Металл основной оксид соль металл

Обновлено: 11.05.2024

Химические вещества можно разделить на две группы: простые и сложные.

Простые вещества состоят из атомов одного элемента (О2, P4).

Сложные вещества состоят из атомов двух и более элементов (CaO, H3PO4).

Простые вещества можно разделить на металлы и неметаллы.

Металлы – это простые вещества, в которых атомы соединены между собой металлической химической связью. Металлы стремятся отдавать электроны и характеризуются металлическими свойствами (металлический блеск, высокая электро- и теплопроводность, пластичность и др.).

Неметаллы – это простые вещества, в которых атомы соединены ковалентными (или межмолекулярными) связями. Неметаллы стремятся принимать или притягивать электроны. Неметаллические свойства – это способность принимать или притягивать электроны.

Все элементы в Периодической системе химических элементов (ПСХЭ) расположены либо в главной подгруппе, либо в побочной. В различных формах короткопериодной ПСХЭ главные и побочные подгруппы расположены по-разному. Есть простой способ, который позволит вам быстро и надежно определять, к какой подгруппе относится элемент. Дело в том, что все элементы второго периода расположены в главной подгруппе. Те элементы, которые расположены в ячейке точно под элементами второго периода (справа или слева), относятся к главной подгруппе. Остальные — к побочной.

Например , в таблице Менделеева, которая используется на ЕГЭ по химии, элемент номер 31, галлий, расположен в ячейке справа, точно под соответствующим ему элементом второго периода, бором. Следовательно, галлий относится к главной подгруппе. А вот скандий, элемент номер 21, расположен в ячейке слева. Следовательно, скандий относится к побочной подгруппе.

Неметаллы расположены в главных подгруппах, в правом верхнем угле ПСХЭ. К металлам относятся все элементы побочных подгрупп и элементы главных подгрупп, расположенные в левой нижней части ПСХЭ. Разделяют металлы и неметаллы обычно, проводя условную линию от бериллия до астата. На рисунке показано точное разделение на металлы и неметаллы. Закрашены цветом неметаллы.


Основные классы сложных веществ — это оксиды, гидроксиды, соли.


Оксиды — это сложные вещества, которые состоят из атомов двух элементов, один из которых кислород, имеющий степень окисления -2.

В зависимости от второго элемента оксиды проявляют разные химические свойства. Некоторым оксидам соответствуют гидроксиды (солеобразующие оксиды), а некоторым нет (несолеобразующие).

Солеобразующие оксиды делят на основные, амфотерные и кислотные.

Основные оксиды — это оксиды, которые проявляют характерные основные свойства. К ним относят оксиды, образованные атомами металлов со степенью окисления +1 и +2 . Например, оксид лития Li2O, оксид железа (II) FeO.

Амфотерные оксиды — это оксиды, которые проявляют и основные, и кислотные свойства. Это оксиды металлов со степенью окисления +3 и +4 , а также четыре оксида со степенью окисления +2: ZnO, PbO, SnO и BeO .

Несолеобразующие оксиды не проявляют характерных основных или кислотных свойств, им не соответствуют гидроксиды. К несолеобразующим относят четыре оксида: CO, NO, N2O и SiO .

Встречаются и оксиды, похожие на соли, т.е. солеобразные (двойные).

Двойные оксиды — это некоторые оксиды, образованные элементом с разными степенями окисления. Например , магнетит (магнитный железняк) FeO·Fe2O3.

Алгоритм определения типа оксида: сначала определяем, какой элемент образует оксид – металл или неметалл . Если это металл, то определяем степень окисления, затем определяем тип оксида. Если это неметалл, то оксид кислотный (если это не исключение).

Гидроксиды — это сложные вещества, в составе которых есть группа Э-O-H. К гидроксидам относятся основания, амфотерные гидроксиды, и кислородсодержащие кислоты.

Солеобразующим оксидам соответствуют гидроксиды:

основному оксиду соответствует гидроксид основание ,

кислотному оксиду соответствует гидроксид кислота ,

амфотерному оксиду соответствует амфотерный гидроксид .

Например , оксид хрома (II) CrO — основный, ему соответствует гидроксид основание. Формулу гидроксида легко получить, просто добавив к металлу гидроксидную группу OH: Cr(OH)2.

Оксид хрома (VI) — кислотный, ему соответствует гидроксид кислота H2CrO4, и кислотный остаток хромат-ион CrO4 2- .

Если все индексы кратны 2, то мы делим все индексы на 2.

Например : N2O5 + H2O → H2N2O6, делим на 2, получаем HNO3. Так получаем мета-формулу кислоты. Если мы добавим еще одну молекулу воды, то получим орто-формулу кислоты.

Например : оксид P2O5, мета-форма: HPO3. Добавляем воду, орто-форма: H3PO4. Орто-форма устойчива у фосфора и мышьяка.

Оксид хрома (III) — Cr2O3 — амфотерный, ему соответствует амфотерный гидроксид, который может выступать и как основание, и как кислота: Cr(OH)3 = HCrO2, кислотный остаток хромит: CrO2 — .

Взаимосвязь оксидов и гидроксидов:

Основания (основные гидроксиды) — это сложные вещества, которые при диссоциации в водных растворах в качестве анионов (отрицательных ионов) образуют только гидроксид-ионы OH — .

Основания можно разделить на растворимые в воде ( щелочи ), нерастворимые в воде, и разлагающиеся в воде .


К разлагающимся в воде (неустойчивым) основаниям относят гидроксид аммония, гидроксид серебра (I), гидроксид меди (I). В водном растворе такие соединения практически необратимо распадаются:

2AgOH → Ag2O + H2O

2CuOH → Cu2O + H2O

Основания с одной группой ОН – однокислотные (например, NaOH ) , с двумя – двухкислотные (Ca(OH)2) и с тремя – трехкислотные (Fe(OH)3) .


Кислоты – это сложные вещества, которые при диссоциации в водных растворах образуют в качестве катионов только ионы гидроксония H3O + (H + ). Кислоты состоят из водорода H + и кислотного остатка.

По числу атомов водорода, которые можно заместить на металлы: одноосновные (HNO3), двухосновные (H2SO4), трехосновные (H3PO4) и т.д.


По содержанию атомов кислорода кислоты бывают бескислородные ( например , соляная кислота HCl) и кислородсодержащие ( например , серная кислота H2SO4).


Кислоты также можно разделить на сильные и слабые.

Сильные кислоты. К ним относятся:

  • Бескислородные кислоты: HCl, HBr, HI . Остальные бескислородные кислоты, как правило, слабые.
  • Некоторые высшие кислородсодержащие кислоты: H2SO4, HNO3, HClO4 и др.

Слабые кислоты . К ним относятся:

Определить, сильная кислота перед вами, или слабая, позволяет простой прием. Мы вычитаем из числа атомов O в кислоте число атомов H. Если получаем число 2 или 3, то кислота сильная. Если 1 или 0 — то кислота слабая.

Например : HClO: 1-1 = 0, следовательно, кислота слабая.

Соли – сложные вещества, состоящие из катиона металла (или металлоподобных катионов, например, иона аммония NH4 + ) и аниона кислотного остатка. Также солями называют вещества, которые могут быть получены при взаимодействии кислот и оснований с выделением воды.

Если рассматривать соли, как продукты взаимодействия кислоты и основания, то соли делят на средние , кислые и основные .

Средние соли – продукты полного замещения катионов водорода в кислоте на катионы металла ( например , Na2CO3, K3PO4).

Кислые соли – продукты неполного замещения катионов водорода в кислоте на катионы металлов ( например , NaHCO3, K2HPO4).

Основные соли – продукты неполного замещения гидроксогрупп основания на анионы кислотных остатков кислоты ( например , малахит (CuOH)2CO3).

По числу катионов и анионов соли разделяют на:

Простые соли – состоящие из катиона одного типа и аниона одного типа ( например , хлорид кальция CaCl2).

Двойные соли – это соли, состоящие из двух или более разных катионов и аниона одного типа ( например , алюмокалиевые квасцы – KAl(SO4)2).

Смешанные соли – это соли, состоящие из катиона одного типа и двух или более анионов разного типа ( например , хлорид-гипохлорит кальция Ca(OCl)Cl).

По структурным особенностям выделяют также гидратные соли и комплексные соли.

Гидратные соли (кристаллогидраты) – это такие соли, в состав которых входят молекулы кристаллизационной воды ( например , декагидрат сульфата натрия Na2SO4·10 H2O).

Комплексные соли – это соли, содержащие комплексный катион или комплексный анион (K3[Fe(CN)6], [Cu(NH3)4]Cl2).


Помимо основных классов неорганических соединений, существуют и другие.

Например , бинарные соединения элементов с водородом.

Водородные соединения – это сложные вещества, состоящие из двух элементов, один из которых водород. Водород образует солеобразные гидриды и летучие водородные соединения.

Солеобразные гидриды ЭНх – это соединения металлов IA, IIA групп и алюминия с водородом. Степень окисления водорода равна -1. Например , гидрид натрия NaH.

Летучие водородные соединения НхЭ – это соединения неметаллов с водородом, в которых степень окисления водорода равна +1. Например , аммиак NH3, фосфин PH3.


Тренировочный тест «Классификация неорганических веществ» 10 вопросов, при каждом прохождении новые.

Взаимосвязь различных классов неорганических веществ

Как уже известно, существует четыре класса неорганических соединений. К ним относятся оксиды, основания, кислоты и соли. При подробном изучении способов получения каждого класса соединений можно проследить определенную взаимосвязь между всеми классами. Например, из кислот можно получить соли, из оксидов основания и так далее. Такая связь называется генетической.

Следовательно, генетическая связь – это связь между классами неорганических соединений, которая основана на получении веществ одного класса из веществ другого класса, а также их химических свойств.

На основании данной связи составляют генетические ряды, которые включают в себя представителей разных классов, но состоящие из одного элемента.

Генетическую связь можно представить в виде схемы.

Взаимосвязь различных классов неорганических веществ

Из данной схемы видно, что существует определенная взаимосвязь между классами. Основополагающими элементами генетического ряда являются либо металл, либо неметалл.

  • Для получения оксида необходимо осуществить взаимодействие металла либо неметалла с кислородом.
  • При взаимодействии с водой из основного оксида можно получить основание, а из кислотного – кислоту.
  • Соль образуется при различных реакциях между всеми классами неорганических соединений. Например, металл + неметалл, основный оксид + кислотный оксид, основание + кислота и так далее.

Можно выделить два типа генетических рядов, которые мы и рассмотрим.

1. Генетический ряд металла

Металл → Основный оксид → Основание → Соль

  • Ряд кальция: Ca → CaO → Ca(OH)2 → Ca Cl2;
  • Ряд натрия: Na → Na2O → NaOH → Na3PO4;
  • Ряд магния: Mg → MgO → Mg(OH)2 → Mg(NO3)2;
  • Ряд железа: Fe → FeO → Fe(OH)2 → FeSO4.

Рассмотрим взаимосвязь в данных рядах на примере магния.

  • Для получения оксида магния из чистого металла, осуществим реакцию взаимодействия с кислородом.
  • При взаимодействии основного оксида с водой, в частности оксида магния, получим основание – гидроксид магния.
  • Для получения соли из нерастворимого основания, необходимо добавить кислоту.

2. Генетический ряд неметалла

Неметалл → Кислотный оксид → Кислота → Соль

Рассмотрим взаимосвязь в данных рядах на примере углерода.

  • Для получения оксида углерода осуществим реакцию взаимодействия с кислородом – горение. Протекает с выделением энергии.
  • При взаимодействии кислотного оксида с водой, в частности оксида углерода, получим угольную кислоту.
  • Для получения соли из кислоты, необходимо добавить основание.

Для составления генетических цепочек необходимо знать химические свойства каждого класса неорганических соединений, а также валентные возможности того элемента, который лежит в основе генетического ряда.

Урок №43. Оксиды: классификация, номенклатура, свойства, получение, применение

Сегодня мы начинаем подробное знакомство с важнейшими классами неорганических соединений.

Неорганические вещества по составу делятся, как вы уже знаете, на простые (металлы и неметаллы), состоящие из одного вида атомов и сложные , состоящие из нескольких видов атомов .

Сложные неорганические вещества подразделяют на четыре класса: оксиды, кислоты, основания, соли.

По наличию в составе молекулы одновалентных гидроксильных групп ОН (I) выделяют неорганические вещества под названием "гидроксиды".

ОКСИДЫ

Оксиды - это сложные вещества, состоящие из двух химических элементов, один из которых кислород, с валентностью II . Лишь один химический элемент - фтор, соединяясь с кислородом, образует не оксид, а фторид кислорода OF 2 .

Называются они просто - "оксид + название элемента" (см. таблицу). Если валентность химического элемента переменная, то указывается римской цифрой, заключённой в круглые скобки, после названия химического элемента.

Классификация оксидов

Все оксиды можно разделить на две группы: солеобразующие (основные, кислотные, амфотерные) и несолеобразующие или безразличные.

1). Основные оксиды – это оксиды, которым соответствуют основания. К основным оксидам относятся оксидыметаллов 1 и 2 групп, а также металлов побочных подгрупп с валентностью I и II (кроме ZnO - оксид цинка и BeO – оксид берилия):

2). Кислотные оксиды – это оксиды, которым соответствуют кислоты. К кислотным оксидам относятся оксиды неметаллов (кроме несолеобразующих – безразличных), а также оксиды металлов побочных подгрупп с валентностью от V до VII . Например, CrO 3 -оксид хрома (VI), Mn 2 O 7 - оксид марганца (VII)):

3). Амфотерные оксиды – это оксиды, которым соответствуют основания и кислоты. К ним относятся оксиды металлов главных и побочных подгрупп с валентностью III, иногда IV , а также цинк и бериллий (Например, BeO, ZnO, Al 2 O 3 , Cr 2 O 3 ).

4). Несолеобразующие оксиды – это оксиды безразличные к кислотам и основаниям. К ним относятся оксиды неметаллов с валентностью I и II (Например, N 2 O, NO, CO).

Вывод: характер свойств оксидов в первую очередь зависит от валентности элемента.

Например, оксиды хрома:

Классификация по растворимости в воде

Кислотные оксиды

Растворимы в воде.

Исключение – SiO 2

Основные оксиды

В воде растворяются только оксиды щелочных и щелочноземельных металлов (это металлы I «А» и II «А» групп, исключение Be, Mg)

Амфотерные оксиды

С водой не взаимодействуют. В воде не растворимы

Выполните задания:

1. Выпишите отдельно химические формулы солеобразующих кислотных и основных оксидов.

2. Даны вещества: CaO, NaOH, CO 2 , H 2 SO 3 , CaCl 2 , FeCl 3 , Zn(OH) 2 , N 2 O 5 , Al 2 O 3 , Ca(OH) 2 , N 2 O, FeO, SO 3 , Na 2 SO 4 , ZnO, CaCO 3 , Mn 2 O 7 , CuO, KOH, CO, Fe(OH) 3 . Выпишите оксиды и классифицируйте их.

Физические свойства оксидов

При комнатной температуре большинство оксидов - твердые вещества (СаО, Fe 2 O 3 и др.), некоторые - жидкости (Н 2 О, Сl 2 О 7 и др.) и газы (NO, SO 2 и др.).

Химические свойства оксидов

ХИМИЧЕСКИЕ СВОЙСТВА ОСНОВНЫХ ОКСИДОВ

1. Основной оксид + Кислотный оксид = Соль (р. соединения)

ХИМИЧЕСКИЕ СВОЙСТВА КИСЛОТНЫХ ОКСИДОВ

2. Кислотный оксид + Основание = Соль + Н 2 О (р. обмена)

3. Основной оксид + Кислотный оксид = Соль (р. соединения)

4. Менее летучие вытесняют более летучие из их солей

ХИМИЧЕСКИЕ СВОЙСТВА АМФОТЕРНЫХ ОКСИДОВ

Взаимодействуют как с кислотами, так и со щелочами.

ZnO + 2 HCl = ZnCl 2 + H 2 O

ZnO + 2 NaOH + H 2 O = Na 2 [Zn(OH) 4 ] ( в растворе)

ZnO + 2 NaOH = Na 2 ZnO 2 + H 2 O (при сплавлении)

Применение оксидов

Некоторые оксиды не растворяются в воде, но многие вступают с водой в реакции соединения:

В результате часто получаются очень нужные и полезные соединения. Например, H 2 SO 4 – серная кислота, Са(ОН) 2 – гашеная известь и т.д.

Если оксиды нерастворимы в воде, то люди умело используют и это их свойство. Например, оксид цинка ZnO – вещество белого цвета, поэтому используется для приготовления белой масляной краски (цинковые белила). Поскольку ZnO практически не растворим в воде, то цинковыми белилами можно красить любые поверхности, в том числе и те, которые подвергаются воздействию атмосферных осадков. Нерастворимость и неядовитость позволяют использовать этот оксид при изготовлении косметических кремов, пудры. Фармацевты делают из него вяжущий и подсушивающий порошок для наружного применения.

Такими же ценными свойствами обладает оксид титана (IV) – TiO 2 . Он тоже имеет красивый белый цвет и применяется для изготовления титановых белил. TiO 2 не растворяется не только в воде, но и в кислотах, поэтому покрытия из этого оксида особенно устойчивы. Этот оксид добавляют в пластмассу для придания ей белого цвета. Он входит в состав эмалей для металлической и керамической посуды.

Оксид хрома (III) – Cr 2 O 3 – очень прочные кристаллы темно-зеленого цвета, не растворимые в воде. Cr 2 O 3 используют как пигмент (краску) при изготовлении декоративного зеленого стекла и керамики. Известная многим паста ГОИ (сокращение от наименования “Государственный оптический институт”) применяется для шлифовки и полировки оптики, металлических изделий, в ювелирном деле.

Химические свойства основных оксидов


Подробно про оксиды, их классификацию и способы получения можно прочитать здесь.

1. Взаимодействие с водой. С водой способны реагировать только основные оксиды, которым соответствуют растворимые гидроксиды (щелочи). Щелочи образуют щелочные металлы (литий, натрий, калий, рубидий и цезий) и щелочно-земельные (кальций, стронций, барий). Оксиды остальных металлов с водой химически не реагируют. Оксид магния реагирует с водой при кипячении.

CuO + H2O ≠ (реакция не идет, т.к. Cu(OH)2 — нерастворимый гидроксид)

2. Взаимодействие с кислотными оксидами и кислотами. При взаимодействии основным оксидов с кислотами образуется соль этой кислоты и вода. При взаимодействии основного оксида и кислотного образуется соль:

основный оксид + кислота = соль + вода

основный оксид + кислотный оксид = соль

При взаимодействии основных оксидов с кислотами и их оксидами работает правило:

Хотя бы одному из реагентов должен соответствовать сильный гидроксид (щелочь или сильная кислота).

Иными словами, основные оксиды, которым соответствуют щелочи, реагируют со всеми кислотными оксидами и их кислотами. Основные оксиды, которым соответствуют нерастворимые гидроксиды, реагируют только с сильными кислотами и их оксидами (N2O5, NO2, SO3 и т.д.).

Основные оксиды, которым соответствуют щелочи Основные оксиды, которым соответствуют нерастворимые основания
Реагируют со всеми кислотами и их оксидами Реагируют только с сильными кислотами и их оксидами
Na2O + SO2 → Na2SO3 CuO + N2O5 → Cu(NO3)2

3. Взаимодействие с амфотерными оксидами и гидроксидами.

При взаимодействии основных оксидов с амфотерными образуются соли:

основный оксид + амфотерный оксид = соль

С амфотерными оксидами при сплавлении взаимодействуют только основные оксиды, которым соответствуют щелочи . При этом образуется соль. Металл в соли берется из более основного оксида, кислотный остаток — из более кислотного. В данном случае амфотерный оксид образует кислотный остаток.

CuO + Al2O3(реакция не идет, т.к. Cu(OH)2 — нерастворимый гидроксид)

(чтобы определить кислотный остаток, к формуле амфотерного или кислотного оксида добавляем молекулу воды: Al2O3 + H2O = H2Al2O4 и делим получившиеся индексы пополам, если степень окисления элемента нечетная: HAlO2. Получается алюминат-ион AlO2 — . Заряд иона легко определить по числу присоединенных атомов водорода — если атом водорода 1, то заряд аниона будет -1, если 2 водорода, то -2 и т.д.).

Амфотерные гидроксиды при нагревании разлагаются, поэтому реагировать с основными оксидами фактически не могут.

4. Взаимодействие оксидов металлов с восстановителями.

При оценке окислительно-восстановительной активности металлов и их ионов можно использовать электрохимический ряд напряжений металлов:


Восстановительные свойства (способность отдавать электроны) у простых веществ-металлов здесь увеличиваются справа налево, окислительные свойства ионов металлов — увеличиваются наоборот, слева направо. При этом некоторые ионы металлов в промежуточных степенях окисления могут проявлять также восстановительные свойства (например ион Fe 2+ можно окислить до иона Fe 3+ ).

Более подробно про окислительно-восстановительные реакции можно прочитать здесь.

Таким образом, ионы некоторых металлов — окислители (чем правее в ряду напряжений, тем сильнее). При взаимодействии с восстановителями металлы переходят в степень окисления 0.

4.1. Восстановление углем или угарным газом.

Углерод (уголь) восстанавливает из оксидов до простых веществ только металлы, расположенные в ряду активности после алюминия. Реакция протекает только при нагревании.

FeO + C = Fe + CO


Активные металлы, расположенные в ряду активности левее алюминия, активно взаимодействуют с углеродом, поэтому при взаимодействии их оксидов с углеродом образуются карбиды и угарный газ:

CaO + 3C = CaC2 + CO

Угарный газ также восстанавливает из оксидов только металлы, расположенные после алюминия в электрохимическом ряду:

CuO + CO = Cu + CO2


4.2. Восстановление водородом .

Водород восстанавливает из оксидов только металлы, расположенные в ряду активности правее алюминия. Реакция с водородом протекает только в жестких условиях – под давлением и при нагревании.

CuO + H2 = Cu + H2O


4.3. Восстановление более активными металлами (в расплаве или растворе, в зависимости от металла)

При этом более активные металлы вытесняют менее активные. То есть добавляемый к оксиду металл должен быть расположен левее в ряду активности, чем металл из оксида. Реакции, как правило, протекают при нагревании.

Например , оксид цинка взаимодействует с алюминием:

3ZnO + 2Al = Al2O3 + 3Zn

но не взаимодействует с медью:

ZnO + Cu ≠

Восстановление металлов из оксидов с помощью других металлов — это очень распространенный процесс. Часто для восстановления металлов применяют алюминий и магний. А вот щелочные металлы для этого не очень подходят – они слишком химически активны, что создает сложности при работе с ними.

Алюмотермия – это восстановление металлов из оксидов алюминием.

Например : алюминий восстанавливает оксид меди (II) из оксида:

3CuO + 2Al = Al2O3 + 3Cu

Магниетермия – это восстановление металлов из оксидов магнием.

CuO + Mg = Cu + MgO


Железо можно вытеснить из оксида с помощью алюминия:

При алюмотермии образуется очень чистый, свободный от примесей углерода металл.

4.4. Восстановление аммиаком.

Аммиаком можно восстанавливать только оксиды неактивных металлов. Реакция протекает только при высокой температуре.

Например , аммиак восстанавливает оксид меди (II):

3CuO + 2NH3 = 3Cu + 3H2O + N2

5. Взаимодействие оксидов металлов с окислителями.

Под действием окислителей некоторые основные оксиды (в которых металлы могут повышать степень окисления, например Fe 2+ , Cr 2+ , Mn 2+ и др.) могут выступать в качестве восстановителей.

Например , оксид железа (II) можно окислить кислородом до оксида железа (III):

Химические свойства и способы получения солей

Перед изучением этого раздела рекомендую прочитать следующую статью:

Соли – это сложные вещества, которые состоят из катионов металлов и анионов кислотных остатков.

Классификация солей

Получение солей

1. Соли можно получить взаимодействием кислотных оксидов с основными.

кислотный оксид + основный оксид = соль

Например , оксид серы (VI) реагирует с оксидом натрия с образованием сульфата натрия:

2. Взаимодействие кислот с основаниями и амфотерными гидроксидами. При этом щелочи взаимодействуют с любыми кислотами: и сильными, и слабыми.

Щелочь + любая кислота = соль + вода

Например , гидроксид натрия реагирует с соляной кислотой:

HCl + NaOH → NaCl + H2O

При взаимодействии щелочей с избытком многоосновной кислоты образуются кислые соли.

Например , гидроксид калия взаимодействует с избытком фосфорной кислоты с образованием гидрофосфата калия или дигидрофосфата калия:

Нерастворимые основания реагируют только с растворимыми кислотами.

Нерастворимое основание + растворимая кислота = соль + вода

Например , гидроксид меди (II) реагирует с серной кислотой:

Все амфотерные гидроксиды — нерастворимые. Следовательно, они ведут себя как нерастворимые основания при взаимодействии с кислотами:

Амфотерный гидроксид + растворимая кислота = соль + вода

Например , гидроксид цинка (II) реагирует с соляной кислотой:

Также соли образуются при взаимодействии аммиака с кислотами (аммиак проявляет основные свойства).

Аммиак + кислота = соль

Например , аммиак реагирует с соляной кислотой:



3. Взаимодействие кислот с основными оксидами и амфотерными оксидами. При этом растворимые кислоты взаимодействуют с любыми основными оксидами.

Растворимая кислота + основный оксид = соль + вода

Растворимая кислота + амфотерный оксид = соль + вода

Например , соляная кислота реагирует с оксидом меди (II):

2HCl + CuO → CuCl2 + H2O


4. Взаимодействие оснований с кислотными оксидами. Сильные основания взаимодействуют с любыми кислотными оксидами.

Щёлочь + кислотный оксид → соль + вода

Например , гидроксид натрия взаимодействует с углекислым газом с образованием карбоната натрия:

При взаимодействии щелочей с избытком кислотных оксидов, которым соответствуют многоосноосновные кислоты, образуются кислые соли.

Например , при взаимодействии гидроксида натрия с избытком углекислого газа образуется гидрокарбонат натрия:

NaOH + CO2 → NaHCO3

Нерастворимые основания взаимодействуют только с кислотными оксидами сильных кислот.

Например , гидроксид меди (II) взаимодействует с оксидом серы (VI), но не вступает в реакцию с углекислым газом:



5. Соли образуются при взаимодействии кислот с солями. Нерастворимые соли взаимодействуют только с более сильными кислотами (более сильная кислота вытесняет менее сильную кислоту из соли). Растворимые соли взаимодействуют с растворимыми кислотами, если в продуктах реакции есть осадок, газ или вода или слабый электролит.

Например: карбонат кальция CaCO3 (нерастворимая соль угольной кислоты) может реагировать с более сильной серной кислотой.

Силикат натрия (растворимая соль кремниевой кислоты) взаимодействует с соляной кислотой, т.к. в ходе реакции образуется нерастворимая кремниевая кислота:


6. Соли можно получить окислением оксидов, других солей, металлов и неметаллов (в щелочной среде) в водном растворе кислородом или другими окислителями.

Например , кислород окисляет сульфит натрия до сульфата натрия:

7. Еще один способ получения солей — взаимодействие металлов с неметаллами . Таким способом можно получить только соли бескислородных кислот.

Например , сера взаимодействует с кальцием с образованием сульфида кальция:

Ca + S → CaS

8. Соли образуются при растворении металлов в кислотах . Минеральные кислоты и кислоты-окислители (азотная кислота, серная концентрированная кислота) реагируют с металлами по-разному.

Кислоты-окислители реагируют с металлами с образованием продуктов восстановления азота и серы. Водород в таких реакциях не выделяется!

Минеральные кислоты реагируют по схеме:

металл + кислота → соль + водород

При этом с кислотами реагируют только металлы, расположенные в ряду активности левее водорода. А образуется соль металла с минимальной степенью окисления.

Например , железо растворяется в соляной кислоте с образованием хлорида железа (II):

Fe + 2HCl → FeCl2 + H2


9. Соли образуются при взаимодействии щелочей с металлами в растворе и расплаве. При этом протекает окислительно-восстановительная реакция, в растворе образуется комплексная соль и водород, в расплаве — средняя соль и водород.

! Обратите внимание! С щелочами в растворе реагируют только те металлы, у которых оксид с минимальной положительной степенью окисления металла амфотерный!

Например , железо не реагирует с раствором щёлочи, оксид железа (II) — основный. А алюминий растворяется в водном растворе щелочи, оксид алюминия — амфотерный:

2Al + 2NaOH + 6 H2 + O = 2Na[ Al +3 (OH)4] + 3 H2 0

10. Соли образуются при взаимодействии щелочей с неметаллами. При этом протекают окислительно-восстановительные реакции. Как правило, неметаллы диспропорционируют в щелочах. Не реагируют с щелочами кислород, водород, азот, углерод и инертные газы (гелий, неон, аргон и др.):

NaOH +О2

NaOH +N2

NaOH +C ≠

Сера, хлор, бром, йод, фосфор и другие неметаллы диспропорционируют в щелочах (т.е. самоокисляются-самовосстанавливаются).

Например , хлор при взаимодействии с холодной щелочью переходит в степени окисления -1 и +1:

2NaOH + Cl2 0 = NaCl — + NaOCl + + H2O

Хлор при взаимодействии с горячей щелочью переходит в степени окисления -1 и +5:

6NaOH + Cl2 0 = 5NaCl — + NaCl +5 O3 + 3H2O

Кремний окисляется щелочами до степени окисления +4.

Например , в растворе:

2NaOH + Si 0 + H2 + O= Na2Si +4 O3 + 2H2 0

Фтор окисляет щёлочи:

2F2 0 + 4NaO -2 H = O2 0 + 4NaF — + 2H2O

Более подробно про эти реакции можно прочитать в статье Окислительно-восстановительные реакции.

11. Соли образуются при взаимодействии солей с неметалами. При этом протекают окислительно-восстановительные реакции. Один из примеров таких реакций — взаимодействие галогенидов металлов с другими галогенами. При этом более активный галоген вытесняет менее активный из соли.

Например , хлор взаимодействует с бромидом калия:

2KBr + Cl2 = 2KCl + Br2

Но не реагирует с фторидом калия:

KF +Cl2

Химические свойства солей

1. В водных растворах соли диссоциируют на катионы металлов Ме + и анионы кислотных остатков. При этом растворимые соли диссоциируют почти полностью, а нерастворимые соли практически не диссоциируют, либо диссоциируют только частично.

Например , хлорид кальция диссоциирует почти полностью:

CaCl2 → Ca 2+ + 2Cl –

Кислые и основные соли диссоциируют cтупенчато. При диссоциации кислых солей сначала разрываются ионные связи металла с кислотными остатком, затем диссоциирует кислотный остаток кислой соли на катионы водорода и анион кислотного остатка.

Например , гидрокарбонат натрия диссоциирует в две ступени:

NaHCO3 → Na + + HCO3

HCO3 – → H + + CO3 2–

Основные соли также диссоциируют ступенчато.

Например , гидроксокарбонат меди (II) диссоциирует в две ступени:

CuOH + → Cu 2+ + OH –

Двойные соли диссоциируют в одну ступень.

Например , сульфат алюминия-калия диссоциирует в одну ступень:

Смешанные соли диссоциируют также одноступенчато.

Например , хлорид-гипохлорит кальция диссоциирует в одну ступень:

CaCl(OCl) → Ca 2+ + Cl — + ClO –

Комплексные соли диссоциируют на комплексный ион и ионы внешней сферы.

Например , тетрагидроксоалюминат калия распадается на ионы калия и тетрагидроксоалюминат-ион:


2. Соли взаимодействуют с кислотными и амфотерными оксидами . При этом менее летучие оксиды вытесняют более летучие при сплавлении.

соль1 + амфотерный оксид = соль2 + кислотный оксид

соль1 + твердый кислотный оксид = соль2 + кислотный оксид

соль + основный оксид ≠

Например , карбонат калия взаимодействует с оксидом кремния (IV) с образованием силиката калия и углекислого газа:

Карбонат калия также взаимодействует с оксидом алюминия с образованием алюмината калия и углекислого газа:

3. Соли взаимодействуют с кислотами. Закономерности взаимодействия кислот с солями уже рассмотрены в данной статье в разделе «Получение солей».

4. Растворимые соли взаимодействуют с щелочами. Реакция возможна, только если образуется газ, осадок, вода или слабый электролит, поэтому с щелочами взаимодействуют, как правило, соли тяжелых металлов или соли аммония.

Растворимая соль + щелочь = соль2 + основание

Например , сульфат меди (II) взаимодействует с гидроксидом калия, т.к. образуется осадок гидроксида меди (II):

Хлорид аммония взаимодействует с гидроксидом натрия:

Кислые соли взаимодействуют с щелочами с образованием средних солей.

Кислая соль + щелочь = средняя соль + вода

Например , гидрокарбонат калия взаимодействует с гидроксидом калия:


5. Растворимые соли взаимодействуют с солями. Реакция возможна, только если обе соли растворимые, и в результате реакции образуется осадок.

Растворимая соль1 + растворимая соль2 = соль3 + соль4

Растворимая соль + нерастворимая соль ≠

Например , сульфат меди (II) взаимодействует с хлоридом бария, т.к. образуется осадок сульфата бария:

Некоторые кислые соли взаимодействуют с кислыми солями более слабых кислот. При этом более сильные кислоты вытесняют более слабые:

Кислая соль1 + кислая соль2 = соль3 + кислота

Например , гидрокарбонат калия взаимодействует с гидросульфатом калия:

Некоторые кислые соли могут реагировать со своими средними солями.

Например , фосфат калия взаимодействует с дигидрофосфатом калия с образованием гидрофосфата калия:


6. C оли взаимодействуют с металлами. Более активные металлы (расположенные левее в ряду активности металлов) вытесняют из солей менее активные.

Например , железо вытесняет медь из раствора сульфата меди (II):

CuSO4 + Fe = FeSO4 + Cu

А вот серебро вытеснить медь не сможет:

CuSO4 + Ag ≠

Обратите внимание! Если реакция протекает в растворе, то добавляемый металл не должен реагировать с водой в растворе. Если мы добавляем в раствор соли щелочной или щелочноземельный металл, то этот металл будет реагировать преимущественно с водой, а с солью будет реагировать незначительно.

Например , при добавлении натрия в раствор хлорида цинка натрий будет взаимодействовать с водой:

2H2O + 2Na = 2NaOH + H2

Образующийся гидроксид натрия, конечно, будет реагировать с хлоридом цинка:

ZnCl2 + 2NaOH = 2NaCl + Zn(OH)2

Но сам-то натрий с хлоридом цинка, таким образом, взаимодействовать напрямую не будет!

ZnCl2(р-р) + Na ≠

А вот в расплаве эта реакция при определенных условиях уже может протекать, так как в расплаве никакой воды нет.

ZnCl2(р-в) + 2Na = 2NaCl + Zn

И еще один нюанс. Чтобы получить расплав, соль необходимо нагреть. Но многие соли при нагревании разлагаются. И реагировать с металлом, естественно, при этом не могут. Таким образом, реагировать с металлами в расплаве могут только те соли, которые не разлагаются при нагревании. А разлагаются при нагревании почти все нитраты, нерастворимые карбонаты и некоторые другие соли.

Например , нитрат меди (II) в расплаве не реагирует с железом, так как при нагревании нитрат меди разлагается:

Образующийся оксид меди, конечно, будет реагировать с железом:

CuO + Fe = FeO + Cu

Но сам-то нитрат меди, получается, с железом реагировать напрямую не будет!


При добавлении меди (Cu) в раствор соли менее активного металла – серебра (AgNO3) произойдет химическая реакция:

2AgNO3 + Cu = Cu(NO3)2 + 2Ag

При добавлении железа (Fe) в раствор соли меди (CuSO4) на железном гвозде появился розовый налет металлической меди:

При добавлении цинка в раствор нитрата свинца (II) на цинке образуется слой металлического свинца:

7. Некоторые соли при нагревании разлагаются .

Соли, в составе которых есть сильные окислители, разлагаются с окислительно-восстановительной реакцией. К таким солям относятся:

NH4NO3 → N2O + 2H2O

NH4NO2 → N2 + 2H2O

(NH4)2Cr2O7 → N2 + 4H2O + Cr2O3

2AgNO3 → 2Ag +2NO2 + O2

2AgCl → 2Ag + Cl2

Некоторые соли разлагаются без изменения степени окисления элементов. К ним относятся:

MgСO3 → MgO + СО2

2NaНСО3 → Na2СО3 + СО2 + Н2О

  • Карбонат, сульфат, сульфит, сульфид, хлорид, фосфат аммония:

NH4Cl → NH3 + HCl

(NH4)2CO3 → 2NH3 + CO2 + H2O

(NH4)2SO4 → NH4HSO4 + NH3


7. Соли проявляют восстановительные свойства . Как правило, восстановительные свойства проявляют либо соли, содержащие неметаллы с низшей степенью окисления, либо соли, содержащие неметаллы или металлы с промежуточной степенью окисления.

Например , йодид калия окисляется хлоридом меди (II):

4KI — + 2Cu +2 Cl2 → 4KCl + 2Cu + l + I2 0


8. Соли проявляют и окислительные свойства . Как правило, окислительные свойства проявляют соли, содержащие атомы металлов или неметаллов с высшей или промежуточной степенью окисления. Окислительные свойства некоторых солей рассмотрены в статье Окислительно-восстановительные реакции.

Читайте также: