Металл и алюминий коррозия

Обновлено: 05.07.2024

Гальваническая коррозия представляет собой электрохимическую реакцию между двумя и более различными (или разнородными) металлами. Различными, потому что для того, чтобы началась реакция, один должен быть более химически активным (или менее стабильным), чем другой или другие. Когда мы говорим про гальваническую коррозию, то имеем в виду электрообмен. Все металлы обладают электрическим потенциалом, поскольку у всех атомов есть электроны, движение которых и есть электричество.

Гальваническая коррозия более активного металла начинается в тот момент, когда две или более детали из разнородных металлов, имеющие взаимный контакт (благодаря обычному соприкосновению, или же посредством проводника) помещаются в электролит (любую жидкость, проводящую электричество). Электролитом может быть, что угодно, за исключением химически чистой воды. Не только соленая морская, но и обычная вода из под крана благодаря наличию минеральных веществ является превосходным электролитом, и с ростом температуры электропроводность её только растет (по этой причине корпуса судов, эксплуатирующиеся в жарком климате, заметно больше подвержены коррозии, чем на Севере).

Процесс гальванической коррозии можно наглядно продемонстрировать на примере взаимного контакта изделий из Алюминия и Нержавеющей стали. Алюминий – более химически активный металл является в данном случае анодом, а менее активная нержавеющая сталь – катодом. При взаимодействии между нержавеющей сталью и алюминием возникает большая разница потенциалов в соответствии с рядом напряжений в металлах. При этом, благодаря действующему на электрический элемент электролиту (жидкость), возникает электрический ток, и анод, в данном случае Алюминий, корродирует. Подобное явление возникает также в винтовых соединениях, в которых между металлами образуется разность потенциалов, а влажность играет роль электролита.

Химический ряд напряжений в металлах

Чем дальше находятся в ряду напряжений металлы по отношению друг к другу, тем больше разность потенциалов и выше опасность коррозии. При наличии электролита на большинстве однородных металлических поверхностях все равно образуются крошечные аноды и катоды – в тех местах, где состав сплава неоднороден или имеются вкрапления и примеси – например, частицы металла с форм или штампов.

Другим важным фктором, оказывающим влияние на скорость протекания гальванической коррозии, помимо разности потенциалов металлов, является пропорциональное соотношение размеров анода и катода. Если к очень большому аноду подключить маленький катод, процесс коррозии анода пойдет медленно. А если поступить наоборот, то анод очень быстро разрушится. Объясняется это тем, что анодные и катодные реакции должны быть эквивалентны. Рост или снижение катодной реакции, обусловленной размером катода, вызывает ответные рост или снижение анодной реакции

Гальваническая коррозия возникает в том случае, если имеет место один из следующих факторов:

  1. Относительная влажность воздуха превышает 60%;
  2. Загрязненный воздух: большое количество металлических частиц;
  3. Металлы в винтовых соединениях, у которых большая разница потенциалов;
  4. Неправильное соотношение площадей поверхностей анода и катода.

Рекомендации по противодействию гальванической коррозии:

1. Исключите возможность образования гальванического элемента

  • защищайте конструкции от действия влажности (удалите электролит)
  • изолируйте металлы друг от друга, например, с помощью покрытия
  • изолируйте металлы от электролита.

2. Избегайте соединения металлов, у которых большая разница потенциалов.

3. Материал из которого произведен крепеж должен быть более активным (анод), чем материал конструкции (катод).

  • площадь поверхности конструкции(катода) больше площади поверхности крепежа(анода).

ИНН: 7826682663, КПП: 784001001, ОГРН: 1027810323386

С чего обычно начинаются работы по добавлению функционала наших машин? Правильно – с посещения сайтов и форумов, чтобы посмотреть, как другие реализовали подобные идеи, подчерпнуть что-то интересное и не совершать чужих ошибок. Но всегда ли стоит верить тому, что написано на форумах? Чужой опыт не всегда является истиной и редко описывается человеком, достигшим Дзен в данном вопросе. Вспоминаю свои первые посты – такую ерунду писал, да еще и отстаивал свою правоту, да так убедительно. А ведь кто-то может этим воспользоваться. Так же помню читал раньше, где уже не помню, о том, что ни в коем случае нельзя выполнять отделку кузова алюминием. Звучало это приблизительно так: «Ребята, да Вы что, совсем физику не учили?! При контакте алюминия и железа Вы создаете гальваническую пару и у Вас кузов за полгода сгниет весь, растворится! Головой-то надо думать хоть иногда!». Гальваническая пара создается, да, но будет ли таким плачевным результат? Об этом далее.
По моей новой профессии отправили меня учится на повышение квалификации в Уфимский Государственный Нефтяной Технический Университет, где в течении двух недель кандидаты технических наук рассказывали мне о коррозии металла и как с ней бороться. Эта статья не будет научно-публицистической, дабы не забивать Вам голову, постараюсь все рассказать на примере яблок, образно.
Итак, по механизму протекания коррозия делится на химическую и электрохимическую. Химическая коррозия протекает в неэлектролитической среде при высокой температуре. Так как мы рассматриваем кузов автомобиля, то данный тип коррозии не применим. Нас интересует электрохимическая коррозия, электролитом в которой выступает влага. Из курса физики и химии мы все помним, что все металлы имеют кристаллическую решетку, в которой электроны свободно двигаются и называется такая решетка металлосвязью. Эта связь атомов не очень крепкая и ее свойства позволяют активно использовать данные материалы в нашей жизни.
Но тот факт, что она не крепкая доставляет нам проблемы. Например, диполи воды (а вода, в силу своего строения, является довольно агрессивной средой) разбивают металлосвязь и наиболее активно это происходит в местах, где количество электронов недостаточно, вытягивая молекулы металла и создавая с ними более стабильное соединение. Эти места являются очагами коррозии. Как же возникают участки металла с малым количеством электронов? Связано это как раз со способностью электронов свободно перемещаться в кристаллической решетке металла. Все металлы имеют естественный потенциал (электростатический), отличный от нуля. Железо в естественных условиях имеет потенциал, равный приблизительно -0,44 Вольта, цинк -0, 76 В, алюминий -1, 67 В, магний -2,3 В. Но даже металл одной природы, например, лист железа, в разных своих частях имеет отличающиеся потенциалы. Незначительно, но отличаются. Это связано с различными причинами, в том числе с механическими напряжениями в структуре металла, различными вкраплениями, острыми краями, заусенцами, царапинами, наклёпами, сварочными швами и т.д. Такие места имеют более отрицательный потенциал по отношению к другим частям и они являются анодными зонами, т.е. анодами (остальные части соответственно являются катодами).
При протекании электрохимической коррозии в электролите анод насыщает электронами через проводник катод, тем самым теряя силу молекулярной связи и разрушается под действием агрессивной среды.
Вспомните места, где наиболее часто гниет кузов – это сгибы кузова, швы, соединения различных частей и т.д., т.е. в местах, где присутствует влага и есть дополнительные факторы, создающие анодные зоны. Те же полики на наших машинах не гниют равномерно по всей площади. Очаги начинают развиваться в углах и на сгибах. Каждый из Вас может в качестве подтверждения провести один небольшой и не сложный опыт: Возьмите два одинаковых гвоздя. Один из них согните на 90 градусов. Затем обезжирьте оба и не касаясь пальцами (можно брать их бумажкой) положите в раствор поваренной соли (NaCl). Коррозия будет протекать наиболее интенсивно на согнутом гвозде в месте изгиба. На прямом гвозде она будет протекать более равномерно по всей площади и менее интенсивно. Кому доводилось разбирать деревянные постройки, в которых ржавые гвозди, могут вспомнить, что согнутые гвозди в местах сгибов очень легко ломаются и практически все место слома ржавое насквозь.
От действия коррозии кузов защищает изоляция, в роли которой выступают краска и грунтовка. Но тут есть один момент – в местах нарушения изоляции коррозия будет развиваться более интенсивно, нежели бы весь металл был голым, без изоляции.
Так какое же все-таки влияние оказывает алюминий на железо в местах контакта? Металлы с более отрицательным естественным потенциалом при соприкосновении с железом выступают в роли анода, т.е. защищают металл от коррозии. К таким металлам относятся цинк, алюминий и магний. Т.е. при отделке кузова алюминием при наличии электролита между ними в качестве анода будет выступать алюминий и именно он будет разрушаться. Процесс этот длительный, а при условии, что алюминий редко несет серьезные механические нагрузки – еще и безболезненный. На данном принципе построена протекторная защита металлоконструкций от коррозии, например, нефтепроводов.
Конечно, никто Вам гарантий того, что уложив лист алюминия на полик Вы полностью защите кузов от коррозии, здесь не дает. На этот процесс влияет много факторов, в том числе токи, протекающие по кузову от электроприемников, различные агрессивные среды, разлитые масла, химические жидкости и т.д. Но хуже алюминием Вы не сделаете, даже наоборот.
Здесь еще стоит отметить, что в местах контакта кузова с металлами, имеющими меньший естественный потенциал по отношению к железу, железо уже не будет катодом, а станет анодом, как следствие процесс коррозии будет протекать более интенсивно. К таким металлам относятся никель, олово, свинец, медь. Серебро и золото тоже, но они думаю у вас в машинах не валяются.

Вот собственно и все о коррозии и с чем ее едят, не сильно кратко, но и не очень заумно) Надеюсь, что статья оказалась для Вас полезной!


Контактная коррозия происходит при непосредственном контакте двух разнородных металлов. Нельзя, к примеру, соединять алюминиевые листы медной заклепкой, так как при определенных условиях они образуют сильную гальваническую пару.

Разные металлы имеют разные электродные потенциалы. В присутствии электролита один из них играет роль катода, а другой анода. В результате химической реакции, протекающей между ними, начнется коррозионный процесс, в котором медь (катод) будет беспощадно разрушать алюминий (анод).

Почти все пары разнородных металлов, находящиеся в контакте между собой, подвержены коррозии, так как даже влага из воздуха может выступить в роли электролита и активировать их электродный потенциал. Но одни пары уязвимы в большей степени, а другие – в меньшей.

Например, алюминий отлично контактирует с оцинкованной сталью, хромом и цинком, а латунь совершенно не «дружит» со сталью, алюминием и цинком. Чтобы узнать, какие металлы совместимы, а какие нет, обратимся к основам химии.

В ряду электрохимической активности металлы стоят в следующей последовательности:


Для примера рассмотрим пару алюминий – медь. Алюминий стоит в ряду слева от водорода и имеет электроотрицательный потенциал равный -1.7В, а медь находится справа и имеет положительный потенциал +0.4В. Большая разница потенциалов приводит к разрушению более активного алюминия. Медь сильнее всех, впереди стоящих элементов, поэтому в паре с любым из них она выйдет победителем. Чем дальше друг от друга в ряду стоят элементы, тем выше их несовместимость и вероятность протекания гальванической коррозии.

Данные о совместимости некоторых металлов представлены в таблице:

Д – абсолютно допустимые контакты (низкий риск ГК);
О – ограничено допустимые контакты (средний риск ГК);
Н – недопустимые контакты (высокий риск ГК).

Приведенная таблица может служить кратким справочником для определения совместимости некоторых конструкционных металлов. Допустимость и недопустимость контактов разнородных в электрохимическом отношении металлов устанавливает ГОСТ 9.005-72.

Пример недопустимых гальванических пар:


Гальваническое действие может возникнуть, если строительную конструкцию из нержавеющей стали скреплять оцинкованными болтами. В этой нежелательной паре пострадает высоко анодный крепеж, поскольку его электроны будут перемещаться в направлении катодной нержавеющей стали. Поэтому, крепежные детали должны быть изготовлены из менее гальванически активного металла, чем материал металлоконструкции.


На скорость течения гальванокоррозии оказывает влияние площадь поверхности анода и катода. Если большой по размеру анод соединить с маленьким катодом, то анод будет ржаветь медленно, а если сделать наоборот, то быстро. Например, используйте болты из нержавеющей стали для крепления алюминия, но не наоборот.

Степень интенсивности протекания контактной коррозии зависит и от условий эксплуатации соединения. В обычных атмосферных условиях процесс будет протекать менее быстро и возрастает в агрессивной электропроводной среде, например, растворах кислот и щелочей. Присутствие в воде других веществ увеличивает проводимость электролита и скорость коррозии. Поэтому при проектировании конструкций важна оценка окружающей среды.

Как защитить конструкцию или узел от контактной коррозии?

Если по конструктивным соображениям невозможно избежать нежелательного контакта разнородных металлов, то можно попытаться уменьшить гальваническую коррозию с помощью следующих методов:

  • окраска поверхностей в районе их стыка;
  • нанесение совместимых металлических покрытий;
  • изоляция соединения от внешней среды;
  • электрическая изоляция;
  • установка неметаллических прокладок, вставок, шайб в болтовых соединениях.

Практика показывает, что в тех случаях, когда пренебрегают требованиями к допустимости контактов разных металлов, приходится дорого за это расплачиваться. Неправильная компоновка контактных пар выводит из строя узлы крепления, металлоконструкции и может стоять человеческой жизни.

Алюминий на железе – зло? или познавательная коррозия.


Основные виды коррозия алюминия


На бытовом уровне считается, что коррозия алюминия невозможна. Но на самом деле это не совсем так. В определенных средах без дополнительной защиты алюминий и его сплавы могут коррозировать. В результате материал разрушается, портится изделие, что приводит к невозможности его дальнейшей эксплуатации.

Однако алюминий и его сплавы достаточно устойчивы к появлению коррозии. И даже без специального покрытия. Особенно если сравнивать его с железом. Мы расскажем об основных причинах коррозирования алюминия, а также какие меры принимаются на производстве, чтобы избежать разрушения и защитить материал.

Стойкость алюминия к коррозии

Алюминий — легкий конструкционный материал, который применяется в строительстве. Он обладает механической прочностью и достаточно высоким уровнем антикоррозийной стойкости. Коррозия алюминия протекает медленно, несмотря на то что этот материал активно вступает в реакции с кислотами, щелочами и водой.

Стойкость алюминия к коррозии

Спасает его от быстрого разрушения химически устойчивая оксидная пленка, которая образуется на поверхности изделий под воздействием различных окислителей, в том числе и кислорода. При взаимодействии с окислителями запускается процесс пассивации — металл перестает реагировать на присутствие возможных источников коррозии, и свойства его остаются неизменными.

Как и остальные металлы и сплавы, алюминий начинает разрушаться в результате химического или электрохимического внешнего воздействия.

Агрессивные факторы внешней среды воспринимаются каждым металлом по-своему, реакция может быть активной и пассивной. Например, соприкосновение алюминия с жидким топливом нельзя рассматривать как причину коррозии, а вот натриевая щелочь легко преодолеет его антикоррозийную защиту и быстро разрушит материал.

Толщина инертного защитного слоя, состоящего из окиси алюминия, может составлять от 20 до 100Å. Поверхность алюминия может пассивироваться благодаря наличию в воздушной или водной среде кислорода. Этот окислитель способен усилить его антикоррозийные свойства.

Если эта пленка будет отсутствовать, металл станет уязвимым для воды. При взаимодействии с ней возникнет реакция, протекающая с выделением водорода.

Ускорить процесс коррозии алюминия помогают содержащиеся в нем примеси менее активных металлов. Они образуют с ним гальваническую пару, где алюминий, как более активный металл, оказывается в положении анода. В ходе электрохимической реакции он подлежит разрушению в первую очередь. Другой, менее активный металл, выступает в роли катода, задача которого – активизировать процесс, ведущий к уничтожению алюминия.

Исходя из этого, наивысшей степенью коррозийной стойкости обладает чистый алюминий. Он более устойчив, чем технический металл, содержащий примеси, и значительно превосходит по этому показателю алюминиевые сплавы. Многое зависит и от того, в какой среде находится изделие из этого материала и какие реакции возникают в результате соприкосновения с ней.

Виды коррозии алюминия и его сплавов

Европейские стандарты описываю около 150 алюминиевых сплавов, которые могут применяться в различных сферах хозяйственной деятельности. В соответствии с требованиями Еврокода 9, для строительства зданий выбор ограничивается 17 позициями из данного списка. Это сплавы, способные продемонстрировать высокий уровень коррозийной стойкости и вызывающие необходимость минимального техобслуживания в любых эксплуатационных условиях.

Виды коррозии алюминия и его сплавов

Попробуем обосновать особенности выбора материалов для строительства исходя из того, каким видам коррозии они могут быть подвержены.

Алюминиевые сплавы в строительстве чаще всего разрушаются в результате:

  • общей коррозии (general, uniform corrosion),
  • точечной коррозии (pitting corrosion),
  • гальванической коррозии, то есть возникающей в результате контакта (galvanic corrosion),
  • щелевой коррозии (crevice corrosion).

Еще одним видом является нитевидная коррозия (filiform corrosion), увидеть которую можно на изделиях с порошковым или лакокрасочным покрытием.

Коррозия под напряжением (stress corrosion), межкристаллитная коррозия (intercrystalline corrosion), подповерхностная коррозия (exfoliation corrosion) в данном случае практически не наблюдаются, так как в процессе строительства высокопрочные алюминиевые сплавы серий 2000 и 7000 не используются. Также из-за высокого содержания магния не рекомендуется применять в ходе строительных работ сплавы серии 5000.

Охарактеризуем каждый вид коррозии более детально.

Общая коррозия алюминия

Данный вид коррозии алюминия возникает в насыщенной кислой или щелочной среде и носит название сплошной коррозии. Под воздействием щелочей и кислот естественная оксидная пленка, защищающая алюминий, быстро растворяется. На поверхности изделия появляется плотное скопление маленьких язвочек, размер которых не превышает одного микрометра. Это приводит к постепенному истончению материала по всей поверхности.

Общая коррозия алюминия

Самой высокой устойчивостью к общей коррозии обладают сплавы 6060 и 6063 (АД31). В них содержится менее 0,10 % меди, и необходимость дополнительной защиты изделий перед началом эксплуатации отсутствует.

Наиболее чувствительными в этом плане являются сплавы, содержание меди в которых превышает 0,5 %. Они легко подвергаются атмосферной коррозии, поэтому алюминий покрывают защитными составами. Обязательной эта процедура является для конструкций, расположенных на берегу моря или вдоль дорог, обрабатываемых солевыми противогололедными реагентами.

Точечная (язвенная) коррозия

Для данной формы коррозии характерно образование на поверхности металла язвочек или ямок разного размера. Форма и глубина этих ямок определяется химическим составом алюминиевого сплава и особенностями среды эксплуатации.

Появление точечной коррозии связано с присутствием электролита, в роли которого может выступать пресная и морская вода, влажный воздух и другие природные среды. Водородный показатель среды при этом должен соответствовать 8.

Увидеть точечную коррозию можно невооруженным глазом. Поверх образовавшихся коррозийных ямок образуются белые пузырьки, наполненные желеобразной жидкостью. Она состоит из гидроксида алюминия Al(OH)3. Размер этих пузырьков может быть существенно больше, чем размер углублений, над которыми они расположены.

Контактная (гальваническая) коррозия

Появление гальванической коррозии связано с наличием следующих факторов:

  • наблюдается взаимодействие двух разных металлов,
  • между ними существует электролитический мостик.

Роль анода в данном случае выполняет менее «благородный» металл. Соответственно, именно он подвергается процессу разрушения. Его компаньон, в свою очередь, становится катодом, и коррозия его не затрагивает. Исходя из этого, алюминий может избежать разрушения только при соединении с менее «благородным» цинком и кадмием.

Контактная (гальваническая) коррозия

Все остальные металлы занимают в иерархической лестнице более высокое положение, а значит, соединение с ними может существенно ускорить процесс разрушения алюминиевых конструкций.

Гальваническая коррозия алюминия является результатом неправильного подхода к выбору сочетания металлов. Риск разрушения конструкций, созданных на их основе, не так велик, если им предстоит находиться в сухой защищенной атмосфере. Но в прибрежных морских районах, где наблюдается высокое содержание хлоридов в воздухе, такая коррозия развивается очень быстро. Инициировать ее могут углеродистая сталь, медь и даже нержавейка.

Неудачной комбинацией считается соединение алюминия с оцинкованной сталью. На начальных этапах цинковое покрытие обеспечит защиту алюминия от коррозии, вызванной контактом со сталью. Но после его разрушения разные металлы начнут соприкасаться, и алюминий в полной мере ощутит коррозийные последствия такого соседства.

Щелевая коррозия

Щелевая коррозия возникает в существующих между материалами углублениях (щелях). Она наблюдается в местах:

  • сварочных соединений,
  • болтовых соединений,
  • заклепочных соединений,
  • скопления различных отложений (песка, шлака, грязи).

Чаще всего влага появляется из-за неправильного хранения или транспортировки алюминиевых изделий. Они могут попросту намокнуть под дождем. Но источником влаги также бывает и конденсат, который проникает между металлическими поверхностями и вызывает процесс коррозии алюминия. Поэтому, прежде чем убрать холодные изделия в теплое помещение, необходимо довести их температуру до приемлемых значений.

Нитевидная коррозия

Узкие нитевидные трещинки, ширина которых колеблется от 0,1 до 0,5 мм, образуются между слоем краски и алюминиевой поверхностью. Такая коррозия алюминия чаще всего является реакцией металла на наличия дефектов окраски. Ее причиной также могут быть царапины, сколы, появившиеся в результате механического воздействия, и т. д. Данный дефект не ведет к разрушению материала, а только меняет внешний вид изделия.

Нитевидную коррозию можно встретить на элементах окон и дверей с порошковым покрытием, изготовленных из сплавов 6060 и 6063. Минимизируют риск появления коррозионных трещин, используя сплавы с низким содержанием меди. Повысить сопротивляемость нитевидной коррозии можно путем химического стравливания поверхностного слоя металла в количестве не менее 2 г/м2 перед хроматной подготовкой.

Коррозирование алюминия в различных средах

Коррозия алюминия на воздухе

Следы коррозии на алюминиевых конструкциях появляются под воздействием определенных факторов. Во-первых, это влажность воздуха, превышающая 80 %, во-вторых, количество времени, в течение которого материал находится во влажной среде. Кроме того, на скорость протекания коррозионных процессов влияет химический состав электролита, находящегося на поверхности металла.

Коррозирование алюминия в различных средах

Хлориды и другие соли, содержащиеся в атмосфере, также способствуют появлению признаков коррозии, но алюминий менее восприимчив к их присутствию, чем другие конструкционные материалы.

Коррозия алюминия в почве

Заранее предположить, насколько сильно будет подвержен коррозии алюминий, соприкасающийся с почвой, довольно трудно. Дело в том, что почва на разных участках неоднородна — существенно различается ее химический состав, показатель pH и уровень насыщенности влагой. В ней могут содержаться разные органические и минеральные вещества, провоцирующие коррозию алюминия.

Как устранить эту проблему, придумали очень давно. Обеспечить максимальную защиту металла, находящегося в почве, помогает специальное битумное покрытие.

Коррозия алюминия в щелочной среде

Иногда возникает необходимость закрепить алюминиевую конструкцию с помощью бетонного раствора. Сцепка этих материалов настолько прочная, что разъединить их практически невозможно.

Если бетон «схватился» и адгезия между материалами прошла успешно, о развитии коррозионных процессов можно не беспокоиться. Но если в процессе работ влага сумела проникнуть в полости между алюминием и бетоном, ее разрушительное воздействие через некоторое время станет очевидным.

Предотвратить развитие коррозии можно, обработав алюминий битумным составом или специальной краской, способной сохранять свои свойства в щелочной среде. Использовать прием анодирования алюминия в данном случае бессмысленно, так как оксидный слой не может сохранять стабильность в сильнощелочной среде.

Коррозия алюминия в воде (в том числе морской)

Характер коррозии алюминия, находящегося в воде, зависит от того, какой химический состав она имеет. Основным фактором влияния на металл является наличие в воде хлоридов и тяжелых металлов.

Коррозия алюминия в воде (в том числе морской)

Пресная вода может вызвать процесс точечной коррозии, но регулярная чистка и просушивание изделий минимизируют риски повреждений. Примером тому служит домашняя утварь — алюминиевые ложки и кастрюли использовались аккуратными хозяйками на протяжении многих лет, и при этом всегда оставались гладкими и блестящими.

Морская вода не способна быстро разрушить алюминиевые сплавы, содержащие более 2,5 % магния. К ним относятся материалы серии 5000 (AlMg) и 6000 (AlMgSi).

Коррозия алюминия в химической среде

От воздействия многих химических веществ алюминий защищает наличие естественного оксидного слоя. Но при показателе pH, который выходит за рамки диапазона значений от 4 до 9, этот слой разрушается, и коррозийные процессы начинают развиваться с высокой скоростью. Самыми агрессивными химическими веществами в этом смысле являются концентрированные щелочи и неорганические кислоты.

В реакцию с алюминием не вступают только растворы аммиака и концентрированная азотная кислота.

Коррозия алюминия и грязь

Влажная грязь, в течение длительного времени присутствующая на алюминиевой поверхности, также может стать причиной коррозии. Для того чтобы не спровоцировать ее развитие, необходимо регулярно обрабатывать загрязненные участки и следить за тем, чтобы поверхность была сухой и чистой.

Защита алюминия от коррозии

Защитить алюминий от коррозии можно несколькими способами:

  • Электрохимическая защита от коррозии алюминия — покрытие поверхности изделия более активными металлами.
  • Процесс алюминирования — обработка материала специальными порошковыми составами.
  • Лакокрасочное покрытие — нанесение защитного слоя краски.
  • Высоковольтное анодирование — особый способ создания защитной оксидной пленки.
  • Химическое оксидирование — обработка материала расплавами или растворами окислителей.
  • Применение ингибиторов коррозии.

Простым и доступным способом защиты алюминия от коррозии является окрашивание. Методы нанесения краски могут быть разными — сухими, влажными и порошковыми. Их выбор зависит от того, с какой средой станет соприкасаться металл и какое функциональное назначение будет у изделий, изготовленных из алюминия.

При порошковом окрашивании поверхность должна особенно тщательно очищаться от жира и пыли. Для этого изделие из алюминия погружают в кислотный или щелочной раствор, а затем наносят на него титановые, циркониевые, хроматные или фосфатные соединения, препятствующие процессу окисления.

При мокром окрашивании предварительная обработка осуществляется с помощью соединений цинка и стронция.

Для усиления защитных функций можно выбрать:

  • молотковые краски разнообразных цветов и оттенков,
  • бакелитовые краски, надежно заполняющие микротрещины и поры.

Гальваническая пара нержавеющая сталь


системы радиоуправления нли для прочности в осях шарниров, пружинных шарнирах, пружинах.

10. Избегайте по возможности трущихся и прижимных контактов как в бортовой электропиросисте-ме, так и в системе радиоуправления.

11. Не пользуйтесь металлами, образующими так называемые недопустимые гальванические пары, когда один из металлов разрушается.

Допустимым сочетанием, не образующим сильно корродирующую гальваническую пару, считается

такая пара, где разность между номерами их групп будет составлять не более 2.

Например, нержавеющая сталь (7-я группа) и латунь (9-я группа): 9—7=2 — допустимое сочетание; алюминиевые сплавы, не содержащие медь (2-я группа) и сталь (5-я группа): 5—2=3 — недопустимое сочетание.

Фосфатные и оксидные пленки (покрытия) увеличивают номер группы на одну единицу, а анодирование — на две.

И. КРОТОВ, инженер

ГАЛЬВАНИЧЕСКИЙ РЯД МЕТАЛЛОВ

Корродирующий электрод (анодный)

Магний или магниевые сплавы, анодированные или оксидированные

Цинк, цинк хромированный, оцинкованные сталь или железо. Алюминий, алюминиевые сплавы, не содержащие медь, плакированный дюралюминий

Кадмий, кадмий хромированный. Анодированные алюминиевые сплавы: оисидные пленки на алюминии и его сплавах, пропитанные хромпиком или анилиновыми красителями, оксидные износостойкие пленки на алюминии и его сплавы

Фосфатные, оксидные пленки по стали, пропитанные смазкой. Алюминиевые сплавы, содержащие медь

Сталь, железо, чугун

Легированные стали или чугуны

Никелевые сплавы для электросопротивлений Нержавеющие стали с содержанием хрома 12—17%

Свинцово-оловянистые припои, нержавеющие стали с содержанием хрома 18% и более. Олово, свинец

Латунь. Марганцовистые бронзы, мореная латунь. Молибден, никель. Алюминиевые бронзы, томпак

Кремнистые бронзы, мельхиор, сложные бронзы

Процесс коррозии алюминия и алюминиевых сплавов зависит от многих факторов: условий окружающей среды, а также электрохимических и металлургических свойств компонентов сплава.

Коррозия алюминия

Для коррозии алюминия характерны следующие основные типы:

  • непосредственное химическое воздействие (общая коррозия);
  • электрохимическая (гальваническая) коррозия;
  • точечная (питтинговая) коррозия;
  • щелевая коррозия и коррозия под напряжением.

В зависимости от условий окружающей среды, нагружения и функционального назначения детали любой из видов коррозии может явиться причиной преждевременного разрушения. Кроме того, неправильное применение алюминиевых деталей и изделий может усугублять коррозионные процессы.

Электрохимическая коррозия алюминия

Наиболее частые ошибки проектирования алюминиевых конструкций связаны с гальванической коррозией. Гальваническая или электрохимическая коррозия происходит, когда два разнородных металла образуют электрическую цепь, замыкаемую жидким или пленочным электролитом или коррозионной средой. В этих условиях разность потенциалов между разнородными металлами создает электрический ток, проходящий через электролит, который (ток) и приводит к коррозии в первую очередь анода или менее благородного металла из этой пары.

Сущность гальванической коррозии

Когда два различных металла находятся в прямом контакте с электропроводящей жидкостью, то опыт показывает, что один из них может корродировать, то есть подвергаться коррозии. Это называют гальванической коррозией.

Другой металл не будет корродировать, наоборот, он будет защищен от этого вида коррозии.

Этот вид коррозии отличается от тех видов коррозии, которые могли бы возникнуть, если бы оба эти металлы были помещены раздельно в ту же самую жидкость. Гальваническая коррозия может случиться с любым металлом, как только два различных металла будут находиться в контакте в электропроводящей жидкости.

Внешний вид гальванической коррозии

Внешний вид гальванической коррозии является очень характерным. Эта коррозия не раскидывается по всей поверхности изделия, как это бывает с точечной – питтинговой – коррозий. Гальваническая коррозия плотно локализована в зоне контакта алюминия с другим металлом. Коррозионное воздействие на алюминий имеет равномерный характер, он развивается в глубь в виде кратеров, которые имеют более или менее округлую форму [3[.

Все алюминиевые сплавы подвергаются идентичной гальванической коррозии [3].

Принцип батареи

Гальваническая коррозия работает как батарея, которая состоит из двух электродов:

  • катода, где происходит реакция восстановления
  • анода, где происходит реакция окисления.

Эти два электрода погружены в проводящую жидкость, которая называется электролитом. Электролит – это обычно разбавленный кислотный раствор, например, серной кислоты, или соляной раствор, например, сульфат меди. Эти два электрода соединены снаружи электрической цепью, которая обеспечивает циркуляцию электронов. Внутри жидкости передача электрического тока происходит путем перемещения ионов. Жидкость, таким образом, обеспечивает ионное электрическое соединение (рисунок х).

Рисунок 1 – Принцип гальванической ячейки [3]

Рисунок 1 показывает ячейку, в которой электролитом является раствор серной кислоты. Серная кислота полностью диссоциирована в воде (поскольку является сильной кислотой) путем образования ионов Н + , которые определяют кислотность среды. Происходит следующая электрохимическая реакция [3]:

на медном катоде восстанавливаются протоны Н + :

Полная реакция имеет вид:

Эта ячейка производит электричество за счет потребления цинка, который выделяется в виде гидроксида цинка Zn(OH)2.

Для работы ячейки необходимо одновременное выполнение трех условий:

  • два различных металла, которые образуют два электрода;
  • присутствие электролита;
  • непрерывность всей электрической цепочки.

Если хотя бы одно из этих условий не выполняется, например, если нарушается электрический контакт, то ячейка не будет производить электричество, и окисления на аноде не будет происходить (также как и восстановления на катоде).

Условия для гальванической коррозии

Гальваническая коррозия основана на том же самом принципе и для того, чтобы она происходила необходимо одновременное выполнение следующих трех условий [3]:

  • различные типы металлов;
  • присутствие электролита;
  • электрический контакт между двумя металлами.

Различные типы металлов

Для любых металлов, которые относятся к различным их типам, гальваническая коррозия является возможной. Металл с электроотрицательным потенциалом (или более электроотрицательный металл, если они оба электроотрицательные) действует как анод.

Тенденцию различных металлов образовывать гальванические пары и направленность электрохимического действия в различных коррозионных средах (морской воде, тропическом климате, промышленной атмосфере и т.д.) показывают в так называемых гальванических рядах. Чем далее удалены друг от друга металлы в этих рядах, тем более серьезной может быть электрохимическая коррозия. В разных коррозионных средах эти последовательности металлов могут быть разными (рисунок 2).

Присутствие электролита

Область контакта должна быть смочена водным раствором, чтобы обеспечивать ионную электропроводимость. В противном случае отсутствует возможность для гальванической коррозии.

Электрический контакт между металлами

Электрический контакт между металлами может происходить или путем прямого контакта между двумя металлами, или через крепежное соединение, например, болт.

Как видно из графиков рисунка 2 алюминий и его сплавы становятся анодами в гальванических ячейках с большинством металлов, и алюминий корродирует, как говорят, жертвенно и защищает от коррозии другой металл гальванической пары.

Только магний и цинк, включая и оцинкованную сталь, являются более анодными и поэтому, сами подвергаясь коррозии, защищают от нее алюминий.

Алюминий и кадмий вообще имеют почти одинаковые электродные потенциалы и поэтому ни алюминий, ни кадмий не подвергаются гальванической коррозии. К сожалению, кадмий признан весьма токсичным и все реже применяется, а во многих странах просто запрещен, как антикоррозионная защита.

Гальванические пары

Относительное расположение двух металлов или сплавов в гальваническом ряду указывает только возможность гальванической коррозии, если различие их гальванических потенциалов является достаточно большим. Больше этот ряд ничего не говорит, и особенно ничего – о скорости или интенсивности гальванической коррозии. Она может быть нулевой или несущественной или даже незаметной. Ее интенсивность зависит от типов металлов, которые входят в контакт – гальванической пары.

Пара: алюминий – нелегированная сталь

В строительных конструкциях алюминиевые детали, которые открыты для воздействия климатических и погодных воздействий, могут соединяться винтами из обычной стали. Опыт показывает, что алюминий в контакте со стальными винтами подвергается только очень поверхностной коррозии. Возникающая ржавчина, которая не оказывает никакого влияния на алюминий, полностью пропитывает слой оксида алюминия и образует на поверхности пятна. Фактически, для алюминиевой конструкции в контакте с незащищенной сталью важнее будет ее влияние на внешний вид и декоративные качества, а не способность сопротивляться коррозии.

Это явление имеет следующее объяснение:

  • на поверхностях контакта образуются пленки с продуктами коррозии – ржавчины на стали и оксида алюминия на алюминии, которые и замедляют электрохимические реакции.

Пара: алюминий – оцинкованная сталь

Судя по гальваническому ряду, цинк является более электроотрицательным, чем алюминий. Крепеж из оцинкованной стали может, поэтому, применяться для соединения и сборки конструкций из алюминиевых сплавов. Надо помнить, что когда цинковое покрытие станет слишком изношенным, чтобы защищать сталь и алюминий, наступает предыдущий сценарий контакта между алюминием и голой сталью [3] .

Пара: алюминий – нержавеющая сталь

Хотя и существует большая разность потенциалов между нержавеющей сталью и алюминиевыми сплавами – около 650 мВ, очень редко можно увидеть гальваническую коррозию на алюминии в контакте с нержавеющей сталью. Поэтому алюминиевые конструкции очень часто собираются с применением болтов и винтов из нержавеющей стали [3].

Пара: алюминий – медь

Контакт между алюминиевыми сплавами и медью, а также медными сплавами (бронза, латунь) приводит к совершенно незначительной гальванической коррозии алюминия под воздействием атмосферных условий. Тем не менее, рекомендуется обеспечивать электрическую изоляцию между этими двумя металлами, чтобы локализовать коррозию алюминия.

Необходимо отметить, что продуктом коррозии меди является, так называемая, патина. Эта патина – голубовато-зеленый налет на меди, который состоит в основном из карбоната меди. Эта патина химически воздействует на алюминий и может восстанавливаться с образованием малых частиц меди. Эти медные частицы, в свою очередь, могут вызывать локальную питтинговую коррозию алюминия [3].

Ближе к контакту – больше коррозия

Ускоренная гальваническая коррозия обычно наиболее интенсивна вблизи мест соединения двух металлов; с удалением от мест соединения ее интенсивность уменьшается. Существенное влияние на скорость коррозии оказывает величина отношения площади поверхности катода, контактирующей с электролитом, к площади незащищенной поверхности анода. Желательно иметь малое отношение площади катода к площади анода.

Как избежать гальванической коррозии

  1. Выбирать в пару алюминию или его сплаву металл, который как можно более ближе к нему в гальваническом ряду для рассматриваемой коррозионной среды (см. рисунок 2).
  2. Применять «катодный» крепеж. Избегать комбинаций с неблагоприятным (большим) отношением площадей катода к аноду (рисунок 3).
  3. Обеспечивать полную электрическую изоляцию двух соединяемых металлов. Это может быть выполнено с помощью изолирующих прокладок, втулок, шайб и т.п. (рисунок 4).
  4. Если применяется окраска, всегда нужно красить катод. Если покрасить только анод, любая царапина на нем даст неблагоприятное отношение поверхностей катода к аноду и приведет к коррозии царапины.
  5. Увеличивать толщину анода или устанавливать в соединение заменяемые массивные прокладки из анодного металла.
  6. По возможности размещать гальванический контакт вне коррозионной среды.
  7. Избегать резьбовых соединений из металлов, образующих гальваническую пару. Заменять их паяными или сварными соединениями.
  8. Если возможно, применять ингибиторы коррозии, например, в системах с циркуляцией жидкости, которая может играть роль электролита для гальванической коррозии.
  9. В случаях, когда металлы должны оставаться в электрическом контакте через наружную электрическую цепь, нужно разнести их как можно дальше друг от друга для увеличения сопротивления жидкой цепи (электролита).
  10. При необходимости и там, где это возможно, применять катодную защиту с цинковым или магниевым жертвенными анодами.
  11. В наиболее агрессивных средах только цинк, кадмий и магний могут быть в контакте с алюминием без возникновения гальванической коррозии. Заметим, что применение кадмиевых покрытий в значительной степени ограничено из-за их экологической небезопасности.

Гальваническая пара, погруженная в кислотный (или щелочной) раствор, будет корродировать (разрушаться под действием коррозии). Этот процесс называется гальванической коррозией. Как правило, соединения разных металлов всегда подвержены коррозии (если не электролитической, так атмосферной). Но некоторые пары металлов корродируют намного сильнее. Ниже приведён список металлов, которые не рекомендуется применять в паре.

Недопустимые гальванические пары:

первая пара:
алюминий и все сплавы на его основе;
медь и её сплавы, серебро, золото, платина, палладий, родий, олово, никель, хром, нелегированная сталь;

вторая пара:
магниево-алюминиевые сплавы;
сталь легированная и нелегированная, хром, никель, медь, свинец, олово, золото, серебро, платина, палладий, родий;

третья пара:
цинк и его сплавы;
медь и её сплавы, серебро, золото, платина, палладий, родий;

четвёртая пара:
сталь нелегированная, олово, свинец, кадмий;
медь, серебро, золото, платина, палладий, родий;

пятая пара:
никель, хром;
серебро, золото, платина, палладий, родий;

шестая пара:
титан и его сплавы;
алюминий и его сплавы.

Необходимо избегать механического соединения деталей, изготовленных из металлов с заметно разными электрохимическими потенциалами. Например, недопустимо соединять латунные детали алюминиевой заклёпкой. Для выбора материалов в этих случаях можно руководствоваться таблицей электрохимических потенциалов (или так называемым электрохимическим рядом).

Читайте также: