Металлические материалы и их приготовление

Обновлено: 04.10.2024

Понятие и характеристика металлов и сплавов. Основные сырьевые компоненты для получения металлов. Технологические операции при производстве металлических материалов. Строительные материалы из чугуна. Эстетические свойства и классификация металлов.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 07.06.2016
Размер файла 17,9 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Металлические материалы и их классификация

Металлы - кристаллические вещества, характеризующиеся высокими электро - и теплопроводностью, ковкостью, способностью хорошо отражать электромагнитные волны и другими специфическими свойствами. Свойства металлов обусловлены их строением: в их кристаллической решетке есть не связанные с металлами электроны, которые могут свободно перемещаться. Обычно применяют не чистые металлы, а сплавы.

Сплавы - это системы, состоящие из нескольких металлов или металлов и неметаллов. Сплавы обладают всеми характерными свойствами металлов.

Металлы тела твёрдые, ковкие и блестящие. Металлы, применяемые для производства строительных материалов, разделяют на две группы: чёрные и цветные. Чёрные металлы представляют собой сплав железа с углеродом - чугун или сталь. К цветным относят алюминий, медь, цинк, олово, никель, титан, магний и др.

Сырьё. Основным сырьевым компонентом для получения металлов являются рудные горные породы. Содержание в рудах цветных металлов сравнительно мало. В железных рудах количество металла достигает 70 %. Алюминиевые руды, преимущественно бокситы, содержит 50-60% оксида алюминия (глинозёма).

Основы технологии. Основные технологические операции при производстве металлических материалов: обработка сырья, дозировка, плавка, формование. При необходимости изменения эстетических характеристик лицевой поверхности применяют механические и химические способы её отделки, лаки, краски, наносят тонкие металлические или полимерные плёнки.

Обработка сырья предполагает дробление, промывку и обогащение железных руд. В процессе плавки получают металлы, после формования - металлические материалы.

Металлы для материалов, как правило, представляют собой сплавы - железа с углеродом (чугун, сталь), алюминиевые, медные (бронза - с оловом, латунь - с цинком), магниевые, титановые и др.

Номенклатура

Строительные материалы из чугуна - опорные части колонн, тюбинги - укрепляющие своды тоннелей, трубы, радиаторы, сантех изделия. Перечень материалов ограничен, т.к чугун обладает существенными недостатками - высокой плотностью и хрупкостью. Весьма редко в современном строительстве используют архитектурно-художественные детали, полученные способ литья из чугуна: детали оград, решёток, кронштейнов, фонарей и др. металл технологический эстетический чугун

Наиболее распространены в строительстве материалы из стали. В основном применяют углеродистую сталь обыкновенного качества (выделяют также качественную, высококачественную и особовысококачественные стали с соответствующим уменьшением вредных примесей), а также легированные стали.

Номенклатура стальных материалов включает различные профили и листы, оболочки, мембраны, тросы, канаты, черепицу, закладные детали, декоративно-художественные изделия.

Профили применяют различного сечения, их вид определяется способом получения. В массовом количестве используют профили, полученные способом проката.

Заметно снижается масса ряда металлических конструкций, повышаются их прочность и надёжность при внедрении гнутых профилей, сортамент которых достаточно разнообразен.

Сложные стальные профили получают способами непрерывного литья и прессования.

Листовую сталь толщиной до 6 мм; тонколистовую кровельную и оцинкованную сталь - толщиной 0,4 - 0,8 мм. Листовую сталь изготавливают с плоской, волнистой и рифлёной поверхностью.

Номенклатура материалов из других цветных металлов ограничено в связи с их высокой стоимостью.

Свойства

Эксплуатационно-технические свойства металлических материалов определяются их оригинальным строением.

Средняя плотность металлических материалов сравнительно высока ( например, стальных около 7860 кг/мі).

Пористость ,гигроскопичность, водопоглощение у металлических материалов отсутствуют.

Предел прочности стальных материалов при сжатии, изгибе и растяжении - 300 - 400 МПа, но может достигать 1000 МПа и более. Материалы их алюминиевых сплавов при меньшей средней плотности (около 2800 кг/мі) не уступают стальным по характерным прочностным показателям (предел прочности до 670 МПа).

Наряду с высокой прочностью, к положительным свойствам металлических материалов (кроме чугуна) относится пластичность - способность выдерживать большие остаточные деформации без разрушения и при сохранении прочности.

Основной недостаток широко применяемых стальных и других металлических материалов - способность к коррозии.

Для защиты материалов от коррозии применяют защитные покрытия, электрохимическую защиту и замедлители коррозии (ингибиторы), изменяющие состав коррозийной среды.

В строительной практике для защиты конструкций чаще используют лакокрасочные и др. покрытия поверхности.

Некоторые металлы, например алюминий, сами предохраняют себя от коррозии в некоторых средах в результате образовавшихся на их поверхности защитных плёнок при взаимодействии со средой.

Классификация

Единой классификации сплавов нет. Их классифицируют:

· по основному компоненту на:

5) титановые и др.;

· по числу компонентов на:

1) двухкомпонентные (двойные);

2) трёхкомпонентные (тройные);

· по технологии изготовления полуфабрикатов и изделий на:

3) порошковые (спеченные) и др.;

· по плотности на:

1) лёгкие (магниевые, бериллиевые, алюминиевые, титановые сплавы) с малой плотностью (до 5000 кг/м3);

2) тяжелые (стареющие сплавы, главным образом на основе вольфрама) с высокой (не менее 15 ООО кг/м3) плотностью;

· по температуре плавления на:

1) легкоплавкие, имеющие низкую температуру плавления (припои, баббиты и др.);

2) тугоплавкие (сплавы на основе ниобия, молибдена, тантала, вольфрама и др.), температура плавления которых выше 1800 °С;

· по применению на:

1) антифрикционные (сплавы с низким коэффициентом трения и высоким уровнем износостойкости);

2) коррозионно-стойкие (сплавы на основе железа, никеля, меди, алюминия, титана и других элементов, отличающиеся повышенной коррозионной стойкостью в различных агрессивных средах);

3) криогенные (прецизионные сплавы на основе железа, никеля, алюминия, характеризующиеся комплексом тепловых, электрических, магнитных, механических свойств и предназначенные для работы при низких температурах (от -269 до +20 °С);

4) магнитные (сплавы, обладающие ферромагнетизмом);

5) немагнитные (сплавы на основе меди, алюминия, железа, магнитная проницаемость которых близка к единице);

6) пружинные (сплавы на железной, медной, никелевой, кобальтовой и других основах с высоким пределом упругости и релаксационной стойкостью) и т.д.

Эстетические характеристики

Металлических материалов оригинальны и регулируются в широких пределах, причём в ряде случаев цветовая палитра обогащается в процессе эксплуатации. Так, медь и её сплавы окисляясь кислородом воздуха покрываются защитной плёнкой - патиной, которая с течении времени приобретает множество цветовых оттенков. Сам процесс коррозии металла в начальной стадии может использоваться для получения своеобразного цветового оттенка стали. После окисления и приобретения красно-коричневого цвета металл покрывают прозрачным защитным лаком.

Цвет стали можно изменять после механической (шлифование или полирование) и термической (при температуре 200 - 300 єС) обработки поверхности. На ней образуется оранжевая или синеватая плёнка, которая одновременно защищает металл от коррозии. Известны способы изготовления стали золотистого и розового цвета, электролитические процессы окрашивания нержавеющей стали в оранжевый, красный, голубой, синий, зелёный цвета.

Часто металлические материалы не нуждаются в отделке поверхности с эстетической точки зрения. Чёрный цвет чугуна, тёмно-серый стали, золотисты и зелёновато-коричневый у бронзы и меди, серебристо-белый у алюминия, как правило, отвечают эстетическим требованиям. Но лакокрасочные и металлические (анодирование - анодное оксидирование и др) покрытия не только меняют цвет лицевой поверхности, но и защищают металл от коррозии.

Фактура лицевой поверхности металлов может быть рельефной, шероховатой, гладкой, матовой или блестящей.

Области применения

Металлические материалы (преимущественно стальные) в современной архитектурно-строительной практике применяются для следующих основных типов конструкций зданий и сооружений: с жесткими металлическими связями; подвесных систем; большепролётных с растянутыми ограждающими поверхностями.

Разнообразные каркасы промышленных и гражданских зданий, в том числе каркасы зданий повышенной этажности (более 30 этажей), большепролётные покрытия, мосты и путепроводы, радио- и телевизионные башни - представители конструкций зданий с жёсткими связями.

Весьма популярны металлические профили для пространственных конструкций каркасов общественных зданий.

Стальные профили являются основными материалами для каркасов зданий повышенной этажности (30 - 40 и более этажей).

Формообразующая роль металлических материалов хорошо проявляется в различных пространственных конструкциях мостов и путепроводов.

Стальные профили используют для пространственных стержневых систем, жёстко заделанных в основании радио- и телевизионных высотных башен.

Подвесные системы включают различные типы висячих мостов, подвесных большепролётных покрытий, консольно-подвесные конструкции, здания с подвешенными этажами. Металлические профили в жёстких функциональном и опорном контурах, гибкие канаты (ванты) образуют соответствующие архитектурно-пространственные формы.

Важно отметить, что металлические материалы могут служить средством создания динамичных архитектурных форм - многовариантных трансформирующихся конструкций.

Листы из стали и алюминиевых сплавов для кровельных и стеновых ограждений промышленных и жилых зданий, профили для оконных переплётов часто используются в современной архитектурно-строительной практике.

В интерьерах промышленных и общественных зданий профилированные и гладкие листы из стали и алюминиевых сплавов используются для стационарных и сборно-разборных перегородок, подвесных потолков, отделки стен.

При использовании металлических материалов, как конструкционно-отделочных, так и отделочных, следует учитывать характерное восприятие их физической сущности и оригинальной поверхности, связанное, как правило, с ощущениями прочности, холода, чистоты, в том числе чистоты с экологической точки зрения.

Подобные документы

Эксплуатационные свойства металлов. Классификация металлических материалов. Черные и цветные металлы, их сплавы. Стали для режущих и измерительных инструментов. Стали и сплавы со специальными свойствами. Сплавы алюминия и меди. Сплавы с "эффектом памяти".

курсовая работа [1,6 M], добавлен 19.03.2013

Классификация цветных металлов, особенности их обработки и области применения. Производство алюминия и его свойства. Классификация электротехнических материалов. Энергетическое отличие металлических проводников от полупроводников и диэлектриков.

курсовая работа [804,3 K], добавлен 05.12.2010

Распространенность металлов в природе. Содержание металлов в земной коре в свободном состоянии и в виде сплавов. Классификация областей современной металлургии в зависимости от методов выделения металлов. Характеристика металлургических процессов.

презентация [2,4 M], добавлен 19.02.2015

Химический состав чугуна, характеристика его элементов. Влияние значения марганцевого эквивалента на эксплуатационную стойкость чугунных изделий. Процесс кристаллизации металлов и сплавов. Способы защиты металлов от коррозии. Область применения прокатки.

контрольная работа [30,5 K], добавлен 12.08.2009

Основные понятия литейного производства. Особенности плавки сплавов черных и цветных металлов. Формовочные материалы, смеси и краски. Технология изготовления отливок. Виды и направления обработки металлов давлением. Механизмы пластической деформации.

презентация [4,7 M], добавлен 25.09.2013

Особенности поликристаллических и тонкопленочных металлов. Функции металлов в радио-, опто- и микроэлектронике. Проводники толстопленочных геоинформационная систем – стеклоэмали и пленочные материалы. Сверхпроводниковые материалы, их основные свойства.

контрольная работа [529,4 K], добавлен 15.12.2015

Классификация сплавов черных металлов по свойствам. Содержание примесей в чугуне. Сырые материалы (шихта). Топливо и флюсы в металлургии чугуна, характеристика некоторых железных руд. Производство чугуна на АО "АрселорМиттал Темиртау". Качество чугуна.

Металлические материалы и их классификация

Металлические материалы

Общие сведения о металлах и сплавах. Строение металлов и их свойства. Производство металлических изделий и конструкций. Холодное профилирование металла. Способы обработки металлов давлением. Прочность, твердость, ударная вязкость, усталость металлов.

Рубрика Производство и технологии
Вид доклад
Язык русский
Дата добавления 09.04.2015
Размер файла 16,2 K

Тема: Металлические материалы

МЕТАЛЛИЧЕСКИЕ МАТЕРИАЛЫ И ИЗДЕЛИЯ

Развитие народного хозяйства нашей страны неразрывно связано с развитием металлургической промышленности. Чем больше производится металлов, тем больше может быть выпущено станков, автомобилей, тракторов и других машин для народного хозяйства.

Из металлов в строительстве наиболее широко применяют стали и чугуны. Из стального проката возводят каркасы промышленных и гражданских зданий, мосты, изготовляют арматуру для железобетона, кровельную сталь, трубы, а также различные металлические изделия, заклепки, болты, гвозди.

Широкому использованию металла в строительстве способствует ряд ценных технических свойств: высокая прочность, пластичность, повышенная теплопроводность, электропроводность и свариваемость. Наряду с этим металлы обладают и недостатками; при действии различных газов и влаги сильно корродируют, а с повышением температуры деформируются.

Общие сведения о металлах и сплавах

Металлы, применяемые в строительстве, разделяются на две группы: черные и цветные.

* Черные металлы представляют собой сплав железа с углеродом. Кроме углерода черные металлы в небольшом количестве могут содержать кремний, марганец, фосфор, серу и другие химические элементы. Для придания черным металлам специфических свойств к ним добавляют некоторые так называемые легирующие вещества -- медь, никель, хром и др. Черные металлы в зависимости от содержания углерода подразделяют на чугуны и стали.

Чугун -представляет собой сплав железа и углерода 2. 4,3%. В специальных чугунах -- ферросплавах -- количество углерода может достигать 5% и более. Присутствующие в чугуне кремний, марганец, фосфор и сера существенно влияют на его свойства: сера и фосфор повышают хрупкость чугуна, а специальная присадка хрома, никеля, магния, алюминия и кремния придает! чугуну более высокие жаростойкость, износостойкость, повышен сопротивляемость коррозии. Чугуны с добавкой указанных веществ называются легированными. В зависимости от формы, в о Торой углерод находится в чугуне, различают чугуны серые (литейные) и белые (передельные). В серых чугунах углерод находится в свободном состоянии в виде графита, а в белом -- в связанном состоянии в виде цемента. Пластинки графита, перерезающие металлическую структуру чугуна, понижают его прочность. Модифицированный серый чугун имеет более высокие механические свойства благодаря шаровидной и раздробленной форме графита.

Сталь содержит углерода до 2%. В отличие от чугуна -- хрупкого металла -- сталь пластична, упруга и обладает высокими технологическими свойствами (способностью обрабатываться). В зависимости от назначения различают стали конструкционные, содержащие 0,02. 0,85% углерода, и инструментальные -- 0,65. 1,4%. Конструкционные стали, применяемые для строительных конструкций и арматуры железобетона, а также в машиностроении, обладают хорошей пластичностью, низкой хрупкостью. Повышение же углерода в инструментальных сталях придает им высокую твердость и хрупкость. Механические и физические свойства сталей (жаростойкость, износостойкость, коррозионная стойкость) повышаются добавкой к ним никеля, хрома, вольфрама, молибдена, кобальта, меди, алюминия и др., называемых легирующими веществами, а стали -- легированными. В зависимости от величины легирующих добавок различают стали низколегированные, содержащие до 2% легирующих веществ, среднелегированные -- 2. 10% и высоколегированные -- более 10%. Строители широко применяют низколегированную сталь. Нержавеющая сталь является высоколегированной.

* Цветные металлы и сплавы подразделяются по плотности на легкие и тяжелые. К легким относятся сплавы на основе алюминия, магния, а к тяжелым -- на основе меди, никеля. олова, свинца. За последние годы в технологии металлургии внедрены новые усовершенствования: освоен эффективный метод вакуумной обработки живой стали; получены новые виды высокопрочных сталей и чугунов; разработана эффективная технология получения алюминия из нефелинов; освоены новые виды облегченного проката, гнутого из лент и полос, диффузионный метод сварки металлов в вакууме, легирование с вакуумной обработкой, широко развивается порошковая металлургия.

* Строение металлов и их свойства. Металлы и металлические сплавы представляют собой кристаллические тела, состоящие из бесчисленного множества кристаллических образований, группирующихся в виде отдельных прочно связанных между собой зерен. Большинство их имеет кубическую объемно центрир0 ванную (хром, ванадий, молибден, вольфрам и некоторые другие) и кубическую гранецентрированную решетки (алюминий медь, никель, свинец, золото и серебро). Железо может быть в нескольких кристаллических формах с различным расположением атомов. Это явление называется аллотропией. Аллотропические превращения железа наблюдаются при изменении температуры. Железо из расплавленной массы кристаллизуется в форме решетки объемно центрированного куба ( 9.1, /) __ 6-модификация железа; при охлаждении до температуры 1390°С она перекристаллизовывается в решетку гранецентрированного куба ( 9.1,2) --у-модификация железа, а при 898°С снова образует решетку объемно центрированного куба 0- и а-модификации. Аллотропия железа имеет большое значение в процессах горячей механической и термической обработки чугуна и стали. Главную роль при этом играют а и ^-модификации железа. Регулируя закалкой, отжигом и другими способами содержание этих модификаций в сталях, придают им заданные механические свойства.

Плотность большинства металлов превышает 7000 кг/м3, а плотность легких металлов (алюминия, бериллия, магния) менее 3000 кг/м3. Чем меньше плотность металла, тем легче и эффективнее оказываются строительные конструкции из него. Вот почему конструкции из сплавов на основе алюминия все шире применяются в строительстве.

Температуру плавления металлов важно знать для выбора режима горячей обработки металлов и получения изделий литьем. Температура плавления металла изменяется при добавке к нему других веществ. Большинство сплавов, например на основе железа, имеют температуру плавления ниже, чем входное в их состав металлы. Однако некоторые сплавы цветных металлов, например никеля и алюминия, имеют более высокую температуру плавления, чем чистый никель и алюминий. Изменение температуры плавления металла от содержания в нем других веществ характеризуется диаграммой состояния.

Расширение металлов при нагревании характеризуется коэффициентом линейного и объемного расширения. Это свойство металла необходимо учитывать при проектировании металлических строительных конструкций, так как последние под действием изменяющейся температуры могут вызвать разрушение сооружения. Важно учитывать это свойство металла при сварке, так как в результате местного нагрева свариваемых деталей может произойти образование трещин.

Механические свойства металлов характеризуются их прочностью, твердостью, ударной вязкостью, усталостью и ползучестью.

Прочность -- это способность металла или сплава сопротивляться действию внешних сил. В зависимости от характера этих сил различают прочность при растяжении, сжатии, изгибе, кручении. Характеризуются они соответствующим пределом прочности, т. е. условным напряжением, при котором испытуемый образец металла разрушается. Универсально испытание на растяжение, применяемое для всех металлов и сплавов. Специфическим, например, для серого чугуна, является испытание при сжатии и изгибе.

При испытании металлов при растяжении определяют предел текучести -- напряжение, при котором растяжение образца происходит без увеличения растягивающей нагрузки. Этот показатель служит основным при расчете металлических конструкций.

На ползучесть, т. е. способность деформироваться под постоянной нагрузкой, испытывают металлы, непрерывно работающие под напряжением. В результате ползучести могут увеличиваться прогибы строительных конструкций, произойти потеря устойчивости. Особенно опасна ползучесть арматурной стали в предварительно напряженных железобетонных конструкциях. Как результат ее, могут произойти потеря предварительного напряжения арматуры, образование трещин в бетоне и разрушение конструкции.

Производство металлических изделий и конструкций

металл сплав давление конструкция

При изготовлении металлических изделий расплавленный чугун или сталь разливают по специальным формам, называемым изложницами, а затем слитки металла от 500 кг до нескольких (иногда десятков) тонн подвергают дальнейшей обработке давлением или литьем, в результате которой получают изделия требуемых форм, размеров и свойств. Затем изделия соединяют в конструкцию с помощью сварки, клепки или болтов. Обработка Давлением основана на высоких пластичных свойствах металла. На практике применяют следующие способы обработки металлов давлением: прокат, ковку, волочение, штамповку и прессование.

* Прокат -- наиболее распространенный и дешевый способ производства металлических изделий. Сущность проката заключается в обжатии металла между вращающимися валками, при этом заготовка уменьшается в сечении, вытягивается и приобретает форму, соответствующую валкам, если последние це. гладкие. Прокатывают металл в холодном и горячем состоянии" Холодный прокат применяют для металлов, обладающих высокой пластичностью (свинец, олово), или для получения тончайших стальных листов (по причине их быстрого остывания) Однако подавляющее большинство стальных изделий прокатывают в горячем состоянии при температуре 900. 1250°С. Обжатие стального слитка до требуемой формы и размера производят за несколько последовательных приемов путем пропуска его через ряд валков с уменьшающимся зазором. Способом прокатки получают большинство стальных строительных изделий: балки, рельсы, листовую и прутковую сталь, арматуру трубы.

* Ковка -- процесс деформации металла под действием повторяющихся ударов молота или пресса. Ковка может быть свободная, когда металл при ударе молота имеет возможность свободно растекаться во все стороны, и штампованная, когда металл, растекаясь под ударами молота, заполняет формы штампов, а избыток его вытекает в специальную канавку и отрезается. Штамповка позволяет получить изделия очень точных размеров. В условиях строительства пользуются преимущественно свободной ковкой для изготовления различных деталей (болтов, скоб, анкеров), для пробивки отверстий, рубки и резки металла. Клепка также относится к операциям ковки. В настоящее время ковку производят посредством механических молотов.

* Волочение заключается в протягивании металлической заготовки через отверстие, сечение которого меньше сечения заготовки. В результате этого металл обжимается, а профиль его строго соответствует форме отверстия. В качестве заготовки используют предварительно прокатанный или прессованный пруток или трубу. Волочение металла производят обычно в холодном состоянии, при этом получают изделия точных профилей с чистой и гладкой поверхностью. Способом волочения изготовляют тонкостенные изделия (трубки), а также круглые, квадратные, шестиугольные прутки небольшой площади сечения (до 10 мм2).

При волочении в металле появляется так называемый наклеп -- упрочнение металла в результате пластической деформации. Наклеп повышает твердость стали, но снижает пластичность и вязкость. Явление наклепа вызывает старение стали -- структурные изменения, повышающие ее хрупкость. Старение стали особенно опасно в конструкциях, подвергающихся ударной нагрузке (в железнодорожных мостах, рельсах, подкрановых балках). Однако явление наклепа широко используют на практике при механическом упрочнении арматурной стали для повышения предела текучести.

* Холодное профилирование металла -- процесс деформирования листовой или круглой стали на прокатных станах. Из листов0й стали получают гнутые профили с различной конфигурацией в поперечнике, они экономичнее профилей горячей прокатки о3 счет сокращения толщины профиля до 2 мм.

Общие сведения о металлах и сплавах. Технология изготовления чугуна и стали. Строение и основные свойства железоуглеродистых сплавов. Углеродистые и легированные стали. Стальной прокат, арматура и изделия. Коррозия металлов и способы защиты от нее.

лекция [473,3 K], добавлен 16.04.2010

Методика производства стали в конвейерах, разновидности конвейеров и особенности их применения. Кристаллическое строение металлов и её влияние на свойства металлов. Порядок химико-термической обработки металлов. Материалы, применяющиеся в тепловых сетях.

контрольная работа [333,8 K], добавлен 18.01.2010

Импульсные методы обработки металлов давлением. Сведения о взрывчатых веществах: оборудование для штамповки взрывом. Процесс гидровзрывной штамповки. Электрогидравлические установки для штамповки деталей. Сущность магнитно-импульсной обработки металлов.

реферат [811,8 K], добавлен 10.05.2009

Понятие металла, электронное строение и физико-химические свойства цветных и черных металлов. Характеристика железных, тугоплавких и урановых металлов. Описание редкоземельных, щелочных, легких, благородных и легкоплавких металлов, их использование.

реферат [25,4 K], добавлен 25.10.2014

Лекция 1. Материалы, их классификация и области применения

Основные понятия о материалах, их строении, свойствах, термической обработке и областях применения. Исторический обзор применения материалов. Вклад отечественных ученых в развитие материаловедения.

1.Предмет материаловедения. Классификация материалов.

2. История материаловедения(хронология событий).

3. Современные керамические материалы

4. Современные биоматериалы

5. Дисперсные материалы

Предмет материаловедения.

Материаловедение - научная дисциплина о структуре, свойствах и назначении материалов.

Свойства технических материалов формируются в процессе их изготовления. При одинаковом химическом составе, но разной технологии изготовления, образуется разная структура, и вследствие, свойства.

Назначение материала определяется требованиями конструкции (конструкционные критерии - прочность, долговечность, коррозийные свойства и т.п.) и возможностью переработки в изделие (технологические критерии - коэффициент обрабатываемости резанием, сварки и обработки давлением и т.п.). Стоимость технического материала связана с затратами на его производство и уровнем запасов его в промышленном и государственном резервах, с содержанием в Земной коре веществ и элементов, необходимых для его производства. Поэтому так важно знание о содержании элементов и веществ в земной коре. В последние годы в классификации машиностроительных материалов применяют параметры удельной прочности и энергрозатрат производства материалов. Они показывают, что наилучшими сочетаниями свойств для машин обладают титан и алюминий. Классификация известных материалов находит свое отражение в Государственных Стандартах (ГОСТ).

Исторически для техники наиболее важными были металлы и сплавы, в первую очередь стали и чугуны, медь.

Содержание металлов и элементов в Земной коре следующие:

Медь Сu = 0.01 %, Серебро =4*10-6 %, Олово =6*10-4%, Титан =0.58 %, Магний =1.94 %, Золото =5*10-7%, Бериллий = 5*10-4%, Цинк = 2*10-2 %, Железо =4.7 %, Алюминий =7.5 %, Кремний =25.7 %, Свинец =8*10-4 %, Хром =3.3*10-2 %, Никель = 1.8*10-2 %.

Анализ приведенных данных показывает, что наиболее перспективным элементом для использования в технике является алюминий, это совпадает с общемировой тенденцией машиностроения. Усилия разработчиков новых материалов направлены на создание материалов на основе тугоплавких соединений: нитридов и боридов в кристаллической и аморфной формах, пригодных для применения. Наибольшее распространение в авиационной, космической и специальной технике приобретает нитрид кремния (SiN).

Классификация материалов

В общем случае классификация материалов включат в себя три основных разновидности материалов: металлические материалы, неметаллические материалы, композиционные материалы. По геометрическим признакам материалы и вещества принято классифицировать по виду полуфабрикатов: листы, профили, гранулы, порошки , волокна и т.п.. Поскольку материал того или иного полуфабриката изготавливается по разной технологии, применяют разделение по структуре.

Металлические материалы принято классифицировать по основному компоненту. Различают черную и цветную металлургию. К материалам черной металлургии принадлежат стали, чугуны, ферросплавы и сплавы на основе железа, легированные цветными металлами в количестве превосходящим стали. К материалам цветной металлурги принадлежат важнейшие цветные металлы - алюминий, медь, цинк, свинец, никель, олово и сплавы на их основе. К металлическим материалам относятся и материалы порошковой металлургии. Неметаллические материалы различают по основным классам: резина, керамика, стекло, пластические массы, ситаллы. Композиционными материалы - сложные или составные материалы, состоящие из двух разнородных материалов (например: стекла и пластмассы - стеклопластики) принято классифицировать по типу структуры, материалу матрицы, назначению и способу изготовления.

Технические материалы принято классифицировать по назначению:

материалы приборостроения, машиностроительные материалы, и более подробно, например стали для судостроения или мостостроения. В научном аспекте материалы разделяют по типу структуры: аморфные, кристаллические, гетерофазные. При выборе материала для той или иной детали или конструкции учитывают экономическую целесообразность его применения.

Детерминированный хаос

Движущие силы

0 – «абсолютный» хаос

I - обратимость

II - нелинейное поведение

III – бифуркации (>2 управляющих параметров)

IV – переход к детерминированному хаосу

Таким образом, подходы самоорганизации и динамического хаоса позволяют:

• С единых позиций объяснить многие разрозненные наблюдения в области создания и функционирования материалов,

• Предложить принципиально новый путь получения материалов в форме ДС,

• Улучшить традиционную керамическую технологию,

• Дать рекомендации, облегчающие получение материалов с воспроизводимыми свойствами.

Предпочтительные реагенты

• Стехиометрические молекулярные соединения

• Твердые растворы изоструктурных бинарных солей

((NH4)2SO4*MSO4*6H2O, M=Fe, Co, Ni, Mg, Mn, Zn, Cu)

• Криохимически гомогенизированные соли (а также

другие методы химической гомогенизации: RESS,

пиролиз аэрозолей, золь-гель. )

Современные биоматериалы

Основная черта нового тысячелетия – возрастающий интерес к увеличению качества и продолжительности человеческой жизни. Достижение подобной цели предполагает, в частности, создание материалов для искусственных органов и тканей. За последние 30 лет использовано более 40 различных материалов (керамика, металлы, полимеры) для лечения, восстановления и замены более 40 различных частей человеческого тела, включая кожные покровы, мышечную ткань, кровеносные сосуды, нервные волокона, костную ткань. Разработка заменителей костной ткани знаменует, по словам проф. Л. Хенча, революционный этап в развитии человечества: “Тысячелетия тому назад открытие того, что огонь может превратить бесформенную глину в керамическую утварь, привело к возникновению земледельческой цивилизации и радикально улучшило качество и продолжительность жизни. Другая революция произошла уже в наши дни в

области использования керамики в медицинских целях. Это инновационное

применение специально спроектированных керамических материалов для

замены и лечения больных или поврежденных частей тела” [1]. Эту область

современного материаловедения именуют (не вполне, впрочем, справедливо)

биокерамикой, она охватывает материалы для эндопротезов в травматологии и ортопедии, пломбировочные материалы в стоматологии, имплантаты в челюстно-лицевой хирургии, медико-косметические средства. В настоящее время рынок биокерамики имеет емкость ∼2.3 млрд.$, прогнозируемый годовой прирост составляет 7-12 %, объемы требуемых материалов оцениваются на уровне десятков тонн [1,2]. Число больных,

нуждающихся в операциях по восстановлению целостности кости, довольно

велико: для США эта цифра составляет 1 млн. человек и более ежегодно (из

них свыше 300 тыс. – протезирование тазобедренного и коленного суставов,

такой же порядок имеют зубные имплантаты). Динамика продвижения идеи на рынок биоматериалов имеет ряд особенностей, связанных с прохождением

длительных тестов и сертификаций, в силу этого обстоятельства лишь немногие из рассматриваемых ниже материалов могут считаться рекомендованными к применению. Текущее состояние рынка имплантатов может рассматриваться как ожидание массированного вторжения новых идей и материалов.

Биокерамика должно обладать определенными химическими свойствами

(отсутствие нежелательных химических реакций с тканями и межтканевыми

жидкостями, отсутствие коррозии), механическими характеристиками

(прочность, трещиностойкость, сопротивление замедленному разрушению,

износостойкость), биологическими свойствами (отсутствие реакций со стороны имунной системы, срастание с костной тканью, стимулирование остеосинтеза). По характеру отклика организма на имплантат биоматериалы классифицируют следующим образом:

1) токсичные (если окружающие ткани отмирают при контакте) – большинство металлов;

2) биоинертные (нетоксичные, но биологически неактивные) - керамика на

3) биоактивные (нетоксичные, биологически активные, срастающиеся с костной тканью) - композиционные материалы типа биополимер/фосфат кальция, керамика на основе фосфатов кальция, биостекла. Основной недостаток биоинертной керамики – низкая долговечность вследствие экранирования механических нагрузок, приводящее к резорбции костной ткани, прилегающей к имплантату, и утрату последнего. Тем не менее, подобные материалы, по-видимому, не имеют пока альтернативы, как заменители тазобедренного сустава. К наиболее ярким представителям биоактивных материалов относятся биостекла (наиболее используется состав "45S5": 24.5 % Na2O, 24.5 % CaO, 45.0% SiO2, 6% P2O5; варьируя состав, можно изменять биоактивность стекол и их резорбируемость) и материалы на основе гидроксиапатита (ГАП) – Ca10(PO4)6(OH)2 (плотная и пористая керамика; ГАП-покрытия на металлических имплантатах; композиты ГАП–полимер, моделирующие, как, например, композит ГАП–коллаген, состав и структуру кости). К сожалению, невысокие механические характеристики подобных материалов не позволяют создавать крупные нагружаемые имплантаты. Перспективы в области разработки биоматериалов связаны с развитием всего спектра имеющейся на сегодня биокерамики. Особый интерес представляют исследования, исповедающие “регенерационный” подход [1], в котором акцент делается не на замещение дефекта имплантатом с подходящими механическими характеристиками, а на быструю биодеградацию материала и замену его костной тканью (т.е. на первое место у таких материалов выходят биологические свойства).

Т.о. биоматериалы необходимы для лечения, восстановления и замены:

• кожных покровов, мышечной ткани

костной ткани

– эндопротезы в травматологии и ортопедии

– стоматология (пломбировочные материалы),челюстно-лицевая хирургия

– медико-косметические средства (кремы, пасты)

За последние 30 лет использовано более 40 различных материалов (керамика, металлы, полимеры) для замены более 40 различных частей

Требования, предъявляемые к биоматериалам:

химические свойства

– отсутствие нежелательных химических реакций с тканями и межтканевыми

– отсутствие коррозии, или растворение с контролируемой скоростью

механические свойства

– сопротивление замедленному разрушению(усталости)

биологические свойства

– отсутствие реакций со стороны иммунной системы (биосовместимость)

– срастание с костной тканью

Отклик организма на имплантат

Если материал токсичный – окружающие ткани отмирают

биоинертный – образуется соединительная

волокнистая ткань

биоактивный – образуется костная ткань

биорезорбируемый – происходит замена материала

Перспективны для применения в медицинских целях и углеродные материалы. Так, например, использование материалов на основе композитов туглеродных трубок с полимерами позволяет создавать биосовместимые имплантаты. Упругие модули углеродных материалов близки к костным, а в ходе in vitro тестов не наблюдается ухудшения прочностных свойств [2]. Другой перспективный "кандидат" на роль полного заменителя сустава - углеродный композит, армированный углеродными волокнами. Его механические свойства близки к характеристикам кости. В зависимости от микроструктуры материала, которая легко контролируется в широких пределах, получаю следующие значения энергии разрушения, упругих модулей, прочности на изгиб: 400-2900 Дж/м2, 10-72 ГПа, 100-450 МПа соответственно.

Эти механические параметры соответствуют материалам с размерами дефектов в несколько сот мкм (например, пор диаметром до 120 мкм). Углеродные материалы биосовместимы, более того, можно легко контролировать их резорбируемость. На сегодняшний день углеродные композиты – наиболее вероятные материалы, которые прейдут на замену Тi протезам.

Очень интересным и перспективным является так называемый "регенерационный подход". При этом используются различные материалы

(биодеградируемые полимеры, биоактивные стекла, композиты HAp/CaSO4,

Покрытие из НАр (b) , на полимерных волокнах (a) в растворе-аналоге межтканевой жидкости костные клетки и протеины на носителях из HAp, CaSO4 и др.) для стимуляциии ускорения костной регенерации. Правда, данный подход применим лишь кзалечиванию малых дефектов.

Применение наноматериалов

• Катализ, преобразование солнечной энергии (TiO2)

• Нано-батареи и топливные ячейки

• Дисперсионное упрочнение/прочные материалы

• Магнитная томография (магнитные наночастицы -зонды), маркеры, минироботы, носители лекарств

• Системы с перпендикулярной записью, электроника

• Молекулярные сита / клатраты

Раздел 2. Материаловедение

Лекция 1. Материалы, их классификация и области применения

Читайте также: