает свойством пирофорности. При разрезании этого элемента на воздухе образуется множество искр. В этом случае выделяется до 220 ккал тепла.

Химические свойства РЗЭ

Степень окисления редкоземельных соединений равняется +3. Поэтому эти способы образовывать тугоплавкие, твердые и крепкие оксиды. При взаимодействии с водой РЗМ образуют малорастворимые гидроксиды. Растворимость элементов зависит от ряда активности и свойств амфотерности. Из-за высокой активности металлов, соли редкоземельных соединений быстро растворяются в сильных кислотах, относящихся к минеральной группе химических веществ. При взаимодействии РЗМ с неметаллами VI – VII групп получаются галогены. РЗЭ могут вступать в реакцию с селеном, бромом, йодом при нагревании. Они инертны к большинству растворимых гидроксидов.

Применение редкоземельных металлов

Редкоземельные металлы нашли применение в следующих областях:

  1. Производство винчестеров и звуковых динамиков.
  2. Изготовление фотокамер, телескопических объективов, проекторов, приспособлений для студийного освещения и аккумуляторов.
  3. Переработка сырой нефти.
  4. Разработка усиленных металлов и стекол, применяющихся в авиационных моторах и защитных масках для строителей.
  5. Создание жидкокристаллических дисплеев, аппаратов для МРТ, рентгеновских систем, энергосберегающих ламп и ядерных реакторов.

Применение РЗМ

Также РЗЭ используются для изготовления добавок и эмалей, необходимых для модификации материалов. Они улучшают пластичность и прочность сырья, что увеличивает срок службы различных аппаратов и металлических устройств. Благодаря повышенной скорости поглощения окисей углерода и азота, РЗМ могут применяться в водородных тиратронах в качестве изолирующего материала.

Применение редкоземельных элементов оказывает негативное влияние на экологию планеты. В результате добычи и производства РЗЭ в атмосферу выбрасывается большое количество вредных веществ и токсинов, включая углерод. В настоящее время разрабатываются технология определения токсичности РЗМ при помощи биотестирования. Ученые создают биосенсоры, определяющие влияние металлов на организм человека при помощи специальных биосенсоров. При изготовлении тестовых приспособлений используются экологически чистые материалы: Paramecium Bursaria и водоросли Chlorella.

Литий: зачем нужен, как добывается и хватит ли его нам?


Так выглядит литийсодержащая руда
Литий — один из критически важных элементов для всей нашей цивилизации. Конечно, когда мы говорим о литии, на ум сразу приходят Li-ion батареи. И действительно, львиная доля добываемого лития уходит на нужды производителей аккумуляторов. Тем не менее, он используется и в других сферах.

Например, в металлургии, как черной, так и цветной, — металл применяется для раскисления и повышения пластичности и прочности сплавов. Также с его помощью производят стекла, которые частично пропускают ультрафиолет, он применяется в керамике. И это если не говорить о ядерной энергетике и атомной технике — его используют для получения трития. Короче, литий в буквальном смысле нарасхват. Под катом — поговорим об аккумуляторах, Tesla, способах добычи лития и его дефиците.

Но главное, конечно, батареи

Да, сейчас большая часть добываемого в мире лития уходит на производство литиевых аккумуляторов. По расчетам, на производство одной батареи для Tesla Model S требуется 63 кг этого металла с 99,5% чистоты.

Теперь давайте подумаем, что будет, если все, абсолютно все автомобили внезапно станут электрическими, с литиевыми батареями. По данным на 2016 год автомобилей в мире было 1,3 млрд. Сейчас, наверное, еще больше, но окей, воспользуемся этими данными четырехлетней давности.


Пусть не все новоявленные электрокары имеют настолько же вместительную батарею, как Tesla, уменьшим вес лития, необходимого для производства, на треть. Получается, что на одну такую батарею необходимо 44,1 кг чистейшего лития. Для наших 1,3 млрд автомобилей нужно 57,33 млрд кг лития. Неплохо, это 57,33 млн тонн лития, и только для нужд автомобильной промышленности.

К 2023 году массовое производство электромобилей стартует на предприятиях Mercedes, BMW, Toyota, Ford, Audi, Porsche, Volvo, Huyndai, Honda. По подсчетам экспертов, эти компании будут производить около 15 млн электрокаров ежегодно, на что потребуется около 100 000 тонн лития в год.


Но ведь не электромобилями едиными. У нас же в ходу миллиарды экземпляров разной техники с аккумуляторами — смартфонов, ноутбуков, планшетов и т.п. Они маленькие, да, но и для них понадобится много лития. Правда, гораздо меньше, чем для батарей электромобилей — на производство батарей для мобильных устройств уходит несколько процентов общемирового производства лития. В 2017 году Apple использовала всего 0,58% общемировых объемов добычи этого металла.

Но есть и другие батареи. Та же Tesla разрабатывает и реализует огромные аккумуляторные системы, которые служат для нивелирования скачков потребления энергии в пиковые часы. В крупном аккумуляторе содержится не менее тонны лития. Пока что производство таких систем не слишком масштабное, но через время все может измениться.



В целом, общемировое потребление лития к 2025 году составит не менее 200 000 тонн этого металла.

А как его добывают и хранят?

Литий — очень активный химически металл, поэтому его добыча ведется несколько отличными от добычи большинства прочих, обычных металлов способами. Есть два способа выделить Li.


Первый — из пегматитовых минералов, которые состоят из кварца, полевого шпата, слюды и других кристаллов. Ранее это был основной источник лития в мире. В Австралии, например, его добывают из сподумена, руды лития, минерала, который относится к пироксенам.

Второй — из глин солончаков. Такие есть в Южной Америке и той же Неваде, о которой говорилось выше. Насыщенные литием рассолы можно «обогащать» при помощи испарителя на солнечной энергии. Затем, после достижения нужной концентрации гидроксида лития, его осаждают, добавляя карбонат натрия и гидроксид кальция. Этот процесс не очень дорогой, но занимает продолжительное время — от 18 до 24 месяцев. Именно такой способ планирует использовать Маск.


У второго способа есть проблемы: при получении лития таким способом литий получает примеси — железо или магний (от магния сложнее всего избавиться). Тем не менее, на солончаковых землях много лития, и это делает второй способ очень привлекательным — от примесей все же можно избавиться.

К слову, солончаки как раз не входят в списки разведанных месторождений, поскольку добыча лития выпариванием солевых растворов — новый метод, который ранее не применялся. Так что вполне может быть, что запасов лития на Земле гораздо больше, чем считается.


Очень много лития в солончаковой пустыне Салар-де-Уюни на юго-западе Боливии. Под твердой коркой находится жидкий рассол с концентрацией лития в 0,3%.


Есть и другие способы, но все они чисто лабораторные. Например, пару лет назад на Хабре публиковалась новость о том, что литий можно добывать из рассолов при помощи металл-органических каркасных мембран.


Они копируют механизм фильтрации — ионную селективность — мембран биологических клеток в живых организмах. Кроме лития, этот способ дает и пресную воду, тоже ценный продукт. Но, к сожалению, ни стоимость, ни возможность масштабирования этого способа не освещены учеными. Да и спустя два года о коммерциализации метода так ничего и не слышно.

Еще литий можно добывать… из литиевых батарей. То есть перерабатывать батареи, получая снова металлический литий и другие необходимые для создания аккумуляторов материалы. Но пока что переработка батарей ведется в малых объемах. Это достаточно сложный и дорогой процесс, так что в ближайшее время вряд ли мы услышим о строительстве крупных заводов по переработке батарей. Да, ученые работают над этим, но все это пока что лишь исследования.

Сколько всего лития на Земле?

Да не так уж и много. Вернее, того, что разведали, относительно немного. В 2019 году глобальные подтвержденные запасы этого металла оценивались в 17 млн тонн. В России — около 900 000 тонн. Если взять потенциально «плодородные» месторождения, то получится около 62 млн тонн. Возможно, геологи разведают новые месторождения, но в любом случае лития на Земле мало.

Два года назад добыто было около 36 000 тонн. При этом 40% металла идет на аккумуляторы, 26% —на производство керамических изделий и стекла, 13% — выпуск смазочных материалов, 7% —металлургию, 4% — системы кондиционирования, 3% — медицина и полимеры.


Основные поставки лития ведутся из Австралии (18,3 тыс. тонн в год), затем Чили (14,1 тыс. тонн в год) и Аргентина (5,5 тыс. тонн в год). В ближайшее время поставщики лития планируют увеличить объемы его добычи и поставки на мировой рынок.

Кстати, компания Tesla, один из крупнейших потребителей лития, получила право на самостоятельную добычу металла в штате Невада, США. Илон Маск заявил, что его компания получила доступ примерно к 10 тыс. акров богатых литием залежей глины в Неваде.

Литий для всех, и пусть никто не уйдет обиженным?

Речь о недалеком будущем, когда понадобится производить гораздо больше литиевых батарей, чем сейчас. Насколько ученые могут судить, на ближайшие несколько лет этого металла хватит всем.

С течением времени компании найдут способ снизить количество лития в батареях — уже сейчас ведутся исследования на эту тему. Скорее всего, добыча лития из рассолов тоже станет наращивать обороты, так что общие объемы металла возрастут, и весьма значительно.

Но что будет через 10-20-30 лет? Сложно сказать. Возможно, «выстрелит» новая технология производства аккумуляторов, предложенная учеными или корпорациями. А может быть, специалисты смогут изменить конструкцию текущих аккумуляторов, значительно сократив количество лития, необходимое для производства одной батареи.

В целом, пока что пути решения проблемы дефицита лития есть, и их немало. Давайте вспомним об этом вопросе лет через 5 и обсудим изменения здесь же, на Хабре. Хотелось бы надеяться, к тому времени не начнутся «литиевые войны», ведь этот металл уже называют «новой нефтью».

Редкоземельные элементы и минералы список

Редкоземы — важные и самые дорогие компоненты магнитных, оптических и электронных устройств, которые производят в оборонной и аэрокосмической промышленности: беспилотников, управляемых ракет, приборов лазерного наведения спутниковой связи и т.д.. Их называют «витаминами промышленности». Ведь эти металлы, хоть и в небольшом количестве, используются в важнейших материалах и процессах.

Редкоземельные элементы: что это такое

В Зеленой книге ИЮПАК (Международного союза прикладной и теоретической химии), представлен перечень из 17 редкоземельных металлов. Это:

  • скандий,
  • иттрий,
  • 15 лантаноидов.

В промышленности используют общепринятые аббревиатуры для обозначения редкоземов:

Сокращение

Расшифровка

Где находятся в периодической системе

Обозначение оксидов

Rare earth elements, в переводе редкоземельные элементы

№57-71: от лантана до лютеция, плюс иттрий, №39, скандий, №21

Light rare earth elements, в переводе легкие редкоземельные элементы

№57-62, начиная лантаном и заканчивая самарием

Heavy rare earth elements, в переводе тяжелые редкоземельные элементы

№63-71:, начиная европием и заканчивая лютецием, плюс иттрий

Редкоземельные элементы и минералы перечень, описание и свойства

В одну группу эти элементы объединили из-за похожих признаков. Они образуют простые вещества со следующими свойствами

  • серебристые или серые, с сильным металлическим блеском;
  • пластичные и мягкие;
  • активные, особенно при повышенной температуре или тонком измельчении.

Редкоземельные металлы обладают определенными различиями, поэтому и применяются для разных целей. Вот их краткое описание.

Наименование

Цвет

Ценные свойства металла и его соединений

Тугоплавкий, повышает прочность материалов, усиливает свечение

Повышает жаропрочность и долговечность материалов, улучшает качество свечения

Серебристо-белый, похож на кальций

Ускоряет крекинг нефти, повышает пластичность, жаропрочность и химическую устойчивость материалов

Повышает электропроводность и пластичность металлов, придает розоватый оттенок стеклу, катализатор

Улучшает свойства сверхпроводников и сплавов, придает бледно-зеленый оттенок стеклу, используется в лазерах и для получения пигментов

Улучшает качество стекла и сплавов, растворяет плутоний, повышает контрастность изображения, используется в магнитах, лазерах и излучателях

Способен к люменесценции, используется в атомных батарейках, стержнях реакторов, для ионизации воздуха

Улучшает свойства стержней для ядерных реакторов, магнитов, поглощающего инфракрасные лучи стекла, огнеупорность материалов

Повышает качество микрочипов, карт памяти, сверхпроводников, сплавов и керамики

Сильные парамагнитные свойства для получения сверхнизких температур, используется в полупроводниках и рентгеновских аппаратах

Необходим для сверхмощных магнитов и излучателей ультразвука, катализатор реакций окисления

Повышает пластичность и магнитные свойства материалов, катализатор в нефтехимии, для получения красных люминофоров

Придает сверхпроводящие свойства магнитам, применяется в лазерах, активирует люминофоры

Улучшает качество оптоволокна, магнитных сплавов, стекла, специальной керамики

Применяется в лазерах, магнитных носителях, для дефектоскопии, в диагностических приборах

Улучшает термоэлектрические и магнитные свойства материалов, обеспечивает легкость полупроводников

Повышает мощность магнитов, сверхпроводимость, жаропрочность

Но с точки зрения добычи полезных ископаемых они действительно редкоземельные. Потому что не часто встречаются в концентрированной и экономически выгодной форме.

Чем редкие металлы отличаются от редкоземов

Кроме редкоземельных, выделяют еще группу редких металлов. Их всего 18, в том числе 4 таких металла, которые можно после обогащения получать в виде концентратов: бериллий, ниобий, литий, тантал. Остальные 14 называют попутными микрокомпонентами, или рассеянными редкими металлами.

Редкие металлы значительно различаются между собой по объемам производства и областям применения.

Сколько примерно тонн производится в мире в год

Где используется

Добавка к стали и другим сплавам

В виде карбида для строительства, изготовления абразивов, сплавы в ядерных реакторах

Стекло, литье, керамика, батареи для электромобилей, лекарства

Сплавы со свинцом и другими металлами, для производства лекарств

Стекло, пигменты, фотокопировальные устройства, лекарства, удобрения, солнечные батареи

Пиротехника, сверхпроводники, протезы, зубные имплантаты, посуда, фианиты

конденсаторы для электроники, сплавы для турбин самолетов, медицинские импланты

Жидкокристаллические дисплеи, сенсорные и плоские экраны, смартфоны, компьютеры

Атомные реакторы, системы наведения, спутниковое оборудование, рентгеновские аппараты, формы для выдувания

Сплавы, солнечные батареи, полупроводники

Инфракрасная и волоконная оптика, солнечные батареи, японские ПЭТ-бутылки

Полупроводники, лазеры, светодиоды, микросхемы, безопасный заменитель ртути

Теплоносители, электролиты, измерительная техника

Электромобили и гибридные авто, металлогалогенные лампы

Ядерные реакторы, микропроцессоры

Двигатели для самолетов, ракеты, высокооктановый бензин без свинца, рентгеновские снимки, фотовспышки, лечение опухолей

Батарейки, аккумуляторы, антикоррозионные покрытия

Также к редким металлам относится таллий.

Полезные ископаемые с достаточным для добычи содержанием содержанием редкоземов называют редкоземельными минералами. Первый такой минерал обнаружили в шахте возле шведской деревни Иттерби, Это гадолинит. Он состоит из смеси редкоземельных иттербия, церия, других менее ценных веществ.

Лидирующие по мировой добыче источники РЗЭ - следующих минералы:

  • бастнезит — из него получают лантан, иттрий и церий, местность Маунтин-Пасс в Калифорнии, Байян-Обо в Китае;
  • монацит — источник церия, празеодима, гадолиния, добыча в Австралии, США, Китае, Бразилии, Красноуфимске (Свердловская область);
  • лопарит — в основном цериево-лантановый, в меньшей степени неодим и прометий, найден в Карелии, село Ловозеро, в Прибайкалье, Туве;
  • латеритные ионно-адсорбционные глины — получают иттрий, диспрозий, гадолиний, неодим, месторождения в Китае, на Мадагаскаре, небольшое в Приморье.

Редкоземы есть в ряде ниже перечисленных полезных ископаемых

Минерал

Какие РЗЭ содержит

Месторождения

Празеодим, церий, лантан, неодим, иттрий,

Хибины, Кольский полуостров

Северное Прибайкалье, Монголия

Церий, диспрозий, гольмий

Хабаровский край, Малмыжское месторождение

лютеций, диспрозий, эрбий, гольмий, иттрий, туллий, иттербий

Бразилия, Норвегия, Швеция, Северная Карелия, Южный и Северный Урал, Хабаровский край

Колумбия, Норвегия, Китай, Урал, Северные Саяны

Иттрий, европий, тербий

Южный Урал, Миасс

Кольский полуостров, Тува, Швеция, Норвегия

Эрбий, туллий, иттрий, иттербий

Норвегия, Гренландия, Швеция, Урал, Украина, Зимбабве, США

Дальний Восток, Казахстан

Челябинская область, Монголия, Китай, Кения

Диспризий, гольмий, эрбий

Россия, США, Норвегия, Бразилия, Мадагаскар

Минералы-концентраты с набором разных РЗЭ получают рядом с месторождениями из первичной руды путем ее обогащения. В Мурманской области это лопаритовый концентрат. В мировых масштабах большое всего производится следующих концентрата:

  • насыщенного раствора сорбционно-ионных руд - до 90% РЗЭ в оксидной форме;
  • ксенотимового – 25% оксида иттрия;
  • моноцитового – 55% смеси оксидов РЗЭ;
  • бастнезитового – 60-85% комплекса редкоземельных оксидов.

Чем определяется стоимость редкоземов

Всего по расчетам 2014 года мировые запасы РЗЭ составляют 147 млн тонн:

  • Китай 38% всех разведанных редкоземов,
  • Монголия 21%,
  • Бразилия 15%,
  • США 9%,
  • Япония 5%,
  • Индия 2%,
  • Австралия 1%.

Оставшиеся 9% - все остальные страны.

Но далеко не все обладатели запасов РЗЭ готовы к разработке найденных месторождений. Во-первых, получение редкоземельных металлов связано с сильным загрязнением окружающей среды. При производстве 1 тонны РЗЭ из руды по стандартной китайской технологии образуется:

  • 1 тонна радиоактивных отходов;
  • 12000 кубометров газовой смеси с пылью, фтороводородной и серной кислотой, диоксидом серы;
  • 75 кубометров кислотного раствора.

Это приводит к загрязнению сточных вод, а следом за ними пахотных земель и рек. В том числе Хуанхэ, из которой берут питьевую воду полторы сотни миллионов людей. В нее попадает торий, элемент с высокой радиоактивностью.

Во-вторых, для запуска проектов по добыче редкоземов нужны большие стартовые капиталы. В результате расчетная себестоимость очищенных металлов окажется намного больше, чем у китайских конкурентов.

Например, австралийская компания Nothern Minerals собирается получать окись диспрозия и продавать килограмм по 720$. Китай сейчас продает это же сырье по 400$. Похожие проекты есть у канадских компаний Great Vestern Minerals и Tastan Metals. Последняя предполагает продавать все ту же окись диспрозия за 580$. В США Rare Element Resourse планирует цены на оксид этого же редкозема 655$/кг, а на окись европия 950$/кг.

В ближайшие годы другим странам, желающим производить РЗЭ, будет трудно конкурировать с Китаем. Ведь там дешевая рабочая сила и пренебрежение к требованиям экологии позволяют держать цены на достаточно низком уровне.

Редкоземельные элементы и производство гаджетов
Рост потребности в редкоземах растет параллельно тому, как высокотехнологичная техника становится необходимой для всех и каждого, определяет уровень и качество жизни. Часто цена гаджета в значительной доле определяется наличием и количеством редкоземельных и редких металлов в его электронной начинке.

Почему смартфоны Apple такие дорогие? На это есть ряд причин, и одна из них — использование РЗЭ. Причем не одного-двух, а как минимум девяти:

  • гадолиния — в дисплеях, динамиках и электронных схемах,
  • диспрозия — добавка в магниты электросхем для для сохранения свойств при нагреве и температурных перепадах,
  • европия — для красного светящегося вещества дисплея,
  • иттрия — для дисплеев, светодиодов,
  • лантана — в электронных схемах, дисплее, шлифованном стекле, для оптических линз,
  • неодима — магниты в схемах и динамиках из сплава с железом и бором,
  • празеодима — добавка в неодимовые магниты, дисплей, динамик,
  • тербия — для зеленого люминесцирующего вещества на дисплее, в динамиках, схемах и вибрационном механизме для защиты мини-магнитов от высоких температур,
  • церия — для шлифованного стекла.

Из этих редкоземельных элементов только четыре – церий, лантан, празеодим и неодим –поставляются для Apple американской компанией Molycorp и австралийской Lynas Corp. Остальные пять добывают преимущественно в Китае. Если Китай запретит экспортировать свои РЗЭ, то у Apple могут появиться серьезные проблемы.

В каждом из пяти важнейших узлов iPhone — дисплее, микросхеме, динамиках, механизме вибрации и шлифованном стекле — есть как минимум один редкоземельный металл, который на данный момент можно получить только из Китая.

Можно производить iPhone без европия, неодима, диспрозия и тербия, если заменить их более дешевыми и доступными металлами. Но это ухудшит цветовое отображение на дисплее , увеличит вес гаджета, снизит скорость работы и устойчивость к высоким температурам. То есть качество продукции Apple серьезно пострадает.

Если Apple и другие богатые компании, нуждающиеся в редкоземах, такие как Tesla , Intel , HP , материально поддержат американские проекты по добыче РЗЭ, то это поможет снизить зависимость от Китая. Но пока что цена вопроса слишком большая.

Читайте также: