Магнитная проницаемость металла это

Обновлено: 18.05.2024

Все вещества в зависимости от выраженности магнитных свойств делятся на сильномагнитные и слабомагнитные. Магнетики можно разделить по видам механизма, вызывающего намагничивание.

Что такое диамагнетики

Диамагнетики являются слабомагнитными веществами: они не магнитятся, если на них не действует магнитное поле.

Если парамагнетики внести во внешнее магнитное поле, то в их атомах начинается движение электронов, порождающее ориентированный круговой ток.

Этот ток обладает собственным магнитным моментом ρ m .

Круговой ток, в свою очередь, порождает магнитную индукцию, дополнительную по отношению к внешним полям. Вектор этой индукции направлен против внешнего поля. Силу воздействия внешнего поля можно найти так:

Любое вещество может проявлять свойство диамагнетизма. Величина магнитной проницаемости диамагнетиков обычно приравнивается к единице (отклонение незначительно). В случае с жидкостями и твердыми телами величина восприимчивости равна примерно 5 - 10 , у газов она заметно меньше. Данный показатель не имеет прямой связи с температурой – этот факт подтвержден экспериментально П. Кюри.

Диамагнетики бывают следующих видов:

  • классические;
  • аномальные;
  • сверхпроводники.

Если магнитное поле несильное, то величина намагниченности диамагнетика прямо пропорциональна напряженности магнитного поля H → .

Ниже представлена схема, которая наглядно показывает данную зависимость в случае с классическими диамагнетиками (в слабом магнитном поле):

Что такое парамагнетики

Парамагнетики также являются слабомагнитными веществами. Их молекулы характеризуются наличием постоянного магнитного момента p m → . Его энергию во внешнем поле можно вычислить так:

Если направления векторов B → и p m → совпадут, то величина энергии будет минимальной.

Если мы внесем парамагнетик во внешнее магнитное поле, то магнитные моменты получат преимущественную ориентацию в направлении поля, соответствующую распределению Больцмана.

Иными словами, вещество намагничивается: дополнительное поле усиливается за счет совпадения с внешним. При этом угол между векторами остается неизменным.

Смена ориентации магнитных моментов по распределению Больцмана связана со столкновениями и взаимодействием атомов между собой. В отличие от диамагнетиков, магнитная восприимчивость парамагнетиков меняется в зависимости от температуры в соответствии с законом Кюри или законом Кюри-Вейсса.

В формуле дельтой обозначена постоянная, которая может быть и больше 0 , и меньше.

Величина магнитной восприимчивости парамагнетика больше 0 , но незначительно. Выделяют следующие виды парамагнетиков:

  • нормальные;
  • парамагнитные металлы;
  • антиферромагнетики.

Второй тип парамагнетиков не обнаруживает связи магнитной восприимчивости с температурой. Такие металлы являются слабомагнитными при χ ≈ 10 - 6 .

Парамагнетические вещества характеризуются наличием парамагнитного резонанса. Возьмем внешнее магнитное поле с помещенным в него парамагнетиком. Как мы уже писали выше, в нем создается дополнительное магнитное поле с вектором индукции, направленным перпендикулярно вектору постоянного поля. При взаимодействии дополнительного поля с магнитным моментом атома создается так называемый момент сил M → .

Данный момент стремится к смене угла между p m → и B → .

При совпадении частоты прецессии с частотой переменного магнитного поля момент сил, создаваемый этим полем, будет либо постоянно увеличивать указанный угол, либо постоянно уменьшать. Это называется явлением парамагнитного резонанса.

Если магнитное поле слабое, то намагниченность в парамагнетиках будет пропорциональна напряженности поля и может быть выражена следующей формулой:

Что такое ферромагнетики

В отличие от двух перечисленных выше магнетиков, ферромагнетики являются сильномагнитными веществами.

Ферромагнетики – это вещества с высокой магнитной проницаемостью, зависящей от внешнего магнитного поля.

Данные вещества могут иметь так называемую остаточную намагниченность. Выразить зависимость восприимчивости ферромагнетиков от напряженности внешнего магнитного поля можно с помощью функции. Она представлена на схеме ниже:

Намагниченность ферромагнетика имеет пределы насыщения. Это указывает нам на природу возникновения намагниченности в таких веществах: она образуется путем смены ориентации магнитных моментов вещества. Для ферромагнетиков также характерно такое явление, как гистерезис.

В магнитном отношении все ферромагнетики делят на мягкие и жесткие. Первые из них имеют высокую магнитную проницаемость и способны легко намагничиваться и размагничиваться. Они имеют широкое применение в электротехнических приборах, основанных на работе переменных полей (например, трансформаторов). Жесткие ферромагнетики имеют сравнительно небольшую проницаемость и намагничиваются трудно. Их используют при производстве постоянных магнитов.

Условие: на схеме выше (рис. 3 ) показана кривая намагниченности ферромагнетика. Постройте кривую, выражающую зависимость B ( H ) и определите, возможно ли насыщение для магнитной индукции. Поясните свой вывод.

Решение

Мы знаем отношение вектора магнитной индукции к вектору намагниченности.

Из этого можно сделать вывод, что насыщения кривая B ( H ) иметь не может. Создадим график зависимости напряженности внешнего поля от индукции магнитного поля в соответствии с рисунком выше. Мы получили схему, называемую кривой намагничивания:

Ответ: кривая индукции не имеет насыщения.

Условие: выведите формулу восприимчивости парамагнетика при условии, что механизм его намагничивания точно такой же, как механизм электризации полярных диэлектриков. Среднее значение магнитного момента молекул в проекции на ось Z обозначается формулой ρ m z = ρ m L ( β ) .

Здесь L ( β ) = c t h ( β ) - 1 β означает функцию Ланжевена при β = ρ m B k T .

Взяв высокие температуры и небольшие поля, получим следующее:

ρ m B ≪ k T , → β ≪ 1 .

Значит, если β ≪ 1 c t h β = 1 β + β 3 - β 3 45 + . . . , можно ограничить функцию линейным членом и получить, что:

Возьмем нужную формулу и подставим в нее полученное значение:

ρ m z = ρ m ρ m B 3 k T = ρ m 2 B 3 k T .

Зная, как связаны между собой напряженность магнитного поля и его индукция, а также приравняв магнитную проницаемость парамагнетика к 1 , получим следующее:

ρ m z = ρ m 2 μ 0 H 3 k T .

В итоге формула намагниченности будет выглядеть так:

J = n ρ m z = ρ m 2 μ 0 H 3 k T n .

Поскольку модуль намагниченности связан с модулем вектора ( J = χ H ), мы можем записать результат:

Что такое магнитная проницаемость (мю)

Из многолетней технической практики нам известно, что индуктивность катушки сильно зависит от характеристик среды, где эта катушка находится. Если в катушку из медной проволоки, обладающую известной индуктивностью L0, добавить ферромагнитный сердечник, то при прочих прежних обстоятельствах токи самоиндукции (экстратоки замыкания и размыкания) в данной катушке многократно увеличатся, эксперимент это подтвердит, что и будет означать возросшую в несколько раз индуктивность, которая теперь станет равна L.

Что такое магнитная проницаемость (мю)

Допустим, что окружающая среда, вещество, заполняющее пространство внутри и вокруг описанной катушки, однородно, и порождаемое текущим по ее проводу током, магнитное поле локализовано только в этой обозначенной области, не выходя за ее границы.

Если катушка имеет тороидальную форму, форму замкнутого кольца, то данная среда вместе с полем окажется сосредоточена только внутри объема катушки, ибо снаружи тороида практически полностью магнитное поле отсутствует. Справедливо данное положение и для длинной катушки — соленоида, у которого все магнитные линии так же сосредоточены внутри — по оси.

Для примера допустим, что индуктивность некоторого контура или катушки без сердечника в вакууме равна L0. Тогда для такой же катушки, но уже в однородном веществе, которое заполняет пространство, где присутствуют магнитные силовые линии данной катушки, индуктивность пусть будет равна L. В этом случае получится, что отношение L/L0 – это есть ни что иное, как относительная магнитная проницаемость названного вещества (иногда говорят просто «магнитная проницаемость»).

Становится очевидно: магнитная проницаемость — это величина, которая характеризует магнитные свойства данного вещества. Она зачастую зависит от состояния вещества (и от условий окружающей среды, таких как например температура и давление) и от его рода.

Магнитная проницаемость

Введение термина «магнитная проницаемость», применительно к веществу, размещенному в поле магнитном, аналогично введению термина «диэлектрическая проницаемость» для вещества находящегося в поле электрическом.

Значение магнитной проницаемости, определяемое по приведенной выше формуле L/L0, может быть выражена и как отношение абсолютных магнитных проницаемостей данного вещества и абсолютной пустоты (вакуума).

Легко заметить: магнитная проницаемость относительная (она же — магнитная проницаемость) - это величина безразмерная. А вот абсолютная магнитная проницаемость - имеет размерность Гн/м, ту же самую, что у магнитной проницаемости (абсолютной!) вакуума (она же — магнитная постоянная).

Магнитная индукция

Фактически видим, что среда (магнетик) влияет на индуктивность контура, и это однозначно свидетельствует о том, что изменение среды приводит к изменению магнитного потока Ф, пронизывающего контур, а значит и к изменению индукции В, применительно к любой точке магнитного поля.

Физический смысл данного наблюдения заключается в том, что при одном и том же токе катушки (при одной и той же магнитной напряженности H), индукция ее магнитного поля окажется в определенное количество раз больше (в некоторых случаях - меньше) в веществе с магнитной проницаемостью мю, чем в полном вакууме.

Это происходит потому, что среда намагничивается, и сама начинает обладать магнитным полем. Вещества, способные таким образом намагничиваться, называют магнетиками.

Единица измерения абсолютной магнитной проницаемости - 1 Гн/м (генри на метр или ньютон на ампер в квадрате), то есть это магнитная проницаемость такой среды, где при напряженности Н магнитного поля, равной 1 А/м - возникает магнитная индукция величиной 1 Тл.

Физическая картина явления

Из вышеизложенного становится ясно, что различные вещества (магнетики) под действием магнитного поля контура с током намагничиваются, и в результате получается магнитное поле, являющееся суммой магнитных полей — магнитного поля от намагниченной среды плюс от контура с током, потому оно отличается по величине от поля только контура с током без среды. Причина намагничивания магнетиков кроется в существовании мельчайших токов внутри каждого их атома.

Значения магнитной проницаемости различных веществ

По значению магнитной проницаемости, вещества классифицируются на диамагнетики (меньше единицы — намагничиваются против приложенного поля), парамагнетики (больше единицы — намагничиваются по направлению приложенного поля) и ферромагнетики (сильно больше единицы — намагничиваются, и обладают намагниченностью после отключения приложенного магнитного поля).

Ферромагнетикам свойственен гистерезис, поэтому понятие «магнитная проницаемость» в чистом виде к ферромагнетикам не применимо, но в некотором диапазоне намагничивания, в некотором приближении, можно выделить линейный участок кривой намагничивания, для которого получится оценить магнитную проницаемость.

У сверхпроводников магнитная проницаемость - 0 (поскольку магнитное поле полностью вытесняется из их объема), а абсолютная магнитная проницаемость воздуха почти равна мю вакуума (читай магнитной постоянной). У воздуха мю относительная чуть-чуть больше 1.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Магнитная проницаемость - свойства, смысл и формулы

Для ряда материалов важными параметрами, описывающими их с точки зрения физики, являются магнитные свойства. Прежде всего это магнитная проницаемость, которая определяет изменение среднего результирующего поля в веществе. В зависимости от её показателя большинство элементов разделяют на три класса. Вычисление её значения важно при проектировании электронных приборов, использующих в работе действия магнитного поля.

Физическая суть магнитной проницаемости материалов

Общие сведения

В природе существует несколько видов силовых полей. Одним из них является магнитное поле (МП). В физике под ним понимают силу, действующую на перемещающиеся электрические заряды, обладающие магнитным моментом. Каждое тело в том или ином виде характеризуется восприимчивостью к такого роду полю.

Для понимания процесса можно провести эксперимент. Если взять кольцо индуктивности и пропустить через него электрический ток, то вокруг него возникнет электромагнитное поле. Если в катушку вставить железный сердечник, то магнитные свойства усилятся. Другими словами, железо усиливает магнитное поле, созданное током, протекающим по виткам. Получается, что появляется дополнительный источник магнетизма — железо. По принципу суперпозиции векторы источников складываются. Возникает усиленное поле.

Магнитная индукция поля,

Допустим, магнитная индукция поля, создаваемая только током, имеет величину B0, а веществом — B1. Вектор магнитной индукции в материале будет складываться из этих двух величин: B = B0 + B1. Основываясь на эксперименте, физики решили ввести новую величину, которая характеризует, насколько вещество изменяет магнитное поле. Этот параметр было решено обозначить символом μ и назвать магнитной проницаемостью. Её единицей измерения стала безразмерная величина.

Таким образом, физический смысл магнитной проницаемости вещества заключается в величине, равной отношению модуля вектора магнитной индукции поля в материале к создаваемому теми же токами полю без дополнительных элементов. Для вакуума формула магнитной проницаемости имеет вид μ = B / B0. По сути параметр является магнитным аналогом диэлектрической проницаемости. Но если диэлектрики всегда ослабляют поле, то магнетики его усиливают.

На протяжении нескольких десятков лет различные физики проводили эксперименты над способностью материалов поддерживать распространение МП. В результате была построена таблица, в которую были занесены показатели, характерные для разных сред. Так, для воздуха параметр равняется 1.25663753*10 −6 , вакуума — 4π*10 −7 , дерева — 1.25663760*10 −6 , а чистого железа — 6.3*10 −3 . Все эти данные общедоступны. Их легко можно найти практически в любом физическом справочнике.

Виды проницаемости и формулы

Восприимчивость к магнетизму зависит от вида среды и определяется её свойствами. Поэтому принято говорить о способности к проницаемости конкретной системы, имея в виду состав, состояние, температуру и другие исходные данные.

Существует четыре вида проницаемости:

Виды проницаемости и формулы

  1. Относительная. Характеризует, насколько взаимодействие в выбранной среде отличается от вакуума.
  2. Абсолютная. Находится как произведение проницаемости на магнитную константу.
  3. Статическая. Определяется с учётом коэрцитивной силы и магнитной индукции. При этом, чем большее значение имеет характеристика, тем меньше частота магнитных потерь. Отсюда следует, что статическая проницаемость зависит от температуры.
  4. Дифференциальная. Устанавливает связь между малым увеличением индукции и напряжённости — μд = m * tgb. Это утверждение означает, что величина определяется по основной кривой намагничивания, из-за нелинейности которой она переменчивая.

Если среда однородная и изотропная, то проницаемость определяется по формуле:μ = В/(μoН), где: B — магнитная индукция; H — напряжённость; μo — константа. Постоянный коэффициент в формуле водится для записи уравнения магнетизма в рациональной форме для проведения расчётов. Знак его всегда постоянный. Он позволяет связать между собой относительную магнитную проницаемость и абсолютную.

Магнитная восприимчивость связана с проницаемостью простым выражением μ = 1 + χ. Эта формула справедлива, если все параметры будут измеряться в СИ. В единицах СГС равенство примет вид μ = 1 + 4πx. Например, проницаемость вакуума равняется единице, так как x = 0. Она безразмерна и помогает оценить способность намагничивания материала в МП.

Три вида восприимчивости

Существует три вида восприимчивости: объёмная, удельная и молярная. Для диамагнетиков она отрицательная, а для парамагнетиков — положительная. При этом у ферромагнетиков её значения могут достигать тысяч единиц, в то время как для остальных классов веществ величина имеет очень малый порядок, около 10 -4 — 10 -6 .

Если на материал одновременно воздействует постоянное и переменное магнитное поле, то для описания процесса вводят дополнительное понятие — дифференциальную проницаемость. Наибольшее значение дифференциального параметра всегда будет превышать статическую составляющую μ = (1/μо)*(dB/dH). Эта формула по своему виду напоминает выражение, описывающее трение.

Разделение веществ

В пятидесятые годы девятнадцатого столетия Фарадей исследовал влияние веществ на МП. В итоге он пришёл к выводу, что все материалы без исключения влияют на поле. Отсюда следует, что любое вещество является источником своего МП, но при условии его помещения во внешнее поле. Это явление было названо намагниченностью.

По результатам своего исследования Фарадей разделил все физические элементы на три класса, дав определение каждому из них:

Парамагнетик алюминий

  1. Диамагнетики. Вещества, у которых проницаемость чуть меньше единицы: μ < 1. К ним относятся все газы, кроме кислорода, золота, серебра, углерода в любой кристаллической модификации, висмута. При помещении этих веществ в МП собственный вектор магнитной индукции направлен в сторону противоположную вектору, создаваемому током: B1↑↓B0. C другой стороны, так как значение B1 близко к единице, то модуль вектора B1 гораздо меньше модуля B0. Получается, что такое вещество намагничивается очень слабо и против внешнего поля. Интересным фактом является то, что диамагнетики при помещении в катушку с МП выталкиваются из неё.
  2. Парамагнетики. К ним относят материалы, у которых магнитная проницаемость немного больше единицы. Например, щелочные металлы, алюминий вольфрам, магний, платина. Для этих веществ характерно то, что модуль B1 параллелен вектору B0, но при этом модуль B1 меньше, чем модуль вектора B0.
  3. Ферромагнетики. К этому классу относят материалы, у которых μ намного больше единицы. Классическими представителями таких веществ являются: железо, никель, кобальт и их сплавы. Эти вещества намагничиваются вдоль поля. При этом B1 по модулю гораздо больше B0. Такие материалы сильно увеличивают магнитное поле.

В однородном МП на тело, обладающее магнитным моментом, действует только момент сил, который стремится развернуть диполь вдоль направления силовых линий. В неоднородном поле на диполь будет дополнительно действовать сила, пропорциональная величине дипольного момента и градиента поля: F = P (dB/dn) * cosj.

Если момент ориентирован вдоль линий, то на него действует сила притяжения. В ином случае он отталкивается, что и характерно для диамагнетиков.

Гипотеза Ампера

С её помощью можно объяснить, почему одни вещества проявляют парамагнитные или диамагнитные свойства, а другие усиливают МП. Ампер провёл ряд экспериментов, сравнивая конфигурацию поля, создаваемого полосовым магнитом и катушкой с током. Было определено, что для полосового магнита характерна ситуация, когда линии потока выходят из северного полюса и входят в южный. Катушка же создаёт поле, похожее на конфигурацию МП постоянного полосового магнита.

Это сходство позволило Амперу предположить, что магнитные свойства веществ обусловлены тем, что внутри их существует своя проводимость, которая может убывать или возрастать в зависимости от внешних воздействующих факторов. Так, Ампер утверждал, что магнитные свойства материала объясняются существованием в его объёме микроскопических замкнутых электрических токов. Впоследствии его догадка была подтверждена. Такие токи названы молекулярными.

Гипотеза Ампера

Другими словами, это электроны, движущиеся вокруг ядра в атоме. Для примера стоит рассмотреть гелий. В нём два электрона движутся по практически одинаковым орбитам, но только в противоположные стороны. Каждый из электронов несёт электрический заряд, создающий ток, следовательно, и поле. Если нарисовать их магнитные поля, то можно увидеть, что их направление будет противоположным: B1 + B2 = 0. Значит, атом гелия не создаёт вокруг себя МП. При помещении его во внешнее МП B0 к силе притяжения электрона прибавится сила Лоренца, направленная по радиусу от ядра.

Таким образом, сила притяжения к ядру ослабеет. Чтобы двигаться по той же самой орбите, электрону нужна меньшая скорость. Применительно ко второму электрону ситуация будет противоположной. Скорость электрона станет больше. В результате поле, создаваемое первым электроном, станет меньше, а вторым — больше. Следовательно, B1 + B2 ≠ 0. При этом гелий будет намагничиваться против внешнего поля, то есть является диамагнетиком.

Каждый атом обладает своим орбитальным полем.

Для парамагнетиков характерно то, что каждый атом обладает своим орбитальным полем. То есть атомы можно представить как витки с током. Если поля нет, направление электронов хаотичное. Причём их сумма будет равняться нулю. При помещении его во внешнее МП каждый свободный атом будет стремиться развернуться так, чтобы его нормаль была направлена по полю. Но при этом процессу мешает тепловое движение.

Поэтому полностью развернуться в сторону направления МП атомы не могут. При этом чем больше температура тела, тем меньше будет их разворот. Значит, магнитная проницаемость будет уменьшаться.

Свойство ферромагнетиков

С точки зрения физики наиболее интересным материалом является ферромагнетик. Существует устройство, представляющее собой кольцо из него. На прибор равномерно в один слой намотан провод, через который протекает электрический ток. В этом торе возникает электрическое поле, совпадающее по величине с вектором МП. В результате сердечник окажется намагниченным.

Если по оси ординат отложить магнитную индукцию тела, а по оси — абсцисс тока, то можно обнаружить следующие особенности:

  • в начальный момент времени график будет возрастать примерно под углом 30 градусов;
  • после достижения определённой величины (1 Тл) произойдёт резкое выравнивание графика относительно B0.

Свойство ферромагнетиков

Из этого можно сделать вывод, что ферромагнетик примерно в тысячу раз увеличивает магнитное поле. Выходит, что магнитная проницаемость зависит от намагничивающего поля. Если провести перпендикуляры с точки перехода графика на координатные прямые и нарисовать из неё диагональ к нулевой точке, то тангенс угла к B0 будет равняться проницаемости: μ = tg j. Оказывается, что при больших намагничивающих полях МП перестаёт расти, то есть существует магнитное насыщение.

Если взять феррит и намагнитить его, а поле размагнитить путём уменьшения поля, то линия размагничивания будет другой. При исчезновении внешнего поля ферромагнетик останется намагниченным.

Поэтому для его размагничивания нужно создать поле, направленное в противоположную сторону. Таким образом, чередование намагниченности и размагниченности приведёт график к виду гистерезиса.

На петеле можно выделить две точки:

  • Bo — остаточная магнитная индукция, возникающая после снятия электрического поля;
  • Bc — коэрцитивная сила, индукция противоположно направленного поля.

Ферромагнетики, которые обладают широким гистерезисом, называются жёсткими. К ним относится закалённая сталь, сплавы альнико и магнико, неодим. Но бывают и ферромагнетики, которые довольно легко перемагнитить. Их петля гистерезиса имеет узкий вид. Используют такие материалы в электродвигателях, трансформаторах. Их называют мягкими. Примеры — отожжённая сталь, пермаллой.

Магнитная проницаемость и магнитная восприимчивость вещества

При проведении опыта с соленоидом, соединенным с баллистическим гальванометром, во время включения тока в нем можно определить значение магнитного потока Φ , который будет пропорционален отбросу стрелки гальванометра. Если делать его дважды с одинаково установленным током I в гальванометре, то в первом опыте соленоид будет без сердечника, а во втором его введут перед включением тока.

Проведение второго опыта дает понять, что наличие магнитного потока значительно больше, чем в первом. Если повторить процесс, но с задействованием сердечника разной толщины, то получаем максимальный поток при полном заполнении соленоида железом, то есть при плотно навитой обмотке на сердечнике. Имеем, что:

где Φ является магнитным потоком в катушке с сердечником, Φ 0 - магнитным потоком без сердечника.

Увеличение магнитного потока при введении сердечника в соленоид обусловлено появлением магнитного потока, создаваемого совокупностью ориентированных амперовых молекулярных токов, и присоединение его к уже имеющемуся магнитному потоку от тока обмотки соленоида. Происходит ориентировка молекулярных токов под влиянием магнитного поля, их суммарный момент больше не равняется нулю, потому как происходит возникновение дополнительного магнитного поля.

Магнитная проницаемость. Измерения

Величина μ характеризует магнитные свойства среды и называется магнитной проницаемостью (относительной магнитной проницаемостью).

Она является безразмерной характеристикой вещества. Если происходит увеличение потока Φ в μ раз, это говорит о том, что магнитная индукция B → в сердечнике во столько же раз больше, чем в вакууме при том же токе в соленоиде. Запись примет вид:

B → = μ B 0 → , где B 0 → означает магнитную индукцию поля в вакууме.

Вместе с магнитной индукцией, являющейся основной силовой характеристикой поля, применяют вспомогательную векторную величину – напряженность магнитного поля H → , которая связана с B → при помощи соотношения:

Если формула B → = μ H → применится в опыте с сердечником, тогда при его отсутствии:

Значение μ = 1 . Если сердечник имеется, то

Равенство B → = μ B 0 → выполняется, поэтому

μ μ 0 H → = μ м 0 H 0 → → H → = H 0 → .

Отсюда следует, что напряженность магнитного поля не зависит от характера однородного вещества, которым было заполнено пространство. Большинство веществ имеет магнитную проницаемость, равную 1 . Исключениями считаются ферромагнетики.

Магнитная восприимчивость вещества

Обычно связь вектора намагниченности J → и вектора напряженности в каждой точке магнетика обозначается:

χ является магнитной восприимчивостью. Величина безразмерная. Если вещество неферромагтиное и обладает небольшим полем, то χ не зависит от напряженности, является скалярной величиной.

Анизотропные среды предполагают χ в качестве тензора, направления J → и H → не совпадают.

Связь между магнитной восприимчивостью и магнитной проницаемостью

Из определения вектора напряженности магнитного поля:

При подстановке выражения J → = χ H → в H → = B → μ 0 - J → получаем:

Напряженность приобретает вид:

H → = B → μ 0 1 + χ → B → = μ 0 ( 1 + χ ) H → .

При сравнении B → = μ μ 0 H → и H → = B → μ 0 1 + χ → B → = μ 0 ( 1 + χ ) H → :

Магнитная восприимчивость может принимать как положительные, так и отрицательные значения. Из μ = 1 + χ имеем, что μ может быть больше или меньше 1 .

Произвести вычисление намагниченности в центре кругового витка с радиусом R = 0 , 1 м и током I = 2 А при погружении в жидкий кислород. Значение магнитной восприимчивости жидкого кислорода χ = 3 , 4 · 10 - 3 .

Следует применить выражение, которое показывает связь напряженности магнитного поля и намагниченности, то есть:

Далее произведем поиск поля в центре витка с током, так как необходимо вычислить намагниченность в этой точке.

На проводнике с током необходимо выбрать элементарный участок, показанный на рисунке 1 , как основу для решения задания. Применим формулу напряженности элемента витка с током.

d H = 1 4 π I d l sin υ r 2 .

Где r → – является радиус-вектором, проведенным из элемента тока в рассматриваемую точку,
d l → – элемент проводника с током, υ – угол между d l → и r → .

Опираясь на рисунок 1 , υ = 90 ° , следует упрощение J → = χ H → . Так как расстояние от центра окружности элемента проводника с током постоянно и равняется радиусу витка R , получаем:

d H = 1 4 π I d l R 2 .

Направление результирующего вектора напряженности магнитного поля совпадает с осью Х . Его находят как сумму отдельных векторов d H → , потому что все элементы тока создают в центре витка магнитные поля, которые направлены вдоль нормали витка. Используя принцип суперпозиции, полная напряженность магнитного поля находится при переходе к интегралу вида:

Произведем подстановку d H = 1 4 π I d l R 2 в H = ∮ d H :

H = 1 4 π I R 2 ∮ d l = 1 4 π I R 2 2 πR = 1 2 I R .

Для нахождения намагниченности, следует подставить значение напряженности из H = 1 4 π I R 2 ∮ d l = 1 4 π I R 2 2 πR = 1 2 I R в J → = χ H → . тогда:

Вычисляем с числовыми выражениями:

J = 3 , 4 · 10 - 3 2 · 2 0 , 1 = 3 , 4 · 10 - 2 А м .

Ответ: J = 3 , 4 · 10 - 2 А м .

Произвести вычисление доли суммарного магнитного поля в вольфрамовом стержне, находящегося во внешнем однородном магнитном поле, которую определяют молекулярные токи. Значение магнитной проницаемости вольфрама равняется μ = 1 , 0176 .

Нахождение индукции магнитного поля B ' , приходящейся на долю молекулярных токов, представляется:

B ' = μ 0 J , где J – является намагниченностью. Ее связь с напряженностью выражается через соотношение:

Магнитная восприимчивость находится из

Магнитное поле молекулярных токов будет равно:

B ' = μ 0 ( μ - 1 ) H .

По формуле находим полное поле в стержне:

Задействовав выражения B ' = μ 0 ( μ - 1 ) H , B = μ μ 0 H , найдем соотношение:

Читайте также: