Магнит относится к металлу

Обновлено: 18.05.2024

Поначалу кажется, что ответ очевиден: магниты именно так и делают, не так ли? Но не все так просто. Магниты притягиваются друг к другу из-за своих магнитных полей. Но как магнит притягивает железо? Кусок (немагнитного) железа не имеет магнитного поля, а два куска железа не притягиваются друг к другу, так как же магнит? Ответ заключается в том, что магнит превращает железо в магнит, а затем они притягиваются друг к другу.

Эти, казалось бы, безобидные вопросы открывают целую тему для разговора. Железо обладает свойством намагничиваться. Это происходит, когда он попадает в магнитное поле электрического тока. Когда магнит и железо разделены или электрический ток отключен, железо может вернуться в полностью немагнитное состояние или сохранить некоторый магнетизм.

Что такое магнит и магнетизм?

Магнит – это любой объект, который создает собственное магнитное поле, которое взаимодействует с другими магнитными полями. Магниты имеют два полюса, северный полюс и южный полюс. Магнитное поле представлено силовыми линиями, которые начинаются на северном полюсе магнита и заканчиваются на южном полюсе. Если металлический объект попадает в это магнитное поле, он притягивается к магниту и в конечном итоге прилипает к нему - неметаллические объекты не будут притягиваться к нему.

Магниты притягивают предметы, в основе которых есть железо, например, скрепки, шурупы, болтики и гайки. Это предметы, у которых есть магнитные свойства. Магнит не притягивает бумагу, резину, дерево или пластик. Неверно, что магнит притягивает какой-либо металл. Например, алюминиевые банки являются металлическими, но не содержат железа, поэтому не обладают магнитными свойствами. Сталь – это металл, изготовленный из железа, поэтому стальные предметы, такие как инструменты и столовое серебро, обычно обладают магнитными свойствами.

Магнитные полюса

Два конца магнита известны как северный полюс (N) и южный полюс (S). Отталкиваются одни и те же полюса - притягиваются противоположные полюса. Если вы попытаетесь соединить два магнита с одинаковыми полюсами, направленными друг к другу, магниты будут отталкиваться друг от друга.

Почему магнит притягивает железо

Что такое магнитная сила?

Магнитная сила – это сила, создаваемая электронами и возникающая между электрически заряженными частицами. Применяемая магнитами к магнитным объектам, эта сила создает и контролирует магнетизм и электричество.

На самом деле мы не можем видеть действующие силы, они невидимы для человеческого глаза, однако мы можем наблюдать их влияние на различные объекты при проведении эксперимента. Область, где на магнитный материал действует магнитная сила, называется магнитным полем.

С магнитными полями взаимодействуют три типа металлов: ферромагнитные, парамагнитные и диамагнитные металлы. Ферромагнитные металлы сильно притягиваются к магнитам, остальные нет. Магниты тоже притягивают парамагнитные металлы, но очень слабо. Диамагнитные металлы отталкивают магнит, хотя сила обычно очень мала.

Как делается магнит?

Внутри куска железа или другого магнитного металла находятся миллионы крошечных частиц, перемешанных друг с другом. Когда магнит помещают рядом с куском металла, частицы выстраиваются в одну линию, и кусок металла сам становится магнитом. Вот почему веревка скрепок будет свисать с конца магнита. Чем сильнее магнит, тем больше сила магнетизма и тем длиннее может быть веревка скрепок.

Чаще всего для изготовления постоянных магнитов используются железо, никель, кобальт и некоторые сплавы редкоземельных металлов.

Лом магнитов и магнитных сплавов, виды, описание

лом магнитов

Сегодня магниты считаются востребованным материалом, часто покупаются с целью отправки на продажу за рубеж или реализации отечественным предприятиям, где используется в радиотехнике, электронике, промышленном оборудовании.

Классификация магнитов по различным признакам, а также согласно различных ГОСТ стандартов

Основные характеристики магнитов, отображаются стандартом ГОСТ 24936-89, где описание содержит и регламентирует следующие основные параметры:

  • геометрическая форма (сегментные, дугообразные, цилиндрические);
  • количество полюсов, явность их выражения;
  • схематическое изображение.

Для приема лома магнитов форма и размеры играют не последнюю роль. Сдать на лом можно любой вид магнитов, однако каждым пунктом приема определяется предпочтение, зависящее от прямого потребителя продукции, его требований к ней.

Феррит - оксифер

ГОСТ описывает формирование маркировки магнитов составляющейся по направлениям намагничеваемости, а также размеров, класса изделия представленных специальными таблицами приложений. Вот несколько примеров буквенной маркировки:

  • МПП – плоскопараллельные полюса;
  • МЦО – цилиндрический образец с осевым направлением намагничивания;
  • МЗВ – звездообразный экземпляр с внутренними полюсами.

Магниты также разделяют на две группы:

  1. Классическое понимание, образцы обладают свойствами притягивания предметов независимо от приложенного к ним магнитного поля;
  2. Проявление качеств только в присутствии приложенного магнитного поля.

К первой группе относятся постоянные магниты, изготавливающиеся из ферромагнетиков. К этой категории относятся неодимовые изделия, магнетиты. Образцы обладают высокой остаточной индукцией Br и коэрцитивной силой Hc. Именно такие магниты используются в игрушках, кожгалантереи, сувенирной и ювелирной продукции.

неодимовый магнит

Вторая группа – это электромагниты, проявляющие магнитные свойства при прохождении электрического тока по катушке соленоида, сердечником которого является металлический образец (чаще железный) с высокой магнитной проницаемостью.

Пункты приема металлолома принимают, с большим удовольствием первую группу изделий, которая в свою очередь делится на ферромагнетики и ферримагнетики. Коэрцитивная сила первых значительной выше, чем у вторых. Часто их называют магнитотвердые или магнитомягкие материалы.

Прецизионный сплав с магнитно-мягкими свойствами

Прецизионный сплав с магнитно-мягкими свойствами

Химический состав различных магнитных материалов описан ГОСТ 17809-72, где представлены основные марки ЮНДЧ, ЮНДК, ЮНТС и т.д. По табличным значениям можно определить коэрцитивную силу, остаточную индукцию. Именно по этим двум параметрам, кроме физических размеров, сортируют магниты.

Различаются магниты и по ценовому принципу

Экземпляры, содержащие алюминий, никель, кобальт (ЮНДК) различной пропорциональности, стоят дешевле, чем неодимы или соединения Самарий-Кобальт. Тем не менее это не мешает им сохранять высокую остаточную намагниченность и находить применение в создании компьютерной техники, аэрокосмическом и автомобильном производстве. Главное их преимущество – они стабильны даже при очень высоких температурах.

Лом магнитов ЮНД и ЮНДК

Цена на неодимы постепенно снижается, это связано с удешевлением на рынке самого металла. Неодимовые магниты нашли широкое бытовое, потребительское применение. Кроме сумок и кошельков, их можно встретить в устройствах самодельных металлоискателей. Также широко их использование в таких сферах:

  • медицинская мебель (защелки на шкафчиках), некоторые приборы;
  • сепараторы, где выполняют роль улавливателей металлов;

Магнитный сепаратор

  • сенсорные устройства;
  • компьютерное, радиотехническое, телефонное оборудование.

Самарий-Кобальт также интенсивно используются в различных устройствах. Они имеют преимущественную устойчивость к температурам, противостояние ржавлению. Это редкоземельные металлы, однако обладающие высокой хрупкостью по сравнению с первыми двумя видами магнитов.

Следующий вид образцов, ферритовые магниты, благодаря низкой цене также часто используются на бытовом уровне. Однако не так, как неодимы. Часто встречается самодельная нарезка, но конечно, не в школах, где их используют, как крепежные элементы досок. Их также применяют в акустических системах, сигнализациях.

Пункты приема принимают магнитомягкие материалы: ковар (маркировка 29НК), сплавы 49КФ и 51КФ. Они предназначаются для использования в качестве сердечников соленоидов, трансформаторов. Из них получаются хорошие датчики магнитных полей, применяются в микроэлектронике.

Датчик магнитного поля

Датчик магнитного поля

Цены на лом магнита

Лом магнитов – редкий вид вторсырья, не каждый пункт приема металлолома занимается приемом такого лома, а если быть более точным, найти такой пункт не так просто.

Средние цены на лом магнитов такие:

Магниты ЮНДК – 100 рублей за килограмм

Остальные виды магнитов принимают реже. Но цена на некоторые лом магнитов и магнитных сплавов может доходить до 500 рублей за 1 кг.

Магнитные формы, встречающиеся на рынке сбыта

Кроме традиционных изделий различной конфигурации: подковы, диски, квадраты, встречаются такие виды продукции: магнитный винил, листы формата А4, нарезка под рекламные баннеры.

Хотя цена на магниты достаточно прозрачна, их продажа сопровождается индивидуальным подходом. Владелец всегда хочет сначала увидеть товар, убедиться в целостности его качеств, после озвучить стоимость.

Какие металлы не магнитятся

Какие металлы не магнитятся

То, что металлические предметы притягиваются к магниту, дети знают с раннего детства. Потом не раз проводили эксперименты в школе, изучая, что такое магнит. А также вешали на холодильник магниты. Однако, дети могли также обнаружить, что не все металлы притягиваются к магниту. Например, ложка, вроде металлическая, а не притягивается. В этой статье разберем, какие металлы не магнитятся к магниту .

Что такое магнит

Магнит — изделие, у которого есть свое магнитное поле, притягивающее к себе металлические предметы. Его изготавливают из железа и некоторых сплавов, а также кобальта и никеля. Различные металлы имеют разную магнитную восприимчивость, поэтому по-разному реагируют при поднесении их к магниту, бывают:

Атомы любого вещества состоят из ядра и движущихся вокруг него электронов, которые являются примером простейшего магнита. Магнитные поля электронов могут усиливать друг друга или компенсировать:

Орбитальные магнитные моменты связаны с движением электрона вокруг оси

Спиновые магнитные моменты связаны с движением электрона вокруг своей оси

Ферромагнетики

Феромгнетики — вещества, которые могут намагничиваться при поднесении их к магниту. Почему так происходит?

Вокруг каждого ядра атома такого вещества вращается непарное количество электронов. Магнитные поля этих электронов не скомпенсированы. Это такие вещества как, железо, никель, гадолиний, кобальт, диспрозий, гольмий, тербий .

Ферромагнетики притягиваются к магниту и сами легко намагничиваются.

Парамагнетики

У паромагнетиков все магнитные моменты каждого атома скомпенсированы. Если такое вещество поднести к магниту, то все магнитные поля будут выстроены в одном направлении. У него появится собственное магнитное поле с отрицательным и положительным полюсом. Такое вещество притянется к магниту и может и само намагнититься и притягивать металлические предметы

Какие металлы не магнитятся

Диамагнетики

У диамагнетиков скомпенсированы только спиновые моменты. Если поднести такое вещество к магниту, то к орбитальному магнитному моменту добавится движение электронов под воздействием внешнего магнитного поля. Это создаст дополнительный ток, магнитное поле которого будет направлено против внешнего магнитного поля, поэтому диамагнетики будут отталкиваться от магнита.

Поэтому, если говорить научным языком, о том, какие металлы не магнитятся к магниту , то это диамагнетики, в их список входят литий и бериллий.

Подведем итог: металлы, которые не магнитятся

Итак, хорошо магнитятся ферромагнетики, это кобальт, железо, никель, а также шесть лантаноидов . Различные сплавы железа также хорошо притягиваются. Если говорить в общем, то сплавы черных металлов хорошо притягиваются, а сплавы цветных металлов — не притягиваются.

Постоянные магниты - виды и свойства, формы, взаимодействие магнитов

Ферромагнитное изделие, способное сохранять значительную остаточную намагниченность после снятия внешнего магнитного поля, называется постоянным магнитом.

Постоянные магниты изготавливают из различных металлов, таких как: кобальт, железо, никель, сплавы редкоземельных металлов (для неодимовых магнитов), а также из естественных минералов типа магнетитов.

Постоянные магниты - виды и свойства, взаимодействие магнитов

Сфера применения постоянных магнитов сегодня очень широка, однако назначение их принципиально везде одно и то же — как источник постоянного магнитного поля без подвода электроэнергии. Таким образом, магнит — это тело, обладающее своим собственным магнитным полем.

Магнит и магнитное поле

Само же слово «магнит» происходит от греческого словосочетания, которое переводится как «камень из Магнесии», по названию азиатского города, где были в древности открыты залежи магнетита — магнитного железняка. С физической точки зрения элементарным магнитом является электрон, а магнитные свойства магнитов вообще обуславливаются магнитными моментами электронов, входящих в состав намагниченного материала.

Постоянный магнит является частью магнитных систем электротехнических изделий. Работа устройств с постоянными магнитами, как правило, основана на преобразовании энергии:

механической в механическую (сепараторы, магнитные муфты и т. п.);

механической в электромагнитную (электрогенераторы, громкоговорители и т. п.);

электромагнитной в механическую (электродвигатели, динамики, магнитоэлектрические системы и т. п.);

механической во внутреннюю (тормозные устройства и т. п.).

К постоянным магнитам предъявляются следующие требования:

высокая удельная магнитная энергия;

минимальные габариты при заданной напряженности поля;

сохранение работоспособности в широком диапазоне рабочих температур;

устойчивость к воздействию внешних магнитных полей; – технологичность;

низкая стоимость исходного сырья;

стабильность магнитных параметров во времени.

Разнообразие задач, решаемых при помощи постоянных магнитов, вызывает необходимость создания множества форм их исполнения. Часто постоянным магнитам придается форма подковы (т. н. "подковообразные" магниты).

На рисунке приведены примеры форм промышленно выпускаемых постоянных магнитов на основе редкоземельных элементов с защитным покрытием.

Промышленно выпускаемые постоянные магниты различной формы

Промышленно выпускаемые постоянные магниты различной формы: а – диск; б – кольцо; в – параллелепипед; г – цилиндр; д – шар; е – сектор полого цилиндра

Также выпускаются магниты из магнитотвердых металлических сплавов и ферритов в виде стержней круглого и прямоугольного сечения, а также трубчатые, С-образные, подковообразные, в виде пластин прямоугольной формы и др.

После того как материалу придана форма, он должен быть намагничен, т. е. помещен во внешнее магнитное поле, т.к. магнитные параметры постоянных магнитов определяются не только их формой или материалом, из которого они изготовлены, но и направлением намагничивания.

Заготовки намагничивают, используя постоянные магниты, электромагниты постоянного тока или намагничивающие катушки, через которые пропускаются импульсы тока. Выбор способа намагничивания зависит от материала и формы постоянного магнита.

В результате сильного нагревания, толчков постоянные магниты могут частично или полностью потерять свои магнитные свойства (размагнититься).

Петля гистерезиса

Характеристики размагничивающего участка петли магнитного гистерезиса материала, из которого изготовлен постоянный магнит, определяют свойства того или иного постоянного магнита: чем выше коэрцитивная сила Нс, и чем выше остаточная магнитная индукция Вr – тем сильнее и стабильнее магнит.

Коэрцитивная сила (буквально в переводе с латинского - «удерживающая сила») — сила, препятствующая изменению магнитной поляризации ферромагнетиков.

Пока ферромагнетик не поляризован, т. е. элементарные токи не ориентированы, коэрцитивная сила препятствует ориентировке элементарных токов. Но когда ферромагнетик уже поляризован, она удерживает элементарные токи в ориентированном положении и после того, как внешнее намагничивающее поле устранено.

Этим объясняется остаточный магнетизм, который наблюдается у многих ферромагнетиков. Чем больше коэрцитивная сила, тем сильнее выражено явление остаточного магнетизма.

Итак, коэрцитивная сила — это значение напряжённости магнитного поля, необходимого для полного размагничивания ферро- или ферримагнитного вещества. Таким образом, чем большей коэрцитивной силой обладает конкретный магнит, тем он устойчивее к размагничивающим факторам.

Единица измерения коэрцитивной силы в системе СИ — Ампер/метр. А магнитная индукция, как известно, - это векторная величина, являющаяся силовой характеристикой магнитного поля. Характерное значение остаточной магнитной индукции постоянных магнитов — порядка 1 Тесла.

Магнитный гистерезис — наличие последствия поляризации магнетиков приводит к тому, что намагничивание и размагничивание магнитного материала происходят неодинаково, т. к. намагничивание материала все время немного отстает от намагничивающего поля.

При этом часть энергии, затраченной на намагничивание тела, при размагничивании не возвращается обратно, а превращается в тепло. Поэтому многократное перемагничивание материала связано с заметными потерями энергии и иногда может вызвать сильное нагревание намагничиваемого тела.

Чем сильнее выражен гистерезис в материале, тем больше потери в нем при перемагничивании. Поэтому для магнитных цепей с переменным магнитным потоком применяют материалы, не обладающие гистерезисом (смотрите - Магнитопроводы электротехнических устройств).

Игровой набор с постоянными магнитами

Магнитные свойства постоянных магнитов могут изменяться под действием времени и внешних факторов, к которым относятся:

Изменение магнитных свойств характеризуется нестабильно- стью постоянного магнита, которая может быть структурной или магнитной.

Структурная нестабильность связана с изменениями кристаллической структуры, фазовыми превращениями, уменьшением внутренних напряжений и т. п. В этом случае исходные магнитные свойства могут быть получены восстановлением структуры (например, термообработкой материала).

Магнитная нестабильность обусловлена изменением магнитной структуры вещества магнита, которая стремится к термодинамическому равновесию с течением времени и под влиянием внешних воздействий. Магнитная нестабильность может быть:

обратимой (возвращение к исходным условиям восстанавливает исходные магнитные свойства);

необратимой (возращение исходных свойств может быть достигнуто только путем повторного намагничивания).

Грузоподьемный магнит

Постоянный магнит или электромагнит - что лучше?

Применение постоянных магнитов для создания постоянного магнитного поля вместо эквивалентных им электромагнитов позволяет:

уменьшить массогабаритные характеристики изделий;

исключить применение дополнительных источников питания (что упрощает конструкцию изделий, снижает стоимость их изготовления и эксплуатации);

обеспечить практически неограниченное время поддерживания магнитного поля в рабочих условиях (в зависимости от применяемого материала).

Недостатками постоянных магнитов являются:

хрупкость материалов, применяемых при их создании (это затрудняет механическую обработку изделий);

необходимость защиты от влияния влаги и плесневых грибков (для ферритов ГОСТ 24063), а также от воздействия повышенных влажности и температуры.

Виды и свойства постоянных магнитов

Ферритовые магниты хоть и отличаются хрупкостью, но обладают хорошей коррозийной стойкостью, что при невысокой цене делает их наиболее распространенными. Такие магниты изготавливают из сплава оксида железа с ферритом бария или стронция. Данный состав позволяет материалу сохранять свои магнитные свойства в широком температурном диапазоне — от -30°C до +270°C.

Применение ферритового магнита

Магнитные изделия в форме ферритовых колец, брусков и подков широко используются как в промышленности, так и в быту, в технике и электронике. Их используют в акустических системах, в генераторах, в двигателях постоянного тока. В автомобилестроении ферритовые магниты устанавливают в стартеры, в стеклоподъемники, в системы охлаждения и в вентиляторы.

Ферритовые магниты отличаются коэрцитивной силой порядка 200 кА/м и остаточной магнитной индукцией порядка 0,4 Тесла. В среднем, ферритовый магнит может прослужить от 10 до 30 лет.

Постоянные магниты на основе сплава из алюминия, никеля и кобальта отличаются непревзойденной температурной устойчивостью и стабильностью: они способны сохранять свои магнитные свойства при температурах до +550°C, хотя коэрцитивная сила, характерная для них, относительно мала. Под действием относительно небольшого магнитного поля, такие магниты потеряют исходные магнитные свойства.

Посудите сами: типичная коэрцитивная сила порядка 50 кА/м при остаточной намагниченности порядка 0,7 Тесла. Однако несмотря на эту особенность, магниты альнико незаменимы для некоторых научных исследований.

Постоянные магниты на основе сплава из алюминия, никеля и кобальта

Типичное содержание компонентов в сплавах альнико с высокими магнитными свойствами изменяется в следующих пределах: алюминий - от 7 до 10%, никель - от 12 до 15%, кобальт - от 18 до 40%, и от 3 до 4% меди.

Чем больше кобальта, тем выше индукция насыщения и магнитная энергия сплава. Добавки в виде от 2 до 8% титана и всего 1% ниобия способствуют получению большей коэрцитивной силы — до 145 кА/м. Добавка от 0,5 до 1% кремния обеспечивает изотропию магнитных свойств.

Если нужна исключительная устойчивость к коррозии, окислению и температуре до +350°C, то магнитный сплав самария с кобальтом — то что надо.

По стоимости самарий-кобальтовые магниты дороже неодимовых за счёт более дефицитного и дорогого металла — кобальта. Тем не менее, именно их целесообразно применять в случае необходимости иметь минимальные размеры и вес конечных изделий.

Наиболее целесообразно это в космических аппаратах, авиационной и компьютерной технике, миниатюрных электродвигателях и магнитных муфтах, в носимых приборах и устройствах (часах, наушниках, мобильных телефонах и т.д.)

Самариевые магниты

Благодаря особой коррозийной стойкости, именно самариевые магниты применяются в стратегических разработках и военных приложениях. Электродвигатели, генераторы, подъемные системы, мототехника – сильный магнит из сплава самария-кобальта идеально подходит для агрессивных сред и сложных условий эксплуатации. Коэрцитивная сила порядка 700 кА/м при остаточной магнитной индукции порядка 1 Тесла.

Неодимовые магниты на сегодняшний день очень востребованы и представляются наиболее перспективными. Сплав неодим-железо-бор позволяет создавать супермагниты для различных сфер, начиная с защелок и игрушек, заканчивая электрогенераторами и мощными подъемными машинами.

Неодимовые магниты

Высокая коэрцитивная сила порядка 1000 кА/м и остаточная намагниченность порядка 1,1 Тесла, позволяют магниту сохраняться на протяжении многих лет, за 10 лет неодимовый магнит теряет лишь 1% своей намагниченности, если температура его в условиях эксплуатации не превышает +80°C (для некоторых марок до +200°C). Таким образом, лишь два недостатка есть у неодимовых магнитов — хрупкость и низкая рабочая температура.

Магнитный порошок вместе со связующим компонентом образует мягкий, гибкий и легкий магнит. Связующие компоненты, такие как винил, каучук, пластик или акрил позволяют получать магниты различных форм и размеров.

Магнитопласты

Магнитная сила, конечно, уступает чистому магнитному материалу, но иногда такие решения необходимы для достижения определенных необычных для магнитов целей: в производстве рекламной продукции, при изготовлении съемных наклеек на авто, а также в изготовлении различных канцелярских и сувенирных товаров.

Одноименные полюса магнитов отталкиваются, а разноименные полюса притягиваются. Взаимодействие магнитов объясняется тем, что любой магнит имеет магнитное поле, и эти магнитные поля взаимодействуют между собой. В чем, например, причина намагничивания железа?

Согласно гипотезе французского ученого Ампера, внутри вещества существуют элементарные электрические токи (токи Ампера), которые образуются вследствие движения электронов вокруг ядер атомов и вокруг собственной оси.

При движении электронов возникают элементарные магнитные поля. И если кусок железа внести во внешнее магнитное поле, то все элементарные магнитные поля в этом железе ориентируются одинаково во внешнем магнитном поле, образуя собственное магнитное поле куска железа. Так, если приложенное внешнее магнитное поле было достаточно сильным, то после его отключения кусок железа станет постоянным магнитом.

Взаимодействие магнитов

Знание формы и намагниченности постоянного магнита позволяет для расчетов заменить его эквивалентной системой электрических токов намагничивания. Такая замена возможна как при расчете характеристик магнитного поля, так и при расчетах сил, действующих на магнит со стороны внешнего поля.

Для примера проведем расчет силы взаимодействия двух постоянных магнитов. Пусть магниты имеют форму тонких цилиндров, их радиусы обозначим r1 и r2, толщины h1, h2 , оси магнитов совпадают, расстояние между магнитами обозначим z, будем считать, что оно значительно больше размеров магнитов.

Возникновение силы взаимодействия между магнитами объясняется традиционным способом: один магнит создает магнитное поле, которое воздействует на второй магнит.

Для расчета силы взаимодействия мысленно заменим магниты с однородной намагниченностью J1 и J2 круговыми токами, текущими по боковой поверхности цилиндров. Силы этих токов выразим через намагниченности магнитов, а их радиусы будем считать равными радиусам магнитов.

Разложим вектор индукции B магнитного поля, создаваемого первым магнитом в месте расположения второго на две составляющие: осевую, направленную вдоль оси магнита, и радиальную - перпендикулярную ей.

Для вычисления суммарной силы, действующей на кольцо, необходимо мысленно разбить его на малые элементы Idl и просуммировать силы Ампера, действующие на каждые такой элемент.

Используя правило левой руки, легко показать, что осевая составляющая магнитного поля приводит к появлению сил Ампера, стремящихся растянуть (или сжать) кольцо – векторная сумма этих сил равна нулю.

Наличие радиальной составляющей поля приводит к возникновению сил Ампера, направленных вдоль оси магнитов, то есть к их притяжению или отталкиванию. Останется вычислить силы Ампера — это и будут силы взаимодействия между двумя магнитами.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Из чего состоят магниты

В советские годы все магниты имели почти одинаковый состав. Их изготавливали из ферромагнитных сплавов, где менялось процентное соотношение материалов. Но уже тогда велись научные изыскания по изобретению новых магнитов. Сегодня магнитное производство предлагает самые разные материалы, способные сохранять магнитное поле.

Из чего состоят разные виды магнитов

Сила и свойства магнитов зависят от их состава. Распространение получили следующие виды сплавов.

Ферритовые магниты активно применялись в радиотехнике и вычислительной технике

1. Ферриты
Это соединения оксида железа Fe2O3 с оксидами других металлов, обладающие ферромагнитными свойствами. Нашли применение в электронике, радиотехнике и прочих отраслях, где сила магнитного поля особой роли не играет. Это дешевые магниты, поэтому они используются в создании разнообразных устройств. Ферриты отличаются коррозийной стойкостью и средней температурной устойчивостью.

виды магнитов - альнико1 675х344.jpg


2. Сплавы Альнико
Представляют собой соединение железа со сплавом алюминия, никеля, меди и кобальта (AlNiCo). Магниты Альнико на основе этого сплава отличаются высокой магнитной силой и температурной устойчивостью, поэтому используются в условиях нагрева до 550 градусов по Цельсию. Однако не применяются повсеместно, поскольку отличаются высокой стоимостью. Такие сплавы незаменимы при создании других постоянных магнитов.

Иногда попадаются поисковый магнит вылавливает очень неожиданные предметы


3. Неодимы
Это сплав редкоземельных металлов — неодима, бора и железа (NdFeB). Не имеют конкурентов по мощности и долговечности, так как могут удерживать предметы, тысячекратно превосходящие их по массе. Неодимовые магниты появляются в результате сложного производственного процесса, при котором используется вакуумное плавление, прессование, спекание и другие манипуляции. Единственный недостаток — плохая устойчивость к тепловому воздействию — при нагреве быстро теряют свои свойства. Если исключить тепловой удар, то служат такие магнитные элементы почти вечно — теряют не более 1% мощности за 100 лет.

Велосипед "выужен" поисковым магнитом. Поисковые магниты делают из неодима, у него максимальная грузоподъемность при минимальных размерах

магниты самарий-кобальт 675х344.jpg

4. Самарий-кобальт
Сплав двух редкоземельных металлов — кобальта и самария SmCo5 или Sm2Co17. Легируются и другими металлами — медью, цирконием, гадолинием и т.п. По мощности такие сплавы уступают неодимовым, но превосходят все остальные аналоги. Отличаются стойкостью к коррозии и температурному воздействию. Незаменимы при работе в сложных условиях, когда требуется надежность и безотказность работы. Находятся в той же ценовой категории, что и неодимовые сплавы.

магнитопласт 675х344.jpg


5. Полимерные постоянные магниты
Производятся из композиционных материалов с включением магнитного (обычно феррит-бариевого) порошка. За основу берутся разнообразные полимерные компоненты. Магнитопласты имеют низкую магнитную силу, зато отличаются непревзойденной коррозионной стойкостью в той степени, в которой ею обладает и другие полимеры. Конечные свойства каждого полимерного магнита зависят от процентного содержания магнитной смеси. Если используется порошок редкоземельных магнитов (неодим-железо-бор, самарий-кобальт), то магнитопласт получается мощнее. Главное преимущество — невероятная пластичность, позволяющая выпускать магниты любой формы и размеров.

Холодильник - не просто место для хранения еды, это целая история семейных событий и путешествий


6. Магнитный винил
Являет собой смесь резины и магнитного порошка (ферритового). Процентного содержание последнего составляет 70-75% от массы. Чем больше этого порошка, тем выше магнитная сила изделия. Из преимуществ материала отличают износоустойчивость и огромный диапазон рабочих температур (от −300°C до +800°C). Магнитный винил устойчив к воздействию влаги и пластичен. За счет гибкости подходит для изготовления изделий любых конфигураций.

Читайте также: