Местоположение металлов в периодической системе

Обновлено: 18.05.2024

Металлы - элементы, способные «отдавать» электроны с внешних энергетических уровней, вступая в реакцию. Эта очень обширная категория элементов. И согласно расположению в периодической системе и химико-физическим свойствам их принято делить на: щелочные, щелочноземельные, d-металлы и благородные.

План урока:

Строение атомов металлов

Решетки атомов металлов кристаллические, связанные металлической связью. Отличие металлической связи от ковалентной в том, что валентные электроны в атомах металлов притягиваются с меньшей силой к своим атомам или к своей паре атомов, и поэтому отщепление электронов от атомов происходит свободнее. И движения электронов напоминает «блуждание» между атомами.

Атомы металлов на внешнем уровне содержат от одного до четырех электронов. Этими электронами атомы металлов «делятся» с другими элементами (преимущественно с неметаллами) при взаимодействии, принимая роль восстановителей.

Рисунок строение атома кальция, для примера строения атома металла

Разновидности металлов

Щелочные металлы

Щелочные металлы представлены: литием, натрием, калием, рубидием, цезием и францием. Все эти элементы входят в Ia группу.

Вещества характеризуются прежде всего большой активностью, потому как быстро окисляются даже на воздухе. С водой происходит активная реакция, сопровождаемая нагреванием веществ. Поэтому есть свои особенности хранения этих веществ. Хранят обычно под керосином.

По физическим свойствам данный класс веществ мягкие на ощупь, серебристо-серого цвета, могут обладать блеском, но только на свежо срезанной поверхности.

Сверху вниз в периодической таблице увеличивается атомный радиус, усиливаются основные, металлические, восстановительные свойства и реакционная активность.

Рисунок. Щелочные металлы в периодической системе

Строение атома лития, как типичного представителя щелочных металлов

Химические свойства щелочных металлов

Взаимодействие с неметаллами

Щелочные металлы — сильные восстановители. Поэтому они реагируют почти со всеми неметаллами.

Взаимодействие со сложными веществами

Таблица нахождения щелочных металлов в природе

Щелочноземельные металлы

К этой категории относят: бериллий, магний, кальций, стронций, барий и радий. Это металлы IIa группы. Металлы легкие, мягкие и реакционно активные. Они тверже щелочных, и редко обладают блеском, только серый цвет объединяет их с щелочными металлами.

Свойства веществ данной группы в зависимости от положения в периодическую систему сходны со свойствами предыдущей группы.

Рисунок. Щелочноземельные металлы в периодической системе

Получают их так же, как и щелочные металлы, электролизом расплавов, веществ, расплавленных до жидкого состояния. Или используя алюминотермию и вытеснение их из солей другими более активными металлами.

MgCl2 → Mg + Cl2 (электролиз расплава)

CaO + Al → Al2O3 + Ca (эта реакция носит название алюминотермии–процесс получения металлов из их оксидов, где алюминий вытесняет щелочные металлы из соединений).

Химические свойства

Таблица нахождения щелочноземельных металлов в природе

d- металлы

Помимо щелочных и щёлочноземельных существуют d-металлы. Класс элементов, содержащих от 1 до 10 электронов на d-подуровне, уступающие щелочным и щёлочноземельным металлам в активности.

К d-металлам относят: скандий, титан, ванадий, хром, марганец, железо, кобальт, никель, медь, цинк и т.д.Отличий этих металлов в строении атома, а точнее в заполнении d-подуровня.

Железо

Железо находится в 4-м периоде, в VIII группе, в побочной подгруппе. Железо — металл средней активности, по ряду активности металлов в своих соединениях проявляет наиболее характерные степени окисления +2 и +3. Известны также соединения железа, в которых оно проявляет степень окисления +6, которые являются сильными окислителями..

Медь находится в 4-м периоде, в I группе, в побочной подгруппе. Ее наиболее устойчивые степени окисления +2 и +1. В ряду напряжений металлов медь находится после водорода, ее химическая активность не очень велика.

Цинк находится в 4-м периоде, во II-группе, в побочной подгруппе. Цинк относится к металлам средней активности, в своих соединениях проявляет единственную степень окисления +2.

В каждом большом периоде d-элементы располагаются после двух s-элементов, которые являются щелочным и щелочноземельным металлами.

По своей значимости особо можно выделить роль этих элементов в организме человека. Микроэлементы цинка, марганца, железа, кобальта и меди очень важны для организма, наряду с биологически активными веществами, жирами, белками.

Цветной и черный металлы

Отличие цветного и черного металлов состоит в составе, структуре и свойствах. Например, черный металл подвергается влиянию магнитов, и зачастую прочнее цветных.

Черный металл — это прежде всего железо, его сплав с углеродом и добавлением иных веществ (как металлов, так и неметаллов).

Типы черных металлов

  • Углеродистая сталь - железо смешано с углеродом
  • Мягкая сталь - железо смешивается с относительно меньшим количеством углерода
  • Нержавеющая сталь - смесь железа и хрома
  • Чугун - очень высокое содержание углерода с железом
  • Кованое железо - почти чистое железо

Цветные металлы — это тоже сплавы, но уже без железа, это могут быть: алюминий, магний, медь, никель, цинк, олово, свинец.

Данные подразделения металлов очень важны в жизни человечества. Но основная металлургическая промышленность использует черный металл (90% от общего объема). Важнейшие черные металлы: чугун, сталь, кованное железо.

Благодаря свойству цветного металла сопротивляться окислению, мы легко можем отличить его от черного. Черный металл ржавеет, цветной – нет. Большинству черных металлов присущи магнитные свойства. Что используют в автомобильной и технической промышленности. Черные металлы очень прочные, а цветные легкие, но менее прочные. Цветные металлы очень популярны в авиационной, консервной, электронной, электротехнической, строительной промышленностях

Благородными металлами называют те редкие металлы, не подвергающиеся окислению, коррозии и не взаимодействующие с кислотами.Также эти металлы называют драгоценными в силу редкости и большой цены.

Способы получения металлов

Основные способы получения металлов представлены в схеме ниже. Промышленным способом металлы получают электролизом растворов и расплавов.

Более подробное рассмотрение пирометаллургических способов получения металлов

Более подробное рассмотрение гидрометаллургических способов получения металлов

Электролиз

Электролизом называют процесс разложения веществ на составляющие, под действием тока. Его можно рассмотреть, как химическую реакцию.

На катоде реакции происходят различные для разных металлов. И для того, чтобы определить какая именно реакция произойдет необходимо обратиться к такому фактору, как активность металла. Эти данные мы получим из положения в электрохимическом ряду напряжений металла.

Как видно из электрохимического ряда напряжений металлов наиболее активным металлом является литий. Металлами средней активности считают элементы в ряду от алюминия до свинца. После водорода металлы малоактивные.

Электролиз расплавов

Из выше указанного стало ясно как получать малоактивные металлы в чистом виде при электролизе, а как получать активные металлы, если они не восстанавливаются на катоде при электролизе их растворов?В таких случая используют расплавы не содержащие воды.

Электролиз воды

Электролиз воды, как и в целом электролиз, это физико-химический процесс, осуществляемый с помощью электрического тока. Этот процесс позволяет очистить воду от тяжелых металлов и других примесей (примеси и металлы оседают на катоде и аноде). В результате данного процесса выделяется два газа: водород и кислород.

Электролиз воды необходим для очистки сточных вод. Сточные воды попадают в землю, в почву, и для предотвращения загрязнения окружающей среды, необходимо очищение воды.

Местоположение металлов в периодической системе


В процессе изучения химии вы уже ознакомились со многоми неметаллическими элементами и их соединениями. Наиболее известные вам неметаллы – водород, кислород и их уникальное соединение – вода. В 8 классе на примере VII группы главной подгруппы вы познакомились с семейством неметаллов – галогенами, с их свойствами. В новой теме вы получите целостные представления об элементах-неметаллах. Учитывая, что вы имеете некоторый запас знаний о них, умеете использовать ПСХЭ, мы сначала ознакомимся с общими свойствами групп неметаллов, затем и с их конкретными представителями. Такой подход в изучении предмета называется дедуктивным.

I. Положение элементов-неметаллов в ПСХЭ


Неметаллы расположены в правом верхнем углу ПСХЭ (вдоль и над диагональю B-At). Всего 22 элемента-неметалла в Периодической системе. Элементы-неметаллы располагаются только в главных подгруппах ПС.

II. Строение атомов неметаллов


Для атомов-неметаллов характерно:

Небольшой атомный радиус (в сравнении с радиусами атомов-металлов одного с ними периода).

Большее число электронов на внешнем уровне (4-8), исключения Н, Не, В.

Происходит заполнение электронами только внешнего энергетического уровня.

Для элементов-неметаллов характерны высокие значения электроотрицательности.

III. Общие свойства элементов-неметаллов по их положению в ПСХЭ







Своеобразной мерой неметалличности элементов является электроотрицательность (вспомнить понятия электроотрицательности, ряд электроотрицательности). Чем больше ЭО элемента, тем сильней его способность к оттягиванию общих электронных пар, а значит тем сильнее неметаллические, т.е. окислительные способности. Чем ближе в ПС элемент располагается к фтору, тем сильнее проявляются у него окислительные свойства.

III. Неметаллы в природе


Атомы неметаллических элементов составляют подавляющее большинство соединений во Вселенной и верхних слоях Земли. Они более распространены в природе, чем металлы. Некоторые неметаллические элементы встречаются в природе в виде простых веществ: месторождения самородной серы в Прикарпатье; Завальевское месторождение графита; существуют залежи пород, содержащих алмазы. В состав воздуха входят: азот, кислород, инертные газы. Распространенным элементом в космосе является водород. Гораздо больше атомов неметаллических элементов образуют различные сложные вещества. Так, значительную часть литосферы составляет кремнезем SiO2, гидросферы — вода.

Кислород один из самых распространенных элементов на Земле. В земной коре в составе соединений 49% по массе. Он входит в состав воды, горных пород, минералов, солей. Есть обязательной составной частью растительных, животных организмов: входит в состав белков, жиров, углеводов. В воздухе свободного кислорода 21% по объему.

Сера широко распространен в природе как в свободном виде (с примесями горных пород), так и в соединениях с различными металлами (сульфиды), а также в виде солей. Сульфиды: железный колчедан или пирит FeS2, цинковая обманка ZnS, медный блеск CuS, киноварь HgS. Сульфаты: гипс CaSO4 • 2H2O, глауберовая соль Na2SO4 • 10H2O, горькая соль MgSO4 • 7H2O. Содержится в живых организмах, входит в состав белка, в состав органических соединений в нефти.

Элемент Карбон (углерод) входит в состав нефти, газа, угля, сланцев, органических соединений, углекислого и угарного газов. Важный элемент живой природы — входит в состав белков, жиров, углеводов, витаминов, ферментов, гормонов. В виде простых веществ графита и алмаза; сложных веществ: CaCO3 — мел, известняк, мрамор, CaCO3 • MgCO3 — доломит, MgCO3 — магнезит.

Чистый кремний в природе не существует, его добывают химическим способом. По распространенности занимает второе место после кислорода. Оболочка Земли на 97% состоит из соединений кремния. Встречается в виде: SiO2 — песок, кварц, кремнезем; минералов — слюда, асбест, тальк, нефелин, полевой шпат. В стеблях растений (хвощ, бамбук), в теле птиц и животных — перья, глаз, скелет, тело губок.

Фосфор в природе существует только в соединениях в виде фосфатов. Главные минералы в состав которых входит Фосфор — Ca3(PO4)2 — апатиты и фосфориты (0,08%). Элемент Фосфор входит в состав костной, мышечной, нервной тканей человека и животных, многие его в клетках мозга.

IV. Аллотропия неметаллов

Среди неметаллов распространено явление аллотропии. Один элемент может образовывать несколько простых веществ.

Разные типы кристаллических решеток (белый фосфор Р4 – молекулярная, красный фосфор Р – атомная).

Разная структура кристаллической решетки (алмаз – тетраэдрическая, графит – слоистая).

Разный состав молекул аллотропных модификаций (О2 и О3).

2NaCl – расплав, электр. ток. → 2 Na + Cl2

CaCl2 – расплав, электр. ток. → Ca + Cl2

4NaOH – расплав, электр. ток. → 4Na + O2↑ + 2H2O

2. Восстановление металлов средней активности и неактивных металлов электролизом из растворов их солей.

  • Олово образуется при электролизе раствора хлорида олова(II): Sn +2 Cl2 −1 → (электролиз) Sn 0 +Cl 0 2
  • Алюминий в промышленности получают в результате электролиза расплава оксида алюминия в криолите Na3AlF6 (из бокситов): 2Al2O3 – расплав в криолите, электр. ток. → 4Al + 3O2
  • Электролиз водных растворов солей используют для получения металлов средней активности и неактивных:2CuSO4+2H2O – раствор, электр. ток. → 2Cu + O2 + 2H2SO4

​Электролиз используют для очистки металлов (электролитическое рафинирование).


Для рафинирования (очистки) металла электролизом из него отливают пластины и помещают их в качестве анодов 1 в электролизер 3. При пропускании тока металл, подлежащий очистке 1, подвергается анодному растворению, то есть переходит в раствор в виде катионов. Затем эти катионы металла разряжаются на катоде 2, благодаря чему образуется компактный осадок уже чистого металла. Примеси, находящиеся в аноде, либо остаются нерастворимыми 4, либо переходят в электролит и удаляются.

Большинство металлов переводят в слитки при помощи литья: расплавленный металл заливают в форму, где он и застывает. Однако наиболее тугоплавкие металлы, например, вольфрам, из которого делают нити накаливания элепктроламп, расплавить в печи необычайно трудно. Для получения их слитков применяют порошковую металлургию – особый метод, позволяющий избежать литья. Он основан на спекании предварительно спрессованного порошка металла при температуре выше 1000°C в атмосфере водорода. Затем через брусок из металла пропускают электрический ток, за счет чего он разогревается до температуры плавления, и при этом отдельные его зерна свариваются друг с другом. Полученное изделие подвергают горячей ковке и прокатке.

V. Нахождение металлов в природе

Самый распространённый в земной коре металл – алюминий. Металлы встречаются как в соединениях, так и в свободном виде.

1. Активные – в виде солей (сульфаты, нитраты, хлориды, карбонаты)

2. Средней активности – в виде оксидов, сульфидов (Fe3O4, FeS2)

3. Благородные – в свободном виде (Au, Pt, Ag)

В сво­бод­ном со­сто­я­нии при­сут­ству­ют в при­ро­де ме­тал­лы, ко­то­рые либо плохо окис­ля­ют­ся кис­ло­ро­дом, либо со­всем не окис­ля­ют­ся. На­при­мер, пла­ти­на, зо­ло­то, се­реб­ро. Реже – медь, ртуть и неко­то­рые дру­гие. Са­мо­род­ные ме­тал­лы встре­ча­ют­ся в при­ро­де в неболь­ших ко­ли­че­ствах в виде зерен или вкрап­ле­ний в раз­лич­ных ми­не­ра­лах. Лишь из­ред­ка они об­ра­зу­ют боль­шие куски – са­мо­род­ки. Самый боль­шой са­мо­ро­док зо­ло­та весил 112 кг. Ино­гда ме­тал­лы прак­ти­че­ски в чи­стом виде со­дер­жат­ся в ме­тео­ри­тах. Так, неко­то­рые пред­ме­ты из вы­со­ко­чи­сто­го же­ле­за, най­ден­ные ар­хео­ло­га­ми, объ­яс­ня­ют­ся имен­но тем, что они были из­го­тов­ле­ны из ме­тео­рит­но­го же­ле­за. Но чаще всего ме­тал­лы су­ще­ству­ют в при­ро­де в свя­зан­ном со­сто­я­нии в со­ста­ве ми­не­ра­лов.

Ми­не­рал это хи­ми­че­ски и фи­зи­че­ски ин­ди­ви­ду­а­ли­зи­ро­ван­ный про­дукт при­род­ной фи­зи­ко-хи­ми­че­ской ре­ак­ции, на­хо­дя­щий­ся в кри­стал­ли­че­ском со­сто­я­нии.

Очень часто это ок­си­ды. На­при­мер, оксид же­ле­за (III) Fe2O3 – ге­ма­тит, или крас­ный же­лез­няк. Рис. 1.

Fe3O4 – маг­не­тит, или маг­нит­ный же­лез­няк. Неред­ко ми­не­ра­ла­ми яв­ля­ют­ся суль­фид­ные со­еди­не­ния: га­ле­нит ZnS, ки­но­варь HgS.

Ак­тив­ные ме­тал­лы часто при­сут­ству­ют в при­ро­де в виде солей (суль­фа­ты, нит­ра­ты, хло­ри­ды, кар­бо­на­ты).

Ми­не­ра­лы вхо­дят в со­став гор­ных пород и руд. Ру­да­ми на­зы­ва­ют­ся при­род­ные об­ра­зо­ва­ния, со­дер­жа­щие ми­не­ра­лы в таком ко­ли­че­стве, чтоб из этих руд было вы­год­но по­лу­чать ме­тал­лы. Обыч­но перед по­лу­че­ни­ем ме­тал­ла из руды руду обо­га­ща­ют, уда­ляя пу­стую по­ро­ду и раз­лич­ные при­ме­си. При этом об­ра­зу­ет­ся кон­цен­трат, ко­то­рый и яв­ля­ет­ся ис­ход­ным сы­рьем для ме­тал­лур­ги­че­ской про­мыш­лен­но­сти.

VI. Химические свойства металлов

Общие химические свойства металлов представлены в таблице:


Важно за­пом­нить, что в хи­ми­че­ских ре­ак­ци­ях ме­тал­лы вы­сту­па­ют в ка­че­стве вос­ста­но­ви­те­лей: от­да­ют элек­тро­ны и по­вы­ша­ют свою сте­пень окис­ле­ния. Рас­смот­рим неко­то­рые ре­ак­ции, в ко­то­рых участ­ву­ют ме­тал­лы.

1. Взаимодействие с кислородом

Мно­гие ме­тал­лы могут всту­пать в ре­ак­цию с кис­ло­ро­дом. Обыч­но про­дук­та­ми этих ре­ак­ций яв­ля­ют­ся ок­си­ды, но есть и ис­клю­че­ния, о ко­то­рых вы узна­е­те на сле­ду­ю­щем уроке. Рас­смот­рим вза­и­мо­дей­ствие маг­ния с кис­ло­ро­дом.

Маг­ний горит в кис­ло­ро­де, при этом об­ра­зу­ет­ся оксид маг­ния:

2Mg 0 + O2 0 = 2Mg +2 O -2

Рис. 1. Го­ре­ние маг­ния в кис­ло­ро­де

Атомы маг­ния от­да­ют свои внеш­ние элек­тро­ны ато­мам кис­ло­ро­да: два атома маг­ния от­да­ют по два элек­тро­на двум ато­мам кис­ло­ро­да. При этом маг­ний вы­сту­па­ет в роли вос­ста­но­ви­те­ля, а кис­ло­род – в роли окис­ли­те­ля.

Обратите внимание. Серебро, золото и платина с кислородом не реагируют.

2. Взаимодействие с галогенами, образуются галогениды

Для ме­тал­лов ха­рак­тер­на ре­ак­ция с га­ло­ге­на­ми. Про­дук­том такой ре­ак­ции яв­ля­ет­ся га­ло­ге­нид ме­тал­ла, на­при­мер, хло­рид.

Рис. 2. Го­ре­ние калия в хлоре

Калий сго­ра­ет в хлоре об­ра­зо­ва­ни­ем хло­ри­да калия:

2К 0 + Cl2 0 = 2K +1 Cl -1

Два атома калия от­да­ют мо­ле­ку­ле хлора по од­но­му элек­тро­ну. Калий, по­вы­шая сте­пень окис­ле­ния, иг­ра­ет роль вос­ста­но­ви­те­ля, а хлор, по­ни­жая сте­пень окис­ле­ния,- роль окис­ли­те­ля

3. Взаимодействие с серой

Мно­гие ме­тал­лы ре­а­ги­ру­ют с серой с об­ра­зо­ва­ни­ем суль­фи­дов. В этих ре­ак­ци­ях ме­тал­лы также вы­сту­па­ют в роли вос­ста­но­ви­те­лей, тогда как сера будет окис­ли­те­лем. Сера в суль­фи­дах на­хо­дит­ся в сте­пе­ни окис­ле­ния -2, т.е. она по­ни­жа­ет свою сте­пень окис­ле­ния с 0 до -2. На­при­мер, же­ле­зо при на­гре­ва­нии ре­а­ги­ру­ет с серой с об­ра­зо­ва­ни­ем суль­фи­да же­ле­за (II):

Fe 0 + S 0 = Fe +2 S -2

Рис. 3. Вза­и­мо­дей­ствие же­ле­за с серой

Ме­тал­лы также могут ре­а­ги­ро­вать с во­до­ро­дом, азо­том и дру­ги­ми неме­тал­ла­ми при опре­де­лен­ных усло­ви­ях.

4. Взаимодействие с водой

Металлы по - разному реагируют с водой:

Помните.

Алюминий реагирует с водой подобно активным металлам, образуя основание:

Раскалённое железо реагирует с водяным паром, образуя смешанный оксид — железную окалину Fe3O4 и водород: 3Fe 0 +4H +1 2O −2 → Fe +2 O −2 ⋅Fe +3 2O −2 3 + 4H 0 2

5. Взаимодействие с кислотами

Металлы особо реагируют с серной концентрированной и азотной кислотами:

1. Общая характеристика элементов металлов

Из \(118\) известных на данный момент химических элементов \(96\) образуют простые вещества с металлическими свойствами, поэтому их называют металлическими элементами .

Металлические химические элементы в природе могут встречаться как в виде простых веществ, так и в виде соединений. То, в каком виде встречаются металлические элементы в природе, зависит от химической активности образуемых ими металлов.

Металлические элементы, образующие химически активные металлы ( Li–Mg ), в природе чаще всего встречаются в виде солей (хлоридов, фторидов, сульфатов, фосфатов и других).

Соли, образуемые этими металлами, являются главной составной частью распространённых в земной коре минералов и горных пород.

shutterstock_499534720.png

calcite-728720_640.png

В растворённом виде соли натрия, кальция и магния содержатся в природных водах. Кроме того, соли активных металлов — важная составная часть живых организмов. Например, фосфат кальция Ca 3 ( P O 4 ) 2 является главной минеральной составной частью костной ткани.

Металлические химические элементы, образующие металлы средней активности ( Al–Pb ), в природе чаще всего встречаются в виде оксидов и сульфидов.

гематит.png

galena-337703_640.png

Металлические элементы, образующие химически неактивные металлы ( Cu–Au ), в природе чаще всего встречаются в виде простых веществ.

Stringer156_nugget.jpg
silver-4437577_640.png
самородная платина.png
Рис. \(7\). Самородное золото Au Рис. \(8\). Самородное серебро Ag Рис. \(9\). Самородная платина Pt

Исключение составляют медь и ртуть, которые в природе встречаются также в виде химических соединений.

1024px-MoreMalachite.png

В Периодической системе химических элементов металлы занимают левый нижний угол и находятся в главных (А) и побочных (Б) группах.

Рис. \(13\). Положение металлов в Периодической системе. Знаки металлических химических элементов расположены ниже ломаной линии B — Si — As — Te

В электронной оболочке атомов металлов на внешнем энергетическом уровне, как правило, содержится от \(1\) до \(3\) электронов. Исключение составляют только металлы \(IV\)А, \(V\)А и \(VI\)А группы, у которых на наружном энергетическом уровне находятся соответственно четыре, пять или шесть электронов.

В атомах металлов главных подгрупп валентные электроны располагаются на внешнем энергетическом уровне, а у металлов побочных подгрупп — ещё и на предвнешнем энергетическом уровне.

Радиусы атомов металлов больше, чем у атомов неметаллов того же периода. В силу отдалённости положительно заряженного ядра атомы металлов слабо удерживают свои валентные электроны.

Рис. \(14\). Характер изменения радиусов атомов химических элементов в периодах и в группах. Радиусы атомов металлов существенно больше, чем радиусы атомов неметаллов, находящихся в том же периоде

Главное отличительное свойство металлов — это их сравнительно невысокая электроотрицательность (ЭО) по сравнению с неметаллами.

Таблица электроотрицательности RU (1).png

Рис. \(15\). Величины относительных электроотрицательностей (ОЭО) некоторых химических элементов (по Л. Полингу). ОЭО металлических химических элементов уступает соответствующей величине неметаллических химических элементов

Атомы металлов, вступая в химические реакции, способны только отдавать электроны, то есть окисляться, следовательно, в ходе превращений могут проявлять себя в качестве восстановителей .

Металлы и неметаллы

Наш мир наполняют различные простые вещества – металлы или неметаллы. При существовании 120 химических элементов, Вселенную наполняют более 400 простых веществ. Этот парадокс связан с понятием аллотропии – явлением образования одним химическим элементом двух и более простых веществ. Например, атом кислорода может формировать молекулярный кислород О2 и озон О3.

Физические свойства металлов

Металлы – химические элементы, атомы которых в процессе реакции стремятся отдавать электроны. Они обладают металлической кристаллической решеткой и общими физическими свойствами. На данный момент известно более 87 металлов.

Для металлов характерен ряд свойств:

  • твердость (кроме ртути, которая представляет собой жидкость);
  • металлический блеск;
  • проводимость электрического тока и тепла;
  • пластичность.

Металлы при ударах не разрушаются, а меняют форму. С этой особенностью связано то, что из них производят проволоку, металлические листы и др. Развитие бронзового и железного века связано с производством товаров из металлов.

Физические свойства неметаллов

Неметаллы – химические элементы, атомы которых стремятся принять чужие электроны. Для них характерны атомные и молекулярные кристаллические решетки. Для атомов неметаллов не характерны общие физические свойства. На данный момент существует 22 неметалла.

Для неметаллов характерен ряд свойств:

  • хрупкость (неметаллы нельзя ковать);
  • отсутствие блеска;
  • непроводимость электрического тока и тепла.

Расположение металлов и неметаллов в периодической таблице Д.И. Менделеева

Определить, является простое вещество металлом или неметаллом, можно с помощью периодической таблицы Менделеева. Металлы располагаются ниже диагонали «водород-бор- кремний-мышьяк-теллур-астат», а неметаллы выше.

Красные ячейки – неметаллы, синие – металлы

Элементы, расположенные вблизи диагонали, обладают смешанными свойствами: проявляют как металлические, так и неметаллические свойства. Они называются полуметаллами.

Красные ячейки – полуметаллы

Полуметаллы имеют ковалентную кристаллическую решетку при наличии металлической проводимости (электропроводности). Валентных электронов у них либо недостаточно для образования полноценной ковалентной связи, либо они не удерживаются достаточно прочно из-за больших размеров атома. Поэтому связь в ковалентных кристаллах этих элементов имеет частично металлический характер.

Закономерности в таблице Д.И. Менделеева

Каждый атом состоит из протонов, нейтронов и электронов. Протоны и нейтроны находятся в ядре, который несет положительный заряд. Вокруг ядра движутся отрицательно заряженные электроны. Атомный номер указывает на количество протонов.

Чем больше заряд ядра, тем сильнее к нему притягиваются электроны. Т.о., атому сложнее отдавать электроны. Поэтому в периоде слева направо, с увеличением порядкового номера металлические свойства ослабевают, а неметаллические – усиливаются.

Неметаллы стремятся принять электроны от других атомов. Период в таблице указывает на количество электронных уровней. По мере увеличения числа орбиталей электроны отдаляются от ядра и атому сложнее удерживать электроны на последних уровнях. Т.о., в группе сверху вниз количество орбиталей возрастает, поэтому металлические свойства усиливаются, а неметаллические – уменьшаются.

Большую часть металлов получают из оксидов при нагревании.

Металлы, имеющие на внешнем уровне один-два электрона, получают с помощью электролиза расплавов.

Химические свойства металлов

Все металлы проявляют восстановительные свойства. Легкость в отдачи внешнего электрона применяется в фотоэлементах. Степень активности определяется рядом активности. У самых активных на внешнем уровне располагается по одному электрону.

Общие химические свойства металлов выражаются в реакциях со следующими соединениями.

Активные металлы реагируют с галогенами и кислородом. С азотом взаимодействуют только литий, кальций и магний. Большинство металлов при взаимодействии с кислородом образуют оксиды, а наиболее активные металлы – пероксиды (N2O2).

2 Ca + MnO2 → 2 CaO + Mn(нагревание)

Водород в кислотах вытесняют только те металлы, которые в ряду напряжений стоят до водорода.

Более активные металлы вытесняют из соединений менее активные.

  • Химические свойства щелочных и щелочно-земельных металлов (реакции с водой)

2 Na + 2 H2O → 2 NaOH + H2

Способы получения неметаллов

Неметаллы синтезируют из природных соединений с помощью электролиза.

2 KCl → 2 K + Cl2

Также неметаллы получают в результате окислительно-восстановительных реакций.

SiO2 + 2 Mg → 2 MgO + Si

Химические свойства неметаллов

Неметаллы проявляют окислительные свойства. Самый активный неметалл – фтор. Он бурно реагирует со всеми веществами, а некоторые реакции сопровождаются горением и взрывом. В атмосфере фтора горят даже вода и платина. Фтор окисляет кислород и образует фторид кислорода OF2.

Неметаллы вступают в реакции со следующими веществами.

3 F + 2 Al → 2 AlF3 (нагревание)

S + Fe →FeS (нагревание)

Меньшей активностью обладают такие неметаллы как бор, графит, алмаз. Они могут проявлять восстановительные свойства.

2 C + MnO2 → Mn + 2 CO

Коррозия металла

Коррозия – это процесс разрушения металлов или металлических конструкций под действием кислорода, воды и вредных примесей. Не все металлы подвергаются коррозии. Их стойкость зависит от ряда факторов.

  • На благородных металлах не образуется коррозия.
  • На поверхности алюминия, титана, цинке, хрома и никеля есть оксидная пленка, которая предотвращает процессы коррозии.

Различают несколько видов коррозии – химическую и электрохимическую.

Химическая коррозия

Химическая коррозия сопровождается химическими реакциями. Она образуется под действием газов.

Электрохимическая коррозия

Электрохимическая коррозия – процесс разрушения металлов или металлических конструкций, который сопровождается электрохимическими реакциями. В большинстве металлов находятся примеси. В процессе коррозии электродами могут служить не только металлы, но и его примеси.

Например, в железе могут находиться примеси олова. В этом случае на аноде электроны переносятся от олова к железу и металлы растворяются, т.е. железо подвергаются коррозии. На катоде восстанавливается водород из воды или растворенного кислорода. Электрохимическая коррозия может сопровождаться следующими процессами.

Анод: Fe 2+ - 2e → Fe 0

Катод: 2H + + 2e → H2

Способы защиты от коррозии

В промышленности популярны различные методы защиты металлов от коррозии.

Покрытия защищают поверхности от действия окислителей. Ими служат различные вещества:

  • покрытие менее активным металлом (железо покрывают оловом);
  • краски, лаки, смазки.
  • Создание специальных сплавов

Физические свойства сплавов и чистых металлов отличаются. Поэтому для повышения стойкости в сплав необходимо добавить дополнительные металлы.

Биологическая роль металлов и неметаллов

В организмах содержится множество различных металлов и неметаллов. Различных химических элементов в организме может не хватать, поэтому приходится потреблять их извне.Химические элементы можно разделить на две большие группы – макроэлементы и микроэлементы.

К макроэлементам относятся вещества, содержание которых в организме превышает 0,005 %. Эта группа включает водород, углерод, кислород, азот, натрий, магний, фосфор, сера, хлор, калий, кальций.Микроэлементы – элементы, содержание которых не превышает 0,005%. К ним относятся железо, медь, селен, йод, хром, цинк, фтор, марганец, кобальт, молибден, кремний, бром, ванадий, бор. Каждый макро- и микроэлемент в организме выполняет определенную функцию.

Применение металлов и неметаллов

В синтезе химических препаратов и лекарств применяются чистые металлы и неметаллы. В органической химии металлы используются в качестве катализаторов, а также при получении металлорганических соединений. Неметаллы служат исходным сырьем для получения чистых кислот и других химических соединений.

Читайте также: