Металл co в таблице менделеева

Обновлено: 02.07.2024

Кобальт

Кобальт — химический элемент с атомным номером 27. Принадлежит к 9-й группе периодической таблицы химических элементов (по устаревшей короткой форме периодической системы принадлежит к побочной подгруппе VIII группы, или к группе VIIIB), находится в четвёртом периоде таблицы. Атомная масса элемента 58,933194(4) а. е. м. . Обозначается символом Co (от лат. Cobaltum ). Простое вещество кобальт — серебристо-белый, слегка желтоватый металл с розоватым или синеватым отливом. Существует в двух кристаллических модификациях: α -Co с гексагональной плотноупакованной решёткой, β -Co с кубической гранецентрированной решёткой, температура перехода α↔β 427 °C.

Содержание

  • 1 Происхождение названия
  • 2 История
  • 3 Нахождение в природе
    • 3.1 Месторождения
    • 3.2 Получение
    • 3.3 Стоимость металлического кобальта
    • 4.1 Изотопы
    • 5.1 Оксиды
    • 5.2 Другие соединения
    • 7.1 Токсикология

    Кобальт слиток

    Происхождение названия

    Название «кобальт» происходит от нем. Kobold — домовой, гном. При обжиге содержащих мышьяк кобальтовых минералов выделяется летучий ядовитый оксид мышьяка. Руда, содержащая эти минералы, получила у горняков имя горного духа Кобольда. Древние норвежцы приписывали отравления плавильщиков при переплавке серебра проделкам этого злого духа. В этом происхождение названия кобальта схоже с происхождением названия никеля.

    В 1735 году шведский минералог Георг Брандт сумел выделить из этого минерала неизвестный ранее металл, который и назвал кобальтом. Он выяснил также, что соединения именно этого элемента окрашивают стекло в синий цвет — этим свойством пользовались ещё в древних Ассирии и Вавилоне.

    История

    Соединения кобальта известны человеку с глубокой древности. Синие кобальтовые стёкла, эмали, краски находят в гробницах Древнего Египта. Так, в гробнице Тутанхамона нашли много осколков синего кобальтового стекла; неизвестно, было ли приготовление стёкол и красок сознательным или случайным.

    Первое приготовление синих красок относится к 1800 году.

    Нахождение в природе

    Массовая доля кобальта в земной коре 4⋅10 −3 %.

    Кобальт входит в состав минералов: каролит CuCo2S4, линнеит Co3S4, кобальтин CoAsS, сферокобальтит CoCO3, смальтин CoAs2, скуттерудит (Co, Ni)As3 и других. Всего известно около 30 кобальтосодержащих минералов. Кобальту сопутствуют мышьяк, железо, никель, хром, марганец и медь.

    Содержание в морской воде приблизительно (1,7)⋅10 −10 %.

    Месторождения

    Также есть богатые месторождения в Демократической Республике Конго (6 млн т.), Австралии (1 млн т.), Кубе (500 тыс. т.), Филиппинах (290 тыс. т.), Канаде (270 тыс. т.), Замбии (270 тыс. т.), России (250 тыс. т.), а также в США, Франции и Казахстане.

    Получение

    Кобальт получают в основном из никелевых руд, обрабатывая их растворами серной кислоты или аммиака. Также используются методы пирометаллургии.

    Для отделения от близкого по свойствам никеля используется хлор, хлорат кобальта(II) (Co(ClO3)2) выпадает в осадок, а соединения никеля остаются в растворе.

    Стоимость металлического кобальта

    Из-за политической ситуации в бассейне реки Конго в конце 1970-х годов цена на кобальт за год поднялась на 2000 %.

    На 15 января 2018 года стоимость кобальта на мировом рынке, по данным London Metal Exchange, составляет 75 000 долл./т.

    Физические свойства

    Кобальт — твёрдый металл, существующий в двух модификациях. При температурах от комнатной до 427 °C устойчива α -модификация. При температурах от 427 °C до температуры плавления (1494 °C) устойчива β -модификация кобальта (решётка кубическая гранецентрированная). Кобальт — ферромагнетик, точка Кюри 1121 °C. Желтоватый оттенок ему придаёт тонкий слой оксидов.

    Изотопы

    Кобальт имеет только один стабильный изотоп — 59 Co (изотопная распространённость 100%). Известны ещё 22 радиоактивных изотопа кобальта. Искусственный изотоп кобальт-60 широко применяется как источник жесткого гамма-излучения для стерилизации, в медицине в гамма-ножах, гамма-дефектоскопии и т. п.

    Химические свойства

    Оксиды

    • На воздухе кобальт окисляется при температуре выше 300 °C.
    • Устойчивый при комнатной температуре оксид кобальта представляет собой сложный оксид Co3O4, имеющий структуру шпинели, в кристаллической структуре которого одна часть узлов занята ионами Co 2+ , а другая — ионами Co 3+ ; разлагается с образованием CoO при температуре выше 900 °C.
    • При высоких температурах можно получить α -форму или β -форму оксида CoO.
    • Все оксиды кобальта восстанавливаются водородом:
    • Оксид кобальта(III) можно получить, прокаливая соединения кобальта (II), например:

    Другие соединения

    • При нагревании кобальт реагирует с галогенами, причём соединения кобальта (III) образуются только с фтором.
    • С серой кобальт образует 2 различных модификации CoS. Серебристо-серую α-форму (при сплавлении порошков) и чёрную β-форму (выпадает в осадок из растворов).
    • При нагревании CoS в атмосфере сероводорода получается сложный сульфид Co9S8.
    • С другими окисляющими элементами, такими, как углерод, фосфор, азот, селен, кремний, бор, кобальт тоже образует сложные соединения, являющиеся смесями, где присутствует кобальт со степенями окисления 1, 2, 3.
    • Кобальт способен растворять водород, не образуя химических соединений. Косвенным путём синтезированы два стехиометрических гидрида кобальта CoH2 и CoH.
    • Растворы солей кобальта CoSO4, CoCl2, Со(NO3)2 придают воде бледно-розовую окраску, поскольку в водных растворах ион Co 2+ существует в виде аквакомплексов [Co(H2O)6] 2+ розового цвета. Растворы солей кобальта в спиртах тёмно-синие. Многие соли кобальта нерастворимы.
    • Кобальт образует комплексные соединения. В степени окисления +2 кобальт образует лабильные комплексы, в то время как в степени окисления +3 — очень инертные. Это приводит к тому, что комплексные соединения кобальта(III) практически невозможно получить путём непосредственного обмена лигандов, поскольку такие процессы идут чрезвычайно медленно. Наиболее известны аминокомплексы кобальта.

    Наиболее устойчивыми комплексами являются лутеосоли (например, [Co(NH3)6] 3+ ) жёлтого цвета и розеосоли (например, [Co(NH3)5H2O] 3+ ) красного или розового цвета.

    • Также кобальт образует комплексы с CN − , NO2 − и многими другими лигандами. Комплексный анион гексанитрокобальтат [Co(NO2)6] 3− образует нерастворимый осадок с катионами калия, что используется в качественном анализе.

    Применение

    • Специальные сплавы и стали — главное применение кобальта.
      • Легирование стали кобальтом повышает её твердость, износо- и жаростойкость. Из кобальтовых сталей создают обрабатывающий инструмент: свёрла, резцы, и т. п.
      • Сплавы кобальта и хрома получили собственное название стеллит. Они обладают высокой твёрдостью и износостойкостью. Также благодаря коррозионной стойкости и биологической нейтральности некоторые стеллиты применяются в протезировании
      • Некоторые сплавы кобальта, например, с самарием или эрбием, проявляют высокую остаточную намагниченность, то есть они пригодны для изготовления мощных жаростойких постоянных магнитов (см. Самариево-кобальтовый магнит. Также в качестве магнитов используют сплавы на основе железа и алюминия с кобальтом, например альнико.
      • Кобальт применяется при изготовлении химически стойких сплавов.

      Биологическая роль

      Кобальт — один из микроэлементов, жизненно важных организму. Он входит в состав витамина B12 (кобаламин). Кобальт задействован при кроветворении, функциях нервной системы и печени, ферментативных реакциях. Потребность человека в кобальте — 0,007—0,015 мг ежедневно. В теле человека содержится 0,2 мг кобальта на каждый килограмм массы тела. При отсутствии кобальта развивается акобальтоз.

      Токсикология

      Кобальт

      Кобальт и его соединения токсичны. Известны также соединения, обладающие канцерогенным и мутагенным действием (например, сульфат).

      В 1960-х годах соли кобальта использовались некоторыми пивоваренными компаниями для стабилизации пены. Регулярно выпивавшие более четырёх литров пива в день получали серьёзные побочные эффекты на сердце, и, в отдельных случаях, это приводило к смерти. Известные случаи т. н. кобальтовой кардиомиопатии в связи с употреблением пива происходили с 1964 по 1966 годы в Омахе (штат Небраска), Квебеке (Канада), Левене (Бельгия), и Миннеаполисе (штат Миннесота). С тех пор его использование в пивоварении прекращено и в настоящее время является незаконным.

      ПДК пыли кобальта в воздухе 0,5 мг/м³, в питьевой воде допустимое содержание солей кобальта 0,01 мг/л.

      Токсическая доза (LD50 для крыс) — 50 мг.

      Особенно токсичны пары октакарбонила кобальта Co2(СО)8.

      • Кобальт (Co)
      • Алюминат кобальта II (Co[Al2O4]) Метаалюминат кобальта
      • Амид кобальта III (Co(NH2)3) Амид кобальта
      • Арсенат кобальта II (Co3(AsO4)2) Кобальт мышьяковокислый
      • Арсениды кобальта
      • Ацетат кобальта II (C4H6CoO4) Кобальт уксуснокислый
      • Ацетат кобальта III (C6H9CoO6) Уксуснокислый кобальт
      • Абиетат кобальта II (CoC40H58O4) Кобальт абиетиновокислый
      • Бромат кобальта II (Co(BrO3)2) Кобальт бромноватокислый
      • Бромид кобальта II (CoBr2) Кобальт бромистый
      • Вольфрамат кобальта II (CoWO4) Кобальт вольфрамовокислый
      • Гексацианоферрат II кобальта (Co2[Fe(CN)6]) Гексацианоферриат кобальта
      • Гексацианоферрат III кобальта (Co3[Fe(CN)6]2) Гексацианоферрат кобальта
      • Гидрид кобальта (CoH) Кобальт водородистый
      • Гидроксид кобальта II (Co(OH)2) Гидроокись кобальта
      • Гидроксид кобальта III (Co(OH)3) Кобальт гидроокись
      • Дигидрид кобальта (CoH2) Водородистый кобальт
      • Диселенид кобальта II (CoSe2) Селенистый кобальт
      • Дисилицид кобальта (CoSi2) Кремнистый кобальт
      • Дистаннид кобальта (CoSn2)
      • Дисульфид кобальта II (CoS2) Сернистый кобальт
      • Дителлурид кобальта II (CoTe2)
      • Йодат кобальта II (Co(IO3)2) Кобальт йодноватокислый
      • Йодид кобальта II (CoI2) Кобальт йодистый
      • Карбонат кобальта II (CoCO3) Кобальт углекислый
      • Карбонат кобальта III (Co2(CO3)3) Углекислый кобальт
      • Линолеат кобальта II (CoC36H62O4) Кобальт линолевокислый
      • Метаванадат кобальта II (Co(VO3)2) Кобальт ванадиевокислый
      • Метагидроксид кобальта (CoO(OH)) Гидроксооксид кобальта III
      • Метатитанат кобальта II (CoTiO3) Кобальт титановокислый мета
      • Молибдат кобальта II (CoMoO4) Кобальт молибденовокислый
      • Нитриды кобальта
      • Нитрат кобальта II (Co(NO3)2) Кобальт азотнокислый
      • Нитрат кобальта III (Co(NO3)3) Азотнокислый кобальт
      • Нитрит кобальта II (Co(NO2)2) Кобальт азотистокислый
      • Оксалат кобальта II (CoC2O4) Кобальт щавелевокислый
      • Оксид кобальта II (CoO) Окись кобальта
      • Оксид кобальта II,III (Co3O4)
      • Оксид кобальта III (Co2O3)
      • Оксид кобальта IV (CoO2•H2O) Гидрат окисла кобальта
      • Олеат кобальта II (Co(C18H33O2)2) Кобальт олеиновокислый
      • Пальмитат кобальта II (CoC32H62O4) Кобальт пальмитиновокислый
      • Перренат кобальта II (Co(ReO4)2) Кобальт рениевокислый
      • Перхлорат кобальта II (Co(ClO4)2) Кобальт хлорнокислый
      • Пропионат кобальта II (Co(C2H5COO)2) Кобальт пропионовокислый
      • Селенат кобальта II (CoSeO4) Кобальт селеновокислый
      • Селенид кобальта II (CoSe) Кобальт селенистый
      • Селенит кобальта II (CoSeO3) Кобальт селенистокислый
      • Силикат кобальта II (Co2SiO4) Кобальт кремнекислый
      • Силицид кобальта (CoSi) Кобальт кремнистый
      • Станнат кобальта II (Co2SnO4) Кобальт оловяннокислый
      • Станнид кобальта (CoSn)
      • Стеарат кобальта II (CoC36H70O4) Кобальт стеариновокислый
      • Сульфат кобальта II (CoSO4) Кобальт сернокислый
      • Сульфат кобальта III (Co2(SO4)3) Сернокислый кобальт
      • Сульфат кобальта II-дикалия (K2[Co(SO4)2]) Сернокислые кобальт-калий
      • Сульфид кобальта
      • Сульфид кобальта II (CoS) Кобальт сернистый
      • Сульфит кобальта II (CoSO3) Кобальт сернистокислый
      • Сульфид кобальта II,III (Co3S4)
      • Сульфид кобальта III (Co2S3)
      • Теллурид кобальта II (CoTe) Кобальт теллуристый
      • Тенарова синь ((Co II Al2)O4) Кобальтовая синь
      • Тетрацианоаурат III кобальта II (Сo[Au(CN4)]2)
      • Тиоцианат кобальта II (Co(SCN)2) Кобальт роданистый
      • Феррит кобальта II (CoFe2O4)
      • Формиат кобальта II (Co(HCOO)2) Кобальт муравьинокислый
      • Фосфат кобальта II (Co3(PO4)2) Кобальт фосфорнокислый
      • Фосфиды кобальта
      • Фторид кобальта II (CoF2) Дифторид кобальта
      • Фторид кобальта III (CoF3) Трифторид кобальта
      • Хлорат кобальта II (Co(ClO3)2) Кобальт хлорноватокислый
      • Хлорид кобальта
      • Хромат кобальта II (CoCrO4) Кобальт хромовокислый
      • Хромит кобальта II (CoCr2O4) Оксохромат кобальта
      • Хлорид кобальта II (CoCl2) Кобальт хлористый
      • Хлорид кобальта III (CoCl3) Хлористый кобальт
      • Цитрат кобальта II (Co3(C6H5O7)2) Кобальт лимоннокислый
      • Цианид кобальта II (Co(CN)2) Кобальт цианистый
      • Цианид кобальта III (Co(CN)3) Цианистый кобальт
      • Цинкат кобальта II (CoZnO2) Кобальт циркониевокислый (Турецкая зелень, зелень Ринмана)

      Eu, Sm, Li, Cs, Rb, K, Ra, Ba, Sr, Ca, Na, Ac, La, Ce, Pr, Nd, Pm, Gd, Tb, Mg, Y, Dy, Am, Ho, Er, Tm, Lu, Sc, Pu,
      Th, Np, U, Hf, Be, Al, Ti, Zr, Yb, Mn, V, Nb, Pa, Cr, Zn, Ga, Fe, Cd, In, Tl, Co, Ni, Te, Mo, Sn, Pb, H2,
      W, Sb, Bi, Ge, Re, Cu, Tc, Te, Rh, Po, Hg, Ag, Pd, Os, Ir, Pt, Au

      ТАБЛИЦА МЕНДЕЛЕЕВА - периодическая система химических элементов

      Таблица Менделеева (периодическая система химических элементов) - это такая таблица, в которой классифицируются химические элементы по различным свойствам в зависимости от заряда их атомного ядра. Таблица является графическим изображением периодического закона, который открыл Дмитрий Иванович Менделеев в 1869 году. Изначальный вариант этой таблицы 1869 - 1871 гг. и устанавливал зависимость свойств элементов от их атомной массы. На данный момент элементы сводятся в двумерную таблицу, в которой каждый столбец - это группа, определяющая основные физико-химические свойства, а строки - это периоды, схожие друг с другом. Наиболее распространены 2 формы таблицы: короткая и длинная.

      ТАБЛИЦА МЕНДЕЛЕЕВА

      element

      Периодическая таблица Менделеева в классическом варианте (или короткая форма), основана на параллелизме степеней окисления химических элементов главных и побочных подгрупп. В каждой ячейке таблицы указан символ элемента, порядковый номер, относительная атомная масса, и название элемента.

      Порядковый номер элемента - это число равное числу протонов в ядре атома и числу электронов, которые вращаются вокруг него.

      Чтобы посмотреть все свойства конкретного химического элемента нужно перейти по ссылке нажав на символ элемента в таблице.

      Периодическая система химических элементов Д.И. Менделеева

      Расшифровка периодической системы химических элементов Д.И. Менделеева:

      Номер группы (для большинства элементов) – общее число валентных электронов (электронов внешнего энергетического уровня, а также предпоследнего d-подуровня, если он застроен не полностью).

      Число элементов в периоде – максимальная емкость соответствующего энергетического уровня:

      2 элемента (1s 2 )

      18 элементов (5s 2 4d 10 5p 6 )

      8 элементов (2s 2 2p 6 )

      32 элемента (6s 2 4f 14 5d 10 6p 6 )

      8 элементов (3s 2 3p 6 )

      18 элементов (4s 2 3d 10 4p 6 )

      Построение периодов – в начале: два s-элемента, в конце: шесть р- элементов. В четвертом и пятом периодах между ними помещается по десять d-элементов, а в шестом и седьмом к ним добавляются четырнадцать f-элементов (формы электронных орбиталей).

      В периоде – свойства химических элементов различаются между собой, т.к. электронные конфигурации валентных электронов их атомов различны.

      В подгруппе – свойства элементов сходны между собой, т.к. электронные конфигурации валентных электронов их атомов сходны.

      Причина периодичности свойств химических элементов заключается в периодической повторяемости сходных электронных конфигураций внешних энергетических уровней.

      Формы электронных орбиталей (электронные семейства)

      Классификация химических элементов по электронным конфигура­циям их атомов (электронные орбитали)

      внешний (n) s-подуровень

      внешний (n) р-подуровень

      предвнешний (n–1 ) d-подуровень

      (n-2)f 1–14 (n-1)d 1–10 ns 1–2

      третий снаружи (n–2) f-подуровень

      Графическое изображение орбиталей

      Свойства элементов таблицы Менделеева

      Металлы – элементы главных подгрупп с числом валентных электронов от 1 до 3 (подгруппы IA, IIA, IIIА, кроме элемента бора), а также германий, олово, свинец, сурьма, висмут и полоний.

      Неметаллы – бор и элементы главных подгрупп с числом валентных электронов от 4 до 7 (подгруппы IVA, VA, VIA, VIIA) кроме германия, олова, свинца, сурьмы, висмута и полония.

      Переходные элементы – элементы побочных подгрупп (IB-VIIB); в виде простых веществ ведут себя как металлы.

      Благородные газы – элементы подгруппы VIIIA, полностью застро­енные энергетические подуровни s 2 p 6 , для гелия s 2 .

      Галогены – элементы подгруппы VII(a) таблицы Менделеева, реагируют со всеми простыми веществами, кроме некот. неметаллов, являются энергичными окислителями, к ним относят F, Cl, Br, I, At, Ts.

      Лантанойды – 15 элементов III группы 6-го периода, металлы с атомными номерами 57–71. Все они имеют стабильные изотопы, кроме прометия.

      Актинойды – 15 радиоактивных элементов III группы 7-го периода с атомными номерами 89–103.

      Свойства элементов в подгруппах закономерно изменяются сверху вниз:

      В периодах с увеличением порядкового номера элемента прослеживается следующая закономерность:

      Все элементы таблицы Менделеева, исключая гелий, неон и аргон, образуют кислородные соединения, которые изображены общими формулами под каждой группой в порядке возрастания степени окисления элементов: R2O, RO, R2O3, RO2, R2O5, RO3, R2O7, RO4, где R - обозначает элемент группы.

      Элементы главных подгрупп, начиная с IV группы, образуют газообразные водородные соединения: RH4, RH3, RH2, RH. Соединения RH4 имеют нейтральный характер; RH3 – слабоосновной; RH2 – слабокислый; RH – сильнокислый характер.

      История открытия периодического закона Менделеевым Д.И.

      Самый важный вклад в систематизацию химических элементов внёс русский выдающийся химик Дмитрий Иванович Менделеев, автор труда "Основы химии", который в марте 1869 года представил Русскому химическому обществу (РХО) периодический закон химических элементов, изложенный в нескольких основных положениях.

      В 1871 году Менделеев в итоговой статье «Периодическая законность химических элементов» дал формулировку Периодического закона: "Свойства элементов, а потому и свойства образуемых ими простых и сложных тел стоят в периодической зависимости от атомного веса". Тогда же Менделеев придал своей периодической таблице классический вид (короткая таблица, смотрите ниже).

      таблица Менделеева 1871 года классический вид

      В современном изложении периодический закон химических элементов звучит так: "Свойства простых веществ, а также свойства и формы соединений элементов находятся в периодической зависимости от заряда ядра атомов элементов (порядкового номера)."

      Периодическая таблица элементов Менделеева длинная форма

      Длинная форма таблицы Менделеева (или длиннопериодная форма) состоит из 18 групп с лева на право от щелочных металов до благородных газов. считается официальной версией с 1989 года.

      Длинная форма периодической таблицы Менделеева

      Таблица Менделеева для печати в хорошем качестве скачать

      Вы можете скачать таблицу Менделеева на выбор короткую или длинную форму в цветном и черно-белом цвете, для этого откройте по ссылке ниже изображение и сохраните его себе на компьютер.

      ____________

      Источник информации:

      1. Большой химический справочник / А.И.Волков, — М.: 2005.

      2. Большая энциклопедия химических элементов. Периодическая таблица Менделеева / И.А.Леенсон. — Москва : 2014.

      Кобальт

      кобальт

      Кобальт — серебристо-белый, с некоторым желтоватым оттенком, металл. В таблице Менделеева кобальт обозначается символом Co.

      История кобальта

      Искусные стекольные и гончарные мастера древности при выделке своих художественных изделий пользовались синей краской. В витринах Британского национального музея в Лондоне хранятся уникальные коллекции синих стекол, найденные археологами при раскопках памятников древней культуры в Египте и Ассиро-Вавилонии.

      Ученых уже давно интересовал вопрос о природе этой любопытной синей краски, которая не утратила своих сильнокрасящих свойств в течение тысячелетий. Ряд специальных исследований, произведенных химиками, показал, что синие стекла, происходящие из Египта и Ассиро-Вавилонии, содержат соединения редкого элемента кобальта. Однако ученым так и не удалось окончательно разгадать, была ли известна древним мастерам способность окиси кобальта давать глубокое синее окрашивание, или они пользовались этим красящим материалом случайно, как и многими другими стойкими красками.

      Неоднократно делались также попытки раскрыть тайну античных мастеров путем самого тщательного изучения синих стекол более позднего происхождения — александрийских, византийских и римских — в надежде найти в них присутствие кобальта. Но каково было удивление исследователей, когда они установили, что синяя краска этих стекол обусловлена наличием в них не кобальта, а меди. Не найдено было также кобальта в роскошных стеклянных и глиняных художественных изделиях, окрашенных в синий цвет, доставленных прославленным путешественником Марко Поло в Европу из стран азиатского материка.

      Ремесленники средневековья совсем не применяли кобальта для окраски в синий цвет разнообразных изделий из стекла. В то время слово кобальт было ругательным именем для различных минералов, сопровождающих серебряные руды старинных месторождений в районе Саксонско-Богемского кряжа. Ненависть горняков и плавильщиков к кобальтy историки горного дела и металлурги объясняют тем, что его присутствие в шихте значительно затрудняло и удорожало проплавку серебряных руд.

      Окраска стеклянной посуды с помощью кобальта

      Окраска стеклянной посуды с помощью кобальта

      Передовые ученые своей эпохи Агрикола, Парацельс и Василий Валентин упоминают, что «Cobold» — имя злого духа, который якобы обитает в недрах земли, расстраивает труд горняков и причиняет им всевозможные бедствия.

      «Дух» ненавистного кобальта много столетий веял над рудниками Германии, и именем злого духа называли даже минералы, не содержащие кобальта, например, мышьяковистые руды, неблагоприятные свойства которых усугублялись, выделением ядовитых газов при их добыче и металлургической обработке.

      Только в XVI столетии, когда добыча серебра из месторождений Саксонско-Богемского кряжа получила значительное развитие, были обнаружены сильные красящие свойства окиси кобальта. Но это новое интересное открытие около двух столетий держали в строжайшем секрете. Лишь узкий круг избранных владел секретом полезного использования красящих свойств кобальта.

      Сохранились указания, что в 1533 году стекольный мастер Шюрер, проживавший в Богемии, успешно приготовлял кобальтовую синюю краску для окраски керамических изделий. Скоро голландские купцы заинтересовались новой красивой краской и с помощью Шюрера организовали ее производство у себя на родине. Первая саксонская мельница для размола кобальтовой краски была построена близ Аннаберга в 1649 году.

      Теперь, когда кобальту была открыта широкая дорога в промышленность, его соединения начали быстро внедряться в качестве ценных красок для стекол, глазури, фарфора, эмалей и ряда других продуктов керамики.

      Химические свойства кобальта

      Но какова же природа кобальта, и не является ли он смесью некоторых «земель», к которым пионеры теоретической химии относили большинство известных им минеральных видов?

      Над научной расшифровкой этой задачи много потрудился швед Брандт, который в своей диссертации (написанной в 1735 г.) «О полуметаллах» впервые сообщил, что висмут, полученный из кобальто-висмутовых руд, не чист, а содержит кобальт, который может быть отделен механическим путем. Эта первая попытка разгадать природу кобальтовых руд была подхвачена учеными в различных странах.

      На рубеже XIX в. продукция соединений кобальта исчислялась уже сотнями тонн в год. В науку вошли исследования Бергмана, составившего в 1787 году довольно полное описание химических свойств кобальта, отличающих его от никеля.

      Из таблицы периодической системы элементов можно узнать, что порядковое число кобальта равно 27, а его атомный вес 58,94. В этой таблице кобальт стоит между железом и никелем, что соответствует непрерывному закономерному изменению свойств элементов в периодической системе Д. И. Менделеева. Постепенно ученым удалось установить, что по своим физическим и химическим свойствам кобальт больше приближается к никелю, чем к железу.

      кобальт

      Кобальт

      Некоторые характерные химические свойства кобальта как бы заранее предопределили его практическое использование в технике.

      Кобальт — металл, который достаточно устойчив против разрушительного действия атмосферных агентов. При обыкновенной температуре он мало поддается действию воды и воздуха. Значительно легче окисляется мелкораздробленный кобальт, но и в этом случае образующаяся на поверхности металла пленка окислов предохраняет его от дальнейшего окисления. Однако с повышением температуры этот процесс заметно активизируется. Единственной кислотой, быстро растворяющей кобальт при комнатной температуре, является азотная.

      В своей автобиографии Генри Бессемер пространно рассказывает, что он переплавил не одну сотню мешков русских медных монет. Это было еще тогда, когда все помыслы молодого и инициативного Генри были сосредоточены на том, чтобы получить тончайший пылевидный материал (так называемый «китайский порошок») для позолоты различных предметов. Бессемер установил, что лучшее сырье для получения «золотой» пыли, дающей сверкающие золотистые оттенки и искристые переливы — русская медная монета. В русских копейках, привлекших внимание предприимчивого Бессемера присутствовал кобальт.

      Применение кобальта

      Многочисленны по составу и оттенкам технические сорта, изготовляемых в наши дни, красок из кобальта. Широким распространением пользуются красивые и очень прочные краски под названием смальта и окислы кобальта. Это незаменимый материал для окраски некоторых стекол, эмалей и изделий из керамики. Особенность синих кобальтовых стекол заключается в том, что они прозрачны для красного света. Именно на этом свойстве и основано их применение в химическом анализе в качестве световых фильтров для определения окраски пламени. Получила широкое распространение турецкая зелень, которую применяют для окраски фарфора.

      Турецкая зелень

      Турецкая зелень

      В малярном деле и в производстве керамике применяется небесно-голубая краска, единственная краска, обладающая хорошей кроющей способностью. Для акварельных и малярных красок в керамике применяется желтая краска, или соль Фишера. Окислы кобальта приобрели большое значение в технике эмалирования жести и в производстве лаков.

      Выдающаяся роль принадлежит кобальту в новейших сверхтвердых и магнитных сплавах. Кобальтовые твердые сплавы (сюда относятся кобальтовые легированные стали) завоевали важные области применения в металлообрабатывающей промышленности. Ценные свойства обеспечивают им распространение в разных отраслях индустрии. Вот далеко не полный арсенал изделий, содержащих кобальт: фрезы, сверла, измерительные приборы, штампы, части молотов, шестеренки, зубчатки, валы, подшипники и т. д.

      Золото Au

      золото

      Золото (Au, от латинского Aurum) — химический элемент, который находится в I группе Таблицы Менделеева, входит в группу благородных металлов. К этой группе, помимо золота, относятся также серебро, платина, рутений, родий, палладий, осмий, иридий и иногда рений. Это название вышеперечисленные металлы получили благодаря высокой химической стойкости. Золото очень ценится во всем мире ещё с самых древних времен. О его особой ценности говорит тот факт, что любой средневековый алхимик считал целью своей жизни получить золото из других веществ, чаще всего в качестве исходного использовалась ртуть. Существуют легенды, что некоторым, таким как Николя Фламель, это даже удалось.

      Золото и его история

      Невероятно, но золото — самый первый металл который узнало человечество! Его открытие датируется эпохой неолита, т.е. примерно 11000 лет назад! Золото широко использовалось во всех древнейших цивилизациях, его называли «царем металлов» и обозначали тем же иероглифом, что и солнце. Существуют археологические находки золотых украшений, которые были изготовлены в третьем тысячелетии до н. э.
      Вся история человечества находится в тесной связи с золотом. Подавляющее большинство войн до начала применения нефти велось именно из-за этого благородного металла. Как метко подметил Гёте в своем «Фаусте»: «Люди гибнут за металл!». Золото явилось одной из предпосылок Великих географических открытий, т.е. периода в истории, во время которого европейцы открывали новые материки и морские маршруты в Африку, Америку, Азию и Океанию. В XV веке из-за кризиса экономики и постоянных войн имела место острая нехватка драгоценных металлов для изготовления денег, поэтому королевские дворы искали новые торговые рынки, а, главное, места, где много дешевого золота. Именно так мы узнали о существовании Америки и Австралии!

      золотая маска таиланд

      Золотая маска (Таиланд)

      Первоначально человечество использовало золото только для изготовления украшений и предметов роскоши, но постепенно стало служить средством обмена, т.е. начало выполнять функцию денег. В таком качестве золото применялось еще за 1500 лет до н. э. в Китае и Египте. В государстве Лидия (территория современной Турции), которое обладало огромными месторождениями золота, впервые начали чеканить золотые монеты. Количество золота в этом государстве превосходило все имевшиеся на тот момент запасы этого металла в других государствах настолько, что имя лидийского царя Креза вошло в поговорку и стало синонимом несметного богатства. Говорят «Богат, как Крез».
      В Средние века и позднее основным источником золота была Южная Америка. Но вначале XIX века были открыты большие месторождения золота на Урале и в Сибири, поэтому в течение нескольких десятилетий Россия занимала первое место по его добыче. Позже были открыты богатые месторождения в Австралии и ЮАР. Таким образом произошло резкое увеличение добычи золота. До этого времени наряду с золотом из драгоценных металлов для производства монет использовалось серебро. Но прилив золота из вышеупомянутых стран обеспечил вытеснение серебра. Поэтому уже к началу XX века золото утвердилось в качестве стандарта. Само по себе золото редко используется в качестве материала для монет, т.к. оно очень мягкое и пластичное (1 грамм золота можно растянуть на 1 км), а поэтому быстро истиралось, в основном его используют в виде сплавов, повышающих твердость материала. Но поначалу монеты чеканились из чистого золота и одним из способов проверки монеты было попробовать её «на зубок», монету зажимали зубами, если оставался приличный след, считалось, что монета не фальшивая.

      золотые монеты

      Золотые монеты мира

      Распространение золота в природе

      Золото не очень сильно распространено на нашей планете, но и не является редкостью, содержание его в литосфере около 4,3·10 -7 %, а в одном литре морской воды его содержится около 4·10 -9 г. Некоторое количество золота находится в почве, оттуда его получают растения. Кукуруза является отличным источником природного золота для питания человека, это растение имеет способность концентрировать его в себе. Добыча золота крайне сложное занятие, именно за счет этого оно и имеет такую высокую цену. Как говорят геологи, «золото любит одиночество», т.к. чаще всего его находят в виде самородков, т.е. оно находится в руде в чистом виде. Лишь в крайне редких случаях встречаются соединения золота с висмутом и селеном. Очень небольшое его количество имеется в магматических горных породах, в застывшей лаве. Но из них добыть золото стоит еще большего труда, а содержание его очень низкое. Поэтому способ добычи из магматических пород не находит применения ввиду своей нерентабельности.
      Основные запасы золота сосредоточены в России, ЮАР и Канаде.

      Химические свойства золота

      Чаще всего золото имеет валентность равную +1 или +3. Это очень стойкий к агрессивному воздействию металл. Золото совершенно не подвержено окислению, т.е. кислород при нормальных условиях не оказывает на него никакого влияния. Однако, если нагреть золото выше 100° C на его поверхности образуется очень тонкая окисная пленка, которая не исчезает даже при охлаждении. При температуре 20 °C толщина пленки равна примерно 0,000001 мм. Сера, фосфор, водород и азот не реагируют с золотом.
      Золото не подвержено действию кислот. Но только в том случае если они действуют на него по отдельности. Единственной чистой кислотой, в которой можно растворить золото, является горячая концентрированная селеновая кислота H2SeO4. При комнатной температуре благородный металл растворяется в так называемой «царской водке», т.е. смеси «азотная кислота + соляная кислота». Также при нормальных условиях золото очень подвержено воздействию растворов иодида калия и йода.

      Применение золота

      С древнейших времен золото используется в ювелирном искусстве, в качестве предметов роскоши и власти. Благодаря своей исключительной пластичности и ковкости ювелиры могут создавать из этого металла настоящие произведения искусства. В промышленности золото используется в виде сплавов с другими металлами. Во-первых, это повышает прочность сплава, а во-вторых, удешевляет производство. Содержание золота в сплаве называют «пробой», которая выражается каким то целым стандартным числом. Например, в килограмме сплава 750 пробы содержится 750 граммов золота. Остальные 250 — это другие примеси. Следовательно, чем выше проба, тем выше содержание золота в сплаве. Существует стандарт на это содержание: используются 375, 500, 585, 750, 900, 916, 958 пробы.

      Знаете ли вы что?

      Для того чтобы изготовить одно золотое кольцо, требуется переработать тонну золотосодержащей руды!

      золотые часы

      Золотые часы — признак богатства

      В других отраслях промышленности золото применяется для различных целей в химическом и нефтехимическом производствах, в энергетике и электронике, в авиации и космической технике. Этот благородный металл используется везде, где ни в коем случае нежелательно появление коррозии. Также оно широко применяется в медицине с незапамятных времен из-за стойкости к окислению. В египетских гробницах были найдены мумии с золотыми коронками зубов. В настоящее время для зубных протезов и коронок используются золотые сплавы повышенной прочности. Помимо этого золото используется в фармакологии. Здесь используют различные соединения драгметалла, которые входят как в состав препаратов, так и применяются отдельно. Золотые нити используют в косметологии, тут они помогают омоложению кожи.

      Знаете ли вы что?

      В японском городе Сува работает завод, на котором из пепла оставшегося после сжигания промышленных отходов добывают золото! Причем в этом пепле его содержание больше, чем в любой золотоносной шахте. Этот факт объясняется тем, что в городе очень много заводов производящих электронику, в которой широко применяется этот благородный металл.

      Подведем итог. Золото сохраняет свое инвестиционное, промышленное, ювелирное и медицинское назначение на протяжении уже нескольких тысячелетий и подобная тенденция вряд ли прервется в обозримом будущем. Золото всегда будет олицетворением роскоши и богатства!

      ПЕРИОДИЧЕСКАЯ ТАБЛИЦА МЕНДЕЛЕЕВА

      Еще в школе, сидя на уроках химии, все мы помним таблицу на стене класса или химической лаборатории. Эта таблица содержала классификацию всех известных человечеству химических элементов, тех фундаментальных компонентов, из которых состоит Земля и вся Вселенная. Тогда мы и подумать не могли, что таблица Менделеева бесспорно является одним из величайших научных открытий, который является фундаментом нашего современного знания о химии.

      Таблица Менделеева

      На первый взгляд, ее идея выглядит обманчиво просто: организовать химические элементы в порядке возрастания веса их атомов. Причем в большинстве случаев оказывается, что химические и физические свойства каждого элемента сходны с предыдущим ему в таблице элементом. Эта закономерность проявляется для всех элементов, кроме нескольких самых первых, просто потому что они не имеют перед собой элементов, сходных с ними по атомному весу. Именно благодаря открытию такого свойства мы можем поместить линейную последовательность элементов в таблицу, очень напоминающую настенный календарь, и таким образом объединить огромное количество видов химических элементов в четкой и связной форме. Разумеется, сегодня мы пользуемся понятием атомного числа (количества протонов) для того, чтобы упорядочить систему элементов. Это помогло решить так называемую техническую проблему «пары перестановок», однако не привело к кардинальному изменению вида периодической таблицы.

      В периодической таблице Менделеева все элементы упорядочены с учетом их атомного числа, электронной конфигурации и повторяющихся химических свойств. Ряды в таблице называются периодами, а столбцы группами. В первой таблице, датируемой 1869 годом, содержалось всего 60 элементов, теперь же таблицу пришлось увеличить, чтобы поместить 118 элементов, известных нам сегодня.

      Периодическая система Менделеева систематизирует не только элементы, но и самые разнообразные их свойства. Химику часто бывает достаточно иметь перед глазами Периодическую таблицу для того, чтобы правильно ответить на множество вопросов (не только экзаменационных, но и научных).

      The YouTube ID of 1M7iKKVnPJE is invalid.

      Периодический закон

      Существуют две формулировки периодического закона химических элементов: классическая и современная.

      Классическая, в изложении его первооткрывателя Д.И. Менделеева: свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величин атомных весов элементов.

      Современная: свойства простых веществ, а также свойства и формы соединений элементов находятся в периодической зависимости от заряда ядра атомов элементов (порядкового номера).

      Графическим изображением периодического закона является периодическая система элементов, которая представляет собой естественную классификацию химических элементов, основанную на закономерных изменениях свойств элементов от зарядов их атомов. Наиболее распространёнными изображениями периодической системы элементов Д.И. Менделеева являются короткая и длинная формы.


      Группы и периоды Периодической системы

      Группами называют вертикальные ряды в периодической системе. В группах элементы объединены по признаку высшей степени окисления в оксидах. Каждая группа состоит из главной и побочной подгрупп. Главные подгруппы включают в себя элементы малых периодов и одинаковые с ним по свойствам элементы больших периодов. Побочные подгруппы состоят только из элементов больших периодов. Химические свойства элементов главных и побочных подгрупп значительно различаются.

      Периодом называют горизонтальный ряд элементов, расположенных в порядке возрастания порядковых (атомных) номеров. В периодической системе имеются семь периодов: первый, второй и третий периоды называют малыми, в них содержится соответственно 2, 8 и 8 элементов; остальные периоды называют большими: в четвёртом и пятом периодах расположены по 18 элементов, в шестом — 32, а в седьмом (пока незавершенном) — 31 элемент. Каждый период, кроме первого, начинается щелочным металлом, а заканчивается благородным газом.

      Физический смысл порядкового номера химического элемента: число протонов в атомном ядре и число электронов, вращающихся вокруг атомного ядра, равны порядковому номеру элемента.


      Свойства таблицы Менделеева

      Напомним, что группами называют вертикальные ряды в периодической системе и химические свойства элементов главных и побочных подгрупп значительно различаются.

      • усиливаются металлические свойства и ослабевают неметаллические;
      • возрастает атомный радиус;
      • возрастает сила образованных элементом оснований и бескислородных кислот;
      • электроотрицательность падает.

      Все элементы, кроме гелия, неона и аргона, образуют кислородные соединения, существует всего восемь форм кислородных соединений. В периодической системе их часто изображают общими формулами, расположенными под каждой группой в порядке возрастания степени окисления элементов: R2O, RO, R2O3, RO2, R2O5, RO3, R2O7, RO4, где символом R обозначают элемент данной группы. Формулы высших оксидов относятся ко всем элементам группы, кроме исключительных случаев, когда элементы не проявляют степени окисления, равной номеру группы (например, фтор).

      Оксиды состава R2O проявляют сильные основные свойства, причём их основность возрастает с увеличением порядкового номера, оксиды состава RO (за исключением BeO) проявляют основные свойства. Оксиды состава RO2, R2O5, RO3, R2O7 проявляют кислотные свойства, причём их кислотность возрастает с увеличением порядкового номера.

      Элементы главных подгрупп, начиная с IV группы, образуют газообразные водородные соединения. Существуют четыре формы таких соединений. Их располагают под элементами главных подгрупп и изображают общими формулами в последовательности RH4, RH3, RH2, RH.

      Соединения RH4 имеют нейтральный характер; RH3 — слабоосновный; RH2 — слабокислый; RH — сильнокислый характер.

      Напомним, что периодом называют горизонтальный ряд элементов, расположенных в порядке возрастания порядковых (атомных) номеров.

      В пределах периода с увеличением порядкового номера элемента:

      • электроотрицательность возрастает;
      • металлические свойства убывают, неметаллические возрастают;
      • атомный радиус падает.


      Элементы таблицы Менделеева

      Щелочные и щелочноземельные элементы

      К ним относятся элементы из первой и второй группы периодической таблицы. Щелочные металлы из первой группы — мягкие металлы, серебристого цвета, хорошо режутся ножом. Все они обладают одним-единственным электроном на внешней оболочке и прекрасно вступают в реакцию. Щелочноземельные металлы из второй группы также имеют серебристый оттенок. На внешнем уровне помещено по два электрона, и, соответственно, эти металлы менее охотно взаимодействуют с другими элементами. По сравнению со щелочными металлами, щелочноземельные металлы плавятся и кипят при более высоких температурах.

      Щелочные металлыЩелочноземельные металлы
      Литий Li 3Бериллий Be 4
      Натрий Na 11Магний Mg 12
      Калий K 19Кальций Ca 20
      Рубидий Rb 37Стронций Sr 38
      Цезий Cs 55Барий Ba 56
      Франций Fr 87Радий Ra 88

      Лантаниды (редкоземельные элементы) и актиниды

      Лантаниды — это группа элементов, изначально обнаруженных в редко встречающихся минералах; отсюда их название «редкоземельные» элементы. Впоследствии выяснилось, что данные элементы не столь редки, как думали вначале, и поэтому редкоземельным элементам было присвоено название лантаниды. Лантаниды и актиниды занимают два блока, которые расположены под основной таблицей элементов. Обе группы включают в себя металлы; все лантаниды (за исключением прометия) нерадиоактивны; актиниды, напротив, радиоактивны.

      ЛантанидыАктиниды
      Лантан La 57Актиний Ac 89
      Церий Ce 58Торий Th 90
      Празеодимий Pr 59Протактиний Pa 91
      Неодимий Nd 60Уран U 92
      Прометий Pm 61Нептуний Np 93
      Самарий Sm 62Плутоний Pu 94
      Европий Eu 63Америций Am 95
      Гадолиний Gd 64Кюрий Cm 96
      Тербий Tb 65Берклий Bk 97
      Диспрозий Dy 66Калифорний Cf 98
      Гольмий Ho 67Эйнштейний Es 99
      Эрбий Er 68Фермий Fm 100
      Тулий Tm 69Менделевий Md 101
      Иттербий Yb 70Нобелий No 102

      Галогены и благородные газы

      Галогены и благородные газы объединены в группы 17 и 18 периодической таблицы. Галогены представляют собой неметаллические элементы, все они имеют семь электронов во внешней оболочке. В благородных газахвсе электроны находятся во внешней оболочке, таким образом с трудом участвуют в образовании соединений. Эти газы называют «благородными, потому что они редко вступают в реакцию с прочими элементами; т. е. ссылаются на представителей благородной касты, которые традиционно сторонились других людей в обществе.

      ГалогеныБлагородные газы
      Фтор F 9Гелий He 2
      Хлор Cl 17Неон Ne 10
      Бром Br 35Аргон Ar 18
      Йод I 53Криптон Kr 36
      Астат At 85Ксенон Xe 54
      Радон Rn 86

      Переходные металлы

      Переходные металлы занимают группы 3—12 в периодической таблице. Большинство из них плотные, твердые, с хорошей электро- и теплопроводностью. Их валентные электроны (при помощи которых они соединяются с другими элементами) находятся в нескольких электронных оболочках.

      Переходные металлы
      Скандий Sc 21
      Титан Ti 22
      Ванадий V 23
      Хром Cr 24
      Марганец Mn 25
      Железо Fe 26
      Кобальт Co 27
      Никель Ni 28
      Медь Cu 29
      Цинк Zn 30
      Иттрий Y 39
      Цирконий Zr 40
      Ниобий Nb 41
      Молибден Mo 42
      Технеций Tc 43
      Рутений Ru 44
      Родий Rh 45
      Палладий Pd 46
      Серебро Ag 47
      Кадмий Cd 48
      Лютеций Lu 71
      Гафний Hf 72
      Тантал Ta 73
      Вольфрам W 74
      Рений Re 75
      Осмий Os 76
      Иридий Ir 77
      Платина Pt 78
      Золото Au 79
      Ртуть Hg 80
      Лоуренсий Lr 103
      Резерфордий Rf 104
      Дубний Db 105
      Сиборгий Sg 106
      Борий Bh 107
      Хассий Hs 108
      Мейтнерий Mt 109
      Дармштадтий Ds 110
      Рентгений Rg 111
      Коперниций Cn 112

      Металлоиды

      Металлоиды занимают группы 13—16 периодической таблицы. Такие металлоиды, как бор, германий и кремний, являются полупроводниками и используются для изготовления компьютерных чипов и плат.

      Металлоиды
      Бор B 5
      Кремний Si 14
      Германий Ge 32
      Мышьяк As 33
      Сурьма Sb 51
      Теллур Te 52
      Полоний Po 84

      Постпереходными металлами

      Элементы, называемые постпереходными металлами, относятся к группам 13—15 периодической таблицы. В отличие от металлов, они не имеют блеска, а имеют матовую окраску. В сравнении с переходными металлами постпереходные металлы более мягкие, имеют более низкую температуру плавления и кипения, более высокую электроотрицательность. Их валентные электроны, с помощью которых они присоединяют другие элементы, располагаются только на внешней электронной оболочке. Элементы группы постпереходных металлов имеют гораздо более высокую температуру кипения, чем металлоиды.

      Постпереходные металлы
      Алюминий Al 13
      Галлий Ga 31
      Индий In 49
      Олово Sn 50
      Таллий Tl 81
      Свинец Pb 82
      Висмут Bi 83

      Неметаллы

      Из всех элементов, классифицируемых как неметаллы, водород относится к 1-й группе периодической таблицы, а остальные — к группам 13—18. Неметаллы не являются хорошими проводниками тепла и электричества. Обычно при комнатной температуре они пребывают в газообразном (водород или кислород) или твердом состоянии (углерод).

      Неметаллы
      Водород H 1
      Углерод C 6
      Азот N 7
      Кислород O 8
      Фосфор P 15
      Сера S 16
      Селен Se 34
      Флеровий Fl 114
      Унунсептий Uus 117

      А теперь закрепите полученные знания, посмотрев видео про таблицу Менделеева и не только.

      Отлично, первый шаг на пути к знаниям сделан. Теперь вы более-менее ориентируетесь в таблице Менделеева и это вам очень даже пригодится, ведь Периодическая система Менделеева является фундаментом, на котором стоит эта удивительная наука.

      Читайте также: