Механизм и закономерности кристаллизации металлов

Обновлено: 04.10.2024

При соответствующем понижении температуры в жидком металле начинают образовываться кристаллики – центры кристаллизацииилизародыши. Для начала их роста необходимо уменьшение свободной энергии металла, в противном случае зародыш растворяется.

Минимальный размер способного к росту зародыша называется критическим размером, а зародыш – устойчивым.

Переход из жидкого состояния в кристаллическое требует затраты энергии на образование поверхности раздела жидкость – кристалл. Процесс кристаллизации будет осуществляться, когда выигрыш от перехода в твердое состояние больше потери энергии на образование поверхности раздела. Зависимость энергии системы от размера зародыша твердой фазы представлена на рис. 3.3.

Зародыши с размерами равными и большими критического растут с уменьшением энергии и поэтому способны к существованию.

Рис.3.3. Зависимость энергии системы от размера зародыша твердой фазы

Механизм кристаллизации представлен на рис.3.4.

Рис.3.4. Модель процесса кристаллизации

Центры кристаллизации образуются в исходной фазе независимо друг от друга в случайных местах. Сначала кристаллы имеют правильную форму, но по мере столкновения и срастания с другими кристаллами форма нарушается. Рост продолжается в направлениях, где есть свободный доступ питающей среды. После окончания кристаллизации имеем поликристаллическое тело.

Качественная схема процесса кристаллизации может быть представлена количественно кинетической кривой (рис.3.5).

Рис. 3.5. Кинетическая кривая процесса кристаллизации

Процесс вначале ускоряется, пока столкновение кристаллов не начинает препятствовать их росту. Объем жидкой фазы, в которой образуются кристаллы уменьшается. После кристаллизации 50 % объема металла, скорость кристаллизации будет замедляться.

Таким образом, процесс кристаллизации состоит из образования центров кристаллизации и роста кристаллов из этих центров.

В свою очередь, число центров кристаллизации (ч.ц.) и скорость роста кристаллов (с.р.) зависят от степени переохлаждения (рис. 3.6).


Рис. 3.6. Зависимость числа центров кристаллизации (а) и скорости роста кристаллов (б) от степени переохлаждения

Размеры образовавшихся кристаллов зависят от соотношения числа образовавшихся центров кристаллизации и скорости роста кристаллов при температуре кристаллизации.

При равновесной температуре кристаллизации ТS число образовавшихся центров кристаллизации и скорость их роста равняются нулю, поэтому процесса кристаллизации не происходит.

Если жидкость переохладить до температуры, соответствующей т.а, то образуются крупные зерна (число образовавшихся центров небольшое, а скорость роста – большая).

При переохлаждении до температуры соответствующей т.в –мелкое зерно (образуется большое число центров кристаллизации, а скорость их роста небольшая).

Если металл очень сильно переохладить, то число центров и скорость роста кристаллов равны нулю, жидкость не кристаллизуется, образуется аморфное тело. Для металлов, обладающих малой склонностью к переохлаждению, экспериментально обнаруживаются только восходящие ветви кривых.

Механизм и закономерности кристаллизации металлов.

Процесс кристаллизации начинается, как впервые установил Д.К. Чернов, с образования зародышей (центров кристаллизации) и развивается в процессе роста их числа и размеров. Для начала их роста необходимо уменьшение свободной энергии металла, в противном случае зародыш растворяется.

Минимальный размер способного к росту зародыша называется критическим размером , а зародыш – устойчивым. Переход из жидкого состояния в кристаллическое требует затраты энергии на образование поверхности раздела жидкость – кристалл. Процесс кристаллизации будет осуществляться, когда выигрыш от перехода в твердое состояние больше потери энергии на образование поверхности раздела. Зависимость энергии системы от размера зародыша твердой фазы представлена на рис.

Зависимость энергии системы от размера зародыша твердой фазы Механизм кристаллизации представлен на рис.

Центры кристаллизации образуются в исходной фазе независимо друг от друга в случайных местах. Сначала кристаллы имеют правильную форму, но по мере столкновения и срастания с другими кристаллами форма нарушается. Рост продолжается в направлениях, где есть свободный доступ питающей среды. После окончания кристаллизации имеем поликристаллическое тело.Процесс вначале ускоряется, пока столкновение кристаллов не начинает препятствовать их

росту. Объем жидкой фазы, в которой образуются кристаллы уменьшается. После кристаллизации 50 % объема металла, скорость кристаллизации будет замедляться.Таким образом, процесс кристаллизации состоит из образования центров кристаллизации и роста кристаллов из этих центров. В свою очередь, число центров кристаллизации (ч.ц.) и скорость роста кристаллов (с.р.) зависят от степени переохлаждения.

ч.з. (n) – число центров кристаллизации, возникающих в единицу времени вединице объема; с.р. (с) – линейная скорость роста, т.е. увеличение линейных размеров его вединицу времени.

Зависимость числа центров кристаллизации (а) и скорости роста кристаллов (б) от степени переохлаждения.

Размеры образовавшихся кристаллов зависят от соотношения числа образовавшихся центров кристаллизации и скорости роста кристаллов при температуре кристаллизации. При равновесной температуре кристаллизации Тs число образовавшихся центров кристаллизации и скорость их роста равняются нулю, поэтому процесса кристаллизации не происходит.

Если жидкость переохладить до температуры, соответствующей точке (а), то образуются крупные зерна (число образовавшихся центров небольшое, а скорость роста – большая).При переохлаждении до температуры соответствующей точке (б) – мелкое зерно (образуется большое число центров кристаллизации, а скорость их роста небольшая).Если металл очень сильно переохладить, то число центров и скорость роста кристаллов равны нулю, жидкость не кристаллизуется, образуется аморфное тело. Для металлов, обладающих малой склонностью к переохлаждению, экспериментально обнаруживаются только восходящие ветви кривых.

Условия получения мелкозернистой структуры.

Оптимальными условиями для этого являются: максимальное число центров кристаллизации и малая скорость роста кристаллов. Размер зерен при кристаллизации зависит и от числа частичек нерастворимых примесей, которые играют роль готовых центров кристаллизации – оксиды, нитриды, сульфиды. Чем больше частичек, тем мельче зерна закристаллизовавшегося металла.Стенки изложниц имеют неровности, шероховатости, которые увеличивают скорость кристаллизации.Мелкозернистую структуру можно получить в результате

модифицирования, когда в жидкие металлы добавляются посторонние вещества – модификаторы По механизму воздействия различают:

1. Вещества не растворяющиеся в жидком металле – выступают в качестве дополнительных центров кристаллизации.

2. Поверхностно - активные вещества, которые растворяются в металле, и, осаждаясь

на поверхности растущих кристаллов, препятствуют их росту.

Строение металлического слитка. Схема стального слитка, данная Черновым Д.К.

Кристаллизация корковой зоны идет в условиях максимального переохлаждения.

Скорость кристаллизации определяется большим числом центров кристаллизации. Образуется мелкозернистая структура. Жидкий металл под корковой зоной находится в условиях меньшего переохлаждения. Число центров ограничено и процесс кристаллизации реализуется за счет их интенсивного роста до большого размера.Рост кристаллов во второй зоне имеет направленный характер. Они растут перпендикулярно стенкам изложницы, образуются древовидные кристаллы – дендриты . Растут дендриты с направлением, близким к направлению теплоотвода.

Так как теплоотвод от незакристаллизовавшегося металла в середине слитка в разные стороны выравнивается, то в центральной зоне образуются крупные дендриты со случайной ориентацией.

Зоны столбчатых кристаллов в процессе кристаллизации стыкуются, это явление называется транскристаллизацией.

Для малопластичных металлов и для сталей это явление нежелательное, так как при последующей прокатке, ковке могут образовываться трещины в зоне стыка. В верхней части слитка образуется усадочная раковина, которая подлежит отрезке и переплавке, так как металл более рыхлый (около 15…20 % от длины слитка)

Методы исследования металлов: структурные и физические Металлы и сплавы обладают разнообразными свойствами. Используя один метод

исследования металлов, невозможно получить информацию о всех свойствах. Используют несколько методов анализа.

Типоморфизм минералов, генетическая обусловленность характерных свойств и признаков минералов. Типоморфные свойства и признаки минералов непосредственно характеризуют условия их образования (могут служить геотермометрами и геобарометрами) и особенности минералообразующей среды (вариации щёлочности — кислотности этой среды, парциального давления газов, состава растворов или расплавов и др.). К типоморфным свойствам относят: морфологические особенности выделений минералов (габитус кристаллов, двойники, характер агрегатов и др.); вариации химического состава минерала и содержания в нём изоморфных элементов примесей, а также изотопного состава слагающих его элементов (особенно важны Pb, S, О, С и др.); некоторые физические свойства (плотность, микротвёрдость, отражательная способность, люминесценция, электрические, магнитные и др.); структурные особенности (степень упорядоченности структур минералов, различие в структурах политипов и т. д.).

Наибольший интерес представляют исследования Т. м., образующихся в широком диапазоне температур и давлений и присутствующих в разных стадиях формирования месторождений. Т. м. используют для решения многих практических задач (при оценке степени рудоносности горных пород, поисках рудных месторождений некоторых типов, определении промышленного значения рудопроявлений, при поиске скрытых рудных тел и т. д.). Понятие о Т. м. в современном его значении введено в минералогию А. Е. Ферсманом в 1931.

КСЕНОМОРФИЗМ, фомирование кристалла минерала в ограниченном пространстве, где не могут образоваться грани кристалла. Это происходит в минералах позднего образования, содержащихся В МАГМАТИЧЕСКИХ ПОРОДАХ.

Образование магматических пород происходит в процессе затвердевания магмы.

Установлено, что при кристаллизации расплавов наблюдаются два случая взаимоотношения минералов и магмы: 1) выделившийся минерал с самого начала и до конца кристаллизации остается неизменным, идет лишь непрерывный рост кристаллов или увеличение их числа. Кристаллизация таких минералов происходит по принципу эвтектики; 2) выделившийся минерал в дальнейшем становится неустойчивым, реагирует с расплавом и изменяет свой состав. Кристаллизация таких минералов либо сопровождается образованием непрерывной серии твердых растворов – происходит непрерывная реакция между кристаллом и расплавом, либо вследствие реакции выделившегося минерала с расплавом возникает новое соединение (новый минерал). Рассмотрим главные типы кристаллизации на примере двухкомпонентных (бинарных) систем. Для построения таких диаграмм кристаллизации на оси абсцисс откладываются составы, а на оси ординат температура. Кривая на диаграмме, отражающая начало кристаллизации и отвечающая составу расплавов, называется ликвидус (жидкий); кривая, обозначающая конец кристаллизации и определяющая состав минералов, называется солидус (твердый). Линии ликвидуса и солидуса делят плоскость диаграммы на отдельные поля, в пределах которых устойчивы определенные фазы (расплав, кристаллы). Положение любой точки в пределах диаграммы определяется составом и температурой и отражает состояние системы – ее фазы и их относительные количества.

Реакционный ряд Н. Л. Боуэна

Существуют соединения, которые при определенных температурах реагируют с расплавом и образуют кристаллы нового состава. Этот вид кристаллизации очень распространен в ряду фемических минералов. Таким способом появляется клиноэнстатит (Mg2Si2O6) в системе форстерит (Mg2SiO4) – кремнезем (SiO2). Кристаллизация расплава начинается с форстерита, который устойчив лишь до определенной температуры, а затем он реагирует с расплавом с образованием кристаллов клиноэнстатита. Кристаллизация природных расплавов происходит в присутствии летучих компонентов при более низких температурах, поэтому вместо клиноэнстатита образуется более низкотемпературный ромбический пироксен. В магматических породах часто встречаются реакционные каемки ромбического пироксена вокруг зерен оливина. Это свидетельствует о незавершенной реакции преобразования оливина в ромбический пироксен. Иногда наблюдаются каемки моноклинного пироксена вокруг ромбического, каймы амфибола на клинопироксене и биотита на амфиболе, то есть каждый последующий минерал может кристаллизоваться вследствие реакции расплава с ранее выделившимся минералом. Изучение реакционных структур реальных горных пород, а также данные экспериментальных исследований кристаллизации силикатных систем позволили Н. Л. Боуэну (1928) представить последовательность выделения главных породообразующих минералов из магмы в виде двух реакционных рядов: прерывного ряда фемических минералов и непрерывного ряда салических минералов (рис. 3). В каждом из рядов вышестоящий минерал, реагируя с расплавом, дает нижестоящий минерал. Каждому члену первого ряда соответствует


Закономерности кристаллизации металлов

Любое вещество может находиться в трех агрегатных состояниях: твердом, жидком, газообразном.

Изменение свободной энергии в зависимости от температуры

Кристаллизация – это процесс образования участков кристаллической решетки в жидкой фазе и рост кристаллов из образовавшихся центров. Кристаллизация протекает в условиях, когда система переходит к термодинамически более устойчивому состоянию с минимумом свободной энергии. При соответствующем понижении температуры в жидком металле начинают образовываться кристаллики – центры кристаллизации или зародыши. Для начала их роста необходимо уменьшение свободной энергии металла, в противном случае зародыш растворяется. Минимальный размер способного к росту зародыша называется критическим размером, а зародыш – устойчивым. Переход из жидкого состояния в кристаллическое требует затраты энергии на образование поверхности раздела жидкость – кристалл. Процесс кристаллизации будет осуществляться, когда выигрыш от перехода в твердое состояние больше потери энергии на образование поверхности раздела. Зародыши с размерами равными и большими критического растут с уменьшением энергии и поэтому способны к существованию.

Свободная энергия – составляющая полной энергии, которая обратимо меняется с изменением температуры.

Зависимость энергии системы от размера зародыша твердой фазы

Рост продолжается в направлениях, где есть свободный доступ питающей среды. После окончания кристаллизации имеем поликристаллическое тело.

Размер зерен при кристаллизации зависит от числа частичек нерастворимых примесей, которые играют роль готовых центров кристаллизации- оксиды, нитриды, сульфиды. Чем больше частичек, тем мельче зерна закристаллизовавшегося вещества.

Мелкозернистую структуру можно получить в результате модифицирования, добавлением в жидкие металлы посторонних веществ-модификаторов. По механизму воздействия модификаторов различают:

А)вещества, не растворяющихся в жидком металле-выступают в качестве дополнительных центров кристализации;

Б)поверхностно-активные вещества, которые растворяются в металле, и, осаждаюсь на поверхности растущих кристаллов, препятствуют их росту

7. Строение металлического сплава зависит от того, в какие взаимодействия вступают компоненты, составляющие сплав. Почти все металлы в жидком состоянии растворяются друг в друге в любых соотношениях.

В зависимости от характера взаимодействия компонентов различают сплавы:

1. механические смеси;

2. химические соединения;

3. твердые растворы.

Сплавы механические смеси образуются, когда компоненты не способны к взаимному растворению в твердом состоянии и не вступают в химическую реакцию с образованием соединения.

Сплавы химические соединения образуются между элементами, значительно различающимися по строению и свойствам, если сила взаимодействия между разнородными атомами больше, чем между однородными.

Кристаллическая решетка химического соединения

Сплавы твердые растворы – это твердые фазы, в которых соотношения между компонентов могут изменяться. Являются кристаллическими веществами. Характерной особенностью твердых растворов является: наличие в их кристаллической решетке разнородных атомов, при сохранении типа решетки растворителя. Твердый раствор состоит из однородных зерен

Схема микроструктуры твердого раствора

По характеру распределения атомов растворенного вещества в кристаллической решетке растворителя различают твердые растворы:

Рис.4.4. Кристаллическая решетка твердых растворов замещения (а), внедрения (б)

Внедрение – размещение атомов раствор вещ-ва в своб промежутках растворителя.

Строение – зона столб кристаллов, зона равноосн крист.

Система – группа тел, выбираемых для изучения или исследования.

Компонент – вещ-ва, необходимые и достаточные для образования системы.

Фаза – однородная часть системы, отделенная от неё другой частью системы, пов-тью раздела, при переходе ч-з которую хим состав или структура изменяются скачком.

8.Диаграмма состояния и её построение Правило фаз

Фаза – однородная часть системы, отделенная от других частей системы поверхностного раздела, при переходе через которую структура и свойства резко меняются. Если вариантность C = 1 (моновариантная система), то возможно изменение одного из факторов в некоторых пределах, без изменения числа фаз. Если вариантность C = 0 (нонвариантная система), то внешние факторы изменять нельзя без изменения числа фаз в системе. Существует математическая связь между числом компонентов (К), числом фаз (Ф) и вариантностью системы ( С ). Это правило фаз или закон Гиббса

Если принять, что все превращения происходят при постоянном давлении, то число переменных уменьшится

Диаграмма состояния представляет собой графическое изображение состояния любого сплава изучаемой системы в зависимости от концентрации и температуры

.

Диаграммы состояния показывают устойчивые состояния, т.е. состояния, которые при данных условиях обладают минимумом свободной энергии, и поэтому ее также называют диаграммой равновесия, так как она показывает, какие при данных условиях существуют равновесные фазы.

Температуры, соответствующие фазовым превращениям, называют критическими точками. Некоторые критические точки имеют названия, например, точки отвечающие началу кристаллизации называют точками ликвидус, а концу кристаллизации – точками солидус. По диаграмме состояния можно определить температуры фазовых превращений, изменение фазового состава, приблизительно, свойства сплава, виды обработки, которые можно применять для сплава.

Читайте также: