Металлические свойства в главной подгруппе 2 группы

Обновлено: 17.05.2024

I группа главная подгруппа Периодической системы Менделеева представляет собой щелочные металлы. К щелочным металлам относят химические элементы: Литий Li, Натрий Na, Калий K, Цезий Cs, Рубидий Rb Франций Fr Эти металлы очень активны, поэтому их хранят под слоем вазелина или керосина. Общая характеристика щелочных металлов От Li к Fr (сверху вниз в периодической таблице) происходит увеличение: атомного радиуса, металлических, основных, восстановительных свойств, реакционной способности. Уменьшается электроотрицательность, энергия ионизация, сродство к…

II группа главная подгруппа Периодической таблицы Менделеева (щелочноземельные металлы)

К щелочноземельным металлам относят химические элементы: двувалентные металлы, составляющие IIА группу: Бериллий Be магний Mg кальций Ca, стронций Sr, барий Ba и радий Ra. Хотя бериллий Be по свойствам больше похож на алюминий, а магний Mg проявляет некоторые свойства щелочноземельных металлов, но в целом отличается от них. Все щелочноземельные металлы — вещества серого цвета и гораздо более твердые, чем щелочные металлы. Бериллий Be устойчив на воздухе. Магний и кальций (Mg и Ca) устойчивы в сухом воздухе. Стронций Sr и барий Ba хранят под слоем керосина. Общая характеристка щелочноземельных металлов От Be к Ra (сверху…

III группа главная подгруппа периодической таблицы Менделеева (Алюминий)

Общая характеристика алюминия Алюминий – лёгкий серебристо-белый металл, легко поддающийся формовке, литью, механической обработке. Обладает высокой тепло- и электропроводностью. Аl — довольно активный металл, однако при обычных условиях ведет себя инертно — имеет высокую температуру воспламенения, со многими веществами реагирует только при высокой температуре; Все реакции с участием Al проходят через первоначальный замедленный период из-за наличия на его поверхности очень тонкой, прочной, газо- и водонепроницаемой пленки Al2O3. При нарушении цельности этой пленки…

IV группа главная подгруппа периодической таблицы Менделеева (углерод, кремний)

К элементам главной подгруппы IV группы относятся Углерод С Кремний Si Германий Ge Олово Sn Свинец Pb Общая характеристика элементов 4 группы главной подгруппы От С к Pb (сверху вниз в периодической таблице) происходит увеличение: атомного радиуса, металлических, основных, восстановительных свойств, Уменьшается электроотрицательность, энергия ионизация, сродство к электрону. Электронные конфигурации у данных элементов схожи, все они содержат 4 электрона на внешнем слое ns2np2: С – 2s22p2 Si – 3s23p2 Ge…

Соединения углерода

Монооксид углерода (угарный газ) Способы получения угарного газа В промышленности угарный газ получают: при пропускании воздуха через раскаленный уголь: C + O2 → CO2 CO2 + C → 2CO паровая конверсия метана – взаимодействие перегретого водяного пара (температура – 800-900ºС) с метаном. В качестве катализаторов используют Ni, MgO, Al2O3: СН4 + Н2O → СО + 3Н2 взаимодействие метана с углекислым газом (температура – 800-900ºС, кат. – Ni, MgO, Al2O3): СН4 +…

Соединения кремния

Силан (моносилан, гидрид кремния) Способы получения силана Разложение силицида магния соляной кислотой – наиболее распространенный способ получения силана: Mg2Si + 4HCl → 2MgCl2 + SiH4↑ Восстановление галогенидов кремния алюмогидридом лития: SiCl4 + LiAlH4 = SiH4↑ + LiCl + AlCl3 Разложение триэтоксисилана при нагревании до 80ºС в присутствии натрия: 4SiH(OC2H5)3 = SiH4↑ + 3Si(OC2H5)4 Химические свойства силана Силаны (кремневодороды) имеют общую формулу SinH2n+2, где n = 1-8. Цепи -Si-Si- неустойчивы. Моносилан SiH4…

V группа главная подгруппа периодической таблицы Менделеева (азот, фосфор)

К элементам главной подгруппы V группы периодической таблицы Менделеева относятся: Азот N Фосфор P Мышьяк As Сурьма Sb Висмут Bi Общая характеристика элементов 5 группы главной подгруппы От N к Bi (сверху вниз в периодической таблице) Увеличивается атомного радиуса, металлических, основных, восстановительных свойств, Уменьшается электроотрицательность, энергия ионизация, сродство к электрону. Электронные конфигурации у данных элементов схожи, все они содержат 5 электронов на внешнем слое ns2np3: N – 2s2 2p3; P…

Соединения азота

Аммиак (NH3) Способы получения аммиака Промышленный синтез — один из важнейших процессов в химическом производстве. В промышленности аммиак получают прямым синтезом из водорода и азота. Для смещения равновесия в сторону образования аммиака реакцию проводят в присутствии катализатора, при высоком давлении (до 1000 атм.) и высокой температуре (500-550оС): N2 + ЗН2 ⇄ 2NH3+ Q Лабораторный способ В лабораторных условиях аммиак получают при воздействии твердых щелочей на твердые соли аммония: 2NH4Cl +…

Соединения фосфора

Фосфин (PH3) Способы получения фосфина Прямым синтезом PH3 получить нельзя. Фосфин получают путем водного или кислотного гидролиза фосфидов: Ca3P2 + 6H2O → 3Са(ОН)2 + 2PH3↑ Mg3P2 + 6HCl → 3MgCl2 + 2PH3↑ Реакция диспропорционирования фосфора в щелочах: 4P + 3KOH + 3H2O → 3KH2PO2 + PH3↑ Разложение солей фосфония (Температура выше 80ºС): P4I ↔ HI+ PH3↑ Физические свойства фосфина При нормальной температуре фосфин является бесцветным газом с резким чесночным запахом….

VI группа главная подгруппа периодической таблицы Менделеева (кислород, сера)

К элементам главной подгруппы VI группы периодической таблицы Менделеева относятся: Кислород O Сера S Селен Se Теллур Te Полоний Po Общая характеристика элементов 6 группы главной подгруппы От O к Po (сверху вниз в периодической таблице) Увеличивается атомного радиуса, металлических, основных, восстановительных свойств, Уменьшается электроотрицательность, энергия ионизация, сродство к электрону. Электронные конфигурации у данных элементов схожи, все они содержат 6 электронов на внешнем слое ns2np4: O – 2s2 2p4; S…

Общая характеристика металлов IА–IIIА групп в связи с их положением в Периодической системе химических элементов Д.И. Менделеева и особенностями строения их атомов

Атомы элементов IА–IIIА групп имеют сходство в строении электронных оболочек и закономерностях изменения свойств, что приводит к некоторому сходству их химических свойств и свойств их соединений.

Металлы IA (первой группы главной подгруппы) также называются «щелочные металлы«. К ним относятся литий, натрий, калий, рубидий, цезий. Франций – радиоактивный элемент, в природе практически не встречается. У всех металлов IA группы на внешнем энергетическом уровне, на s-подуровне в основном состоянии есть один неспаренный электрон:

… ns 1 — электронное строение внешнего энергетического уровня щелочных металлов

Металлы IA группы — s-элементы. В химических реакциях они отдают один валентный электрон, поэтому для них характерна постоянная степень окисления +1.

Рассмотрим характеристики элементов IA группы:

Все щелочные металлы — сильные восстановители. Это самые активные металлы, которые могут непосредственно взаимодействовать с неметаллами. С ростом порядкового номера и уменьшением энергии ионизации металлические свойства элементов усиливаются. Щелочные металлы образуют с кислородом оксиды Э2О. Оксиды щелочных металлов реагируют с водой с образованием основания (щелочи):

Водородные соединения щелочных металлов — это гидриды с общей формулой ЭН. Степень окисления водорода в гидридах равна -1.

Металлы IIA (второй группы главной подгруппы) — щелочноземельные. Раньше к щелочноземельным металлам относили только кальций, стронций, барий и радий, но по решению ИЮПАК бериллий и магний также называются щелочноземельными.

У щелочноземельных металлов на внешнем энергетическом уровне расположены два электрона. В основном состоянии это два спаренных электрона на s-подуровне:

… ns 2 — электронное строение внешнего энергетического уровня элементов IIA группы

Щелочноземельные металлы — s-элементы. Отдавая два валентных электрона, они проявляют постоянную степень окисления +2. Все элементы подгруппы бериллия — сильные восстановители, но восстановительные свойства выражены слабее, чем у щелочных металлов.

Характеристики элементов IIA группы:

Металлы подгруппы бериллия довольно активны. На воздухе они легко окисляются, образуя основные оксиды с общей формулой ЭО. Этим оксидам соответствуют гидроксиды Э(ОН)2.

Первый элемент IIA группы, бериллий, по большинству свойств гораздо ближе к алюминию (диагональное сходство). Это проявляется в свойствах бериллия. Например, он не взаимодействует с водой. Магний взаимодействует с водой только при нагревании. Кальций, стронций и барий — это типичные металлы. Они реагируют с водой при обычных условиях.

Элементам IIA группы соответствуют гидриды с общей формулой ЭН2.

Элементы IIIA (третьей группы главной подгруппы) — это бор, алюминий, галлий, индий, таллий и нихоний. В основном состоянии содержат на внешнем энергетическом уровне три электрона, которые распределены по s- и р-подуровням:

… ns 2 nр 1 — электронное строение внешнего энергетического уровня элементов IIIA группы

Все элементы подгруппы бора относятся к р-элементам. В химических соединениях проявляются степень окисления +3. Хотя для таллия более устойчивая степень окисления +1.

Металлические свойства у элементов подгруппы бора выражены слабее, чем у элементов IIA подгруппы. Элмент бор относится к неметаллам. Энергия ионизации атома у бора наибольшая среди элментов IIIA подгруппы. Алюминий относится к типичным металлам, но оксид и гидроксид алюминия проявляют амфотерные свойства. У таллия более сильно выражены металлические свойства, в степени окисления +1 он близок по свойствам к щелочным металлам. Наибольшее практическое значение среди элементов IIIA подгруппы имеет алюминий.

Периодический закон

Периодический закон — это фундаментальный закон, который был сформулирован Д.И. Менделеевым в 1869 году.

В формулировке Дмитрия Ивановича Менделеева периодическ ий закон звучал так: « Свойства элементов, формы и свойства образуемых ими соединений находятся в периодической зависимости от величины их атомной массы .» Периодическое изменение свойств элементов Менделеев связывал с атомной массой. Понимание периодичности изменения многих свойств позволило Дмитрию Ивановичу определить и описать свойства веществ, образованных еще не открытыми химическими элементами, предсказать природные рудные источники и даже места их залегания.


Более поздние исследования показали, что свойства атомов и их соединений зависят в первую очередь от электронного строения атома. А электронное строение определяется свойствами атомного ядра. В частности, зарядом ядра атома .

Поэтому современная формулировка периодического закона звучит так:

« Свойства элементов, форма и свойства образованных ими соединений находятся в периодической зависимости от величины заряда ядер их атомов «.

Следствие периодического закона – изменение свойств элементов в определенных совокупностях, а также повторение свойств по периодам, т.е. через определенное число элементов. Такие совокупности Менделеев назвал периодами.

Периоды – это горизонтальные ряды элементов с одинаковым количеством заполняемых электронных уровней. Номер периода обозначает число энергетических уровней в атоме элемента. Все периоды (кроме первого) начинаются щелочным металлом ( s -элементом), а заканчиваются благородным газом.

Группы – вертикальные столбцы элементов с одинаковым числом валентных электронов, равным номеру группы. Различают главные и побочные подгруппы. Главные подгруппы состоят из элементов малых и больших периодов, валентные электроны которых расположены на внешних ns— и np— подуровнях.

1. Периодическая система химических элементов Д.И. Менделеева

Периодическая система элементов Д. И. Менделеева состоит из семи периодов, которые представляют собой горизонтальные последовательности элементов, расположенные по возрастанию заряда их атомного ядра.

Каждый период (за исключением первого) начинается атомами щелочных металлов (Li, Na, К, Rb, Cs, Fr) и заканчивается благородными газами (Ne, Ar, Kr, Xe, Rn), которым предшествуют типичные неметаллы.

В периодах слева направо возрастает число электронов на внешнем уровне.

В периодах слева направо постепенно ослабевают металлические и усиливаются неметаллические свойства.

1) Li 2) Ca 3) Cs 4) N 5) S

Ответ: 154

1) Be 2) Ba 3) Mg 4) N 5) F

Ответ: 541

В первом периоде имеются два элемента – водород и гелий. При этом водород условно размещают в IA или VIIA подгруппе, так как он проявляет сходство и со щелочными металлами, и с галогенами. Как и щелочные металлы, водород является восстановителем. Отдавая один электрон, водород образует однозарядный катион H + . Как и галогены, водород – неметалл, образует двухатомную молекулу H2 и может проявлять окислительные свойства при взаимодействии с активными металлами:

2Na + H2 → 2NaH

В четвертом периоде вслед за Са расположены 10 переходных элементов (от скандия Sc до цинка Zn), за которыми находятся остальные 6 основных элементов периода ( от галлия Ga до криптона Кr). Аналогично построен пятый период. Переходными элементами обычно называют любые элементы с валентными d– или f–электронами.

Шестой и седьмой периоды имеют двойные вставки элементов. За элементом Ва расположены десять d–элементов (от лантана La — до ртути Hg), а после первого переходного элемента лантана La следуют 14 f–элементов — лантаноидов (Се — Lu). После ртути Hg располагаются остальные 6 основных р-элементов шестого периода (Тl — Rn).

В седьмом (незавершенном) периоде за Ас следуют 14 f–элементов- актиноидов (Th — Lr). В последнее время La и Ас стали причислять соответственно к лантаноидам и актиноидам. Лантаноиды и актиноиды помещены отдельно внизу таблицы.

В Периодической системе каждый элемент расположен в строго определенном месте, которое соответствует его порядковому номеру .

Элементы в Периодической системе разделены на восемь групп (I – VIII), которые в свою очередь делятся на подгруппы — главные , или подгруппы А и побочные , или подгруппы Б. Подгруппа VIIIБ-особая, она содержит триады элементов, составляющих семейства железа (Fе, Со, Ni) и платиновых металлов (Ru, Rh, Pd, Os, Ir, Pt).

Внутри каждой подгруппы элементы проявляют похожие свойства и схожи по химическому строению. А именно:

В главных подгруппах сверху вниз усиливаются металлические свойства и ослабевают неметаллические.

В зависимости от того, какая энергетическая орбиталь заполняется в атоме последней, химические элементы можно разделить на s-элементы, р-элементы, d- и f-элементы.

У атомов s-элементов заполняются s-орбитали на внешних энергетических уровнях. К s-элементам относятся водород и гелий, а также все элементы I и II групп главных подгрупп (литий, бериллий, натрий и др.). У p-элементов электронами заполняются p-орбитали. К ним относятся элементы III-VIII групп, главных подгрупп. У d-элементов заполняются, соответственно, d-орбитали. К ним относятся элементы побочных подгрупп.

Номер периода соответствует числу заполняемых энергетических уровней.

Номер группы, как правило, соответствует числу валентных электронов в атоме (т.е. электроном, способных к образованию химической связи).

Номер группы, как правило, соответствует высшей положительной степени окисления атома. Но есть исключения!

О каких же еще свойствах говорится в Периодическом законе?

Периодически зависят от заряда ядра такие характеристики атомов, как орбитальный радиус, энергия сродства к электрону, электроотрицательность, энергия ионизации, степень окисления и др.

2. Радиус атома

Рассмотрим, как меняется атомный радиус . Вообще, атомный радиус – понятие довольно сложное и неоднозначное. Различают радиусы атомов металлов и ковалентные радиусы неметаллов.

Радиус атома металла равен половине расстояния между центрами двух соседних атомов в металлической кристаллической решетке. Атомный радиус зависит от типа кристаллической решетки вещества, фазового состояния и многих других свойств.

Мы говорим про орбитальный радиус изолированного атома .

Орбитальный радиус – это теоретически рассчитанное расстояние от ядра до максимального скопления наружных электронов.

Орбитальный радиус завит в первую очередь от числа энергетических уровней, заполненных электронами.

Чем больше число энергетических уровней, заполненных электронами, тем больше радиус частицы.

Например , в ряду атомов: F – Cl – Br – I количество заполненных энергетических уровней увеличивается, следовательно, орбитальный радиус также увеличивается.


Если количество заполняемых энергетических уровней одинаковое, то радиус определяется зарядом ядра частицы.

Чем больше заряд ядра, тем сильнее притяжение валентных электронов к ядру.

Чем больше притяжение валентных электронов к ядру, тем меньше радиус частицы. Следовательно:

Чем больше заряд ядра атома (при одинаковом количестве заполняемых энергетических уровней), тем меньше атомный радиус.

Например , в ряду Li – Be – B – C количество заполненных энергетических уровней, заряд ядра увеличивается, следовательно, орбитальный радиус также уменьшается.


В группах сверху вниз увеличивается число энергетических уровней у атомов. Чем больше количество энергетических уровней у атома, тем дальше расположены электроны внешнего энергетического уровня от ядра и тем больше орбитальный радиус атома.

В главных подгруппах сверху вниз увеличивается орбитальный радиус.

В периодах же число энергетических уровней не изменяется. Зато в периодах слева направо увеличивается заряд ядра атомов. Следовательно, в периодах слева направо уменьшается орбитальный радиус атомов.

В периодах слева направо орбитальный радиус атомов уменьшается.


1) O 2) Se 3) F 4) S 5) Na

Решение:

В одной группе Периодической системы находятся элементы кислород O, селен Se и сера S.

В группе снизу вверх атомный радиус уменьшается, а сверху вниз – увеличивается. Следовательно, правильный ответ: O, S, Se или 142.

Ответ: 142

1) K 2) Li 3) F 4) B 5) Na

Решение:

В одном периоде Периодической системы находятся элементы литий Li, фтор F и натрий Na.

В периоде слева направо атомный радиус уменьшается, а справа налево – увеличивается. Следовательно, правильный ответ: Li, B, F или 243.

Ответ: 243

1) Ca 2) P 3) N 4) О 5) Ti

p-элементы это фосфор Р, азот N, кислород О.

В периоде слева направо атомный радиус уменьшается, а справа налево – увеличивается. В группе — сверху вниз увеличивается. Следовательно, правильный ответ: P, N, O или 234.

Ответ: 234

Рассмотрим закономерности изменения радиусов ионов : катионов и анионов.

Катионы – это положительно заряженные ионы. Катионы образуются, если атом отдает электроны.

Радиус катиона меньше радиуса соответствующего атома. С увеличением положительного заряда иона радиус уменьшается.

Например , радиус иона Na + меньше радиуса атома натрия Na:


Анионы – это отрицательно заряженные ионы. Анионы образуются, если атом принимает электроны.

Радиус аниона больше радиуса соответствующего атома.

Радиусы ионов также зависят от числа заполненных энергетических уровней в ионе и от заряда ядра.

Например , радиус иона Cl – больше радиуса атома хлора Cl.

Изоэлектронные ионы – это ионы с одинаковым числом электронов. Для изоэлектронных частиц радиус также определяется зарядом ядра: чем больше заряд ядра иона, тем меньше радиус.

Например : частицы Na + и F ‒ содержат по 10 электронов. Но заряд ядра натрия +11, а у фтора только +9. Следовательно, радиус иона Na + меньше радиуса иона F ‒ .

3. Электроотрицательность

Еще одно очень важное свойство атомов – электроотрицательность (ЭО).

Электроотрицательность – это способность атома смещать к себе электроны других атомов при образовании связи. Оценить электроотрицательность можно только примерно. В настоящее время существует несколько систем оценки относительной электроотрицательности атомов. Одна из наиболее распространенных – шкала Полинга.


По Полингу наиболее электроотрицательный атом – фтор (значение ЭО≈4). Наименее элекроотрицательный атом –франций (ЭО = 0,7).

В главных подгруппах сверху вниз уменьшается электроотрицательность.

В периодах слева направо электроотрицательность увеличивается.

1) Mg 2) P 3) O 4) N 5) Ti

Элементы-неметаллы – это фосфор Р, кислород О и азот N.

Электроотрицательность увеличивается в группах снизу вверх и слева направо в периодах. Следовательно, правильный ответ: P, N, O или 243.

II группа главная подгруппа Периодической таблицы Менделеева (щелочноземельные металлы)

К щелочноземельным металлам относят химические элементы: двувалентные металлы, составляющие IIА группу:

Бериллий Be

магний Mg

кальций Ca,

стронций Sr,

барий Ba и

радий Ra.

Хотя бериллий Be по свойствам больше похож на алюминий, а магний Mg проявляет некоторые свойства щелочноземельных металлов, но в целом отличается от них.

Все щелочноземельные металлы — вещества серого цвета и гораздо более твердые, чем щелочные металлы.

Бериллий Be устойчив на воздухе. Магний и кальций (Mg и Ca) устойчивы в сухом воздухе. Стронций Sr и барий Ba хранят под слоем керосина.

Общая характеристка щелочноземельных металлов

От Be к Ra (сверху вниз в периодической таблице) происходит увеличение:

  • атомного радиуса,
  • металлических, основных, восстановительных свойств,
  • реакционной способности.

Уменьшается

  • электроотрицательность,
  • энергия ионизация,
  • сродство к электрону.

Периодическая таблица-2 группа

Электронные конфигурации у данных элементов схожи, все они содержат 2 электрона на внешнем уровне ns 2 :

Be — 2s 2

Mg —3s 2

Ca — 4s 2

Sr — 5s 2

Ba — 6s 2

Ra — 7s 2

Нахождение в природе щелочноземельных металлов

Как правило, щелочноземельные металлы в природе присутствуют в виде минеральных солей: хлоридов, бромидов, йодидов, карбонатов, нитратов и др.

Основные минералы, в которых присутствуют щелочноземельные металлы:

щелочноземельные металлы_нахождение в природе

Способы получения щелочноземельных металлов

Магний

  • Магний получают электролизом солей, чаще всего хлоридов: расплавленного карналлита (KCl·MgCl26H2O) или хлорида магния с добавками хлорида натрия при 720–750°С:
  • восстановлением прокаленного доломита в электропечах при 1200–1300°С:

2(CaO · MgO) + Si → 2Mg + Ca2SiO4

Кальций

Кальций получают электролизом расплавленного хлорида кальция с добавками фторида кальция:

Барий

Барий получают алюмотермическим способом — восстановление оксида бария алюминием в вакууме при 1200 °C:

Химические свойства щелочноземельных металлов

Качественные реакции

  • Окрашивание пламени солями щелочных металлов

Цвет пламени:

щелочноземельные металлы_цвет пламени

Sr — карминово-красный (алый)

щелочноземельные металлы_качественные реакции

Взаимодействие с простыми веществами — неметаллами

С кислородом

С кислородом взаимодействуют при нагревании с образованием оксидов

С галогенами

Щелочноземельные металлы реагируют с галогенами при нагревании с образованием галогенидов .

С водородом

Щелочноземельные металлы реагируют с водородом при нагревании с образованием гидридов:

Бериллий с водородом не взаимодействует.

Магний реагирует только при повышенном давлении:

С серой

Щелочноземельные металлы при нагревании взаимодействуют с серой с образованием сульфидов сульфидов:

Ca + 2C → CaC2 (карбиды)

С азотом

При комнатной температуре с азотом взаимодействует только магний с образованием нитрида:

Остальные щелочноземельные металлы реагируют с азотом при нагревании.

С углеродом

Щелочноземельные металлы реагируют с углеродом с образованием карбидов, преимущественно ацетиленидов:

Бериллий при нагревании с углеродом с образует карбид — метанид:

С фосфором

Щелочноземельные металлы при нагревании взаимодействуют с фосфором с образованием фосфидов:

Взаимодействие со сложными веществами

С водой

Кальций, стронций и барий взаимодействуют с водой при комнатной температуре с образованием щелочи и водорода:

Магний реагирует с водой при кипячении, а бериллий с водой не реагирует.

С кислотами

с концентрированной серной:

с разбавленной и концентрированной азотной:

С водными растворами щелочей

В водных растворах щелочей растворяется только бериллий:

С солями

В расплаве щелочноземельные металлы могут взаимодействовать с некоторыми солями:

Запомните! В растворе щелочноземельные металлы взаимодействуют с водой, а не с солями других металлов.

С оксидами

Щелочноземельные металлы могут восстанавливать из оксидов такие неметаллы как кремний, бор, углерод:

2Ca + SiO2 → 2CaO + Si

Магний сгорает в атмосфере углекислого газа с образованием оксида магния и сажи (С):

Читайте также: