Металлы с высоким удельным сопротивлением

Обновлено: 02.07.2024

К металлам и сплавам с высоким удельным сопротивлением предъяв­ляются следующие требования:

· высокое значение ρv;

· стабильное значение ρv во времени;

· малый температурный коэффициент сопротивления (ТКρv);

· малый коэффициент термо-ЭДС в паре с медью (за исключением материа­лов для термопар);

· способность длительно ра­ботать при высоких (до 1000°С) температурах.

Материалы с высоким удельным сопротивлением применяются в основном для изготовления об­разцовых резисторов и нагревательных элементов. Наиболее распростра­ненными материалами для изготовления образцовых резисторов являются манганин и константан, а для изготовления нагревательных элементов – сплавы на основе железа, нихромы, ферронихромы и фехрали (хромали).

Манганин (назван из-за наличия в нем марганца) широко применяет­ся для изготовления образцовых резисторов. Состав: Cu – 85 %; Мn – 12 %; Ni – 3 %. Удельное электрическое сопротивление составляет: ρv = 0,42…0,48 мкОм·м; температурный коэффициент (ТКρ) весьма мал и составляет (6…50)·10 -6 К -1 . Коэффициент термо-ЭДС в паре с медью составляет всего лишь 1…2мкВ/К. Манганин может вытягиваться в тонкую (до диаметра 0,02 мм) проволоку. Предельно допустимая рабочая температура мангани­на не более 200°С.

В связи с тем, что величина сопротивления манганина линейно изме­няется при изменении давления, он используется для изготовления тензодатчиков.

Константан – сплав, содержащий около 60 % меди и 40 % никеля, име­ет низкое значение ТКρ порядка минус (5…25)·10 -6 К -1 (откуда название). Удельное электрическое сопротивление составляет: ρv = 0,48…0,52 мкОм·м. Способен длительно работать при темпе­ратурах до 450°С. Константан имеет повышенный коэффициент термо-ЭДС в паре с медью (44…55) мкВ/К. В связи с этим не допускается использова­ние медных контактных проводников при подключении константановых образцовых резисторов. Однако константан может быть использован при изготовлении термопар, служащих для измерения температур до 350°С.

Сплавы системы Fе–Сr–Ni с содержанием 15…20 % Cr; 60…80 % Ni; до 10 % Fе называют нихромами; а при повышенном содержании железа – ферронихромами (10…15 % Сr; до 20 % Fе; остальное Ni).

Сплавы системы Fе–С –А1 с содержанием 20…40 % Fе; 60…70 % Сr; 5…10 % А1 называют фехралями, а с содержанием 5…10 % А1 остальное Сu-хромалями.

Нихромы весьма технологичны, легко вытягиваются в тонкую проволоку диаметром несколько микрон. Они могут быть использованы для изготовления различ­ных нагревательных элементов, в том числе и бытовых.


Тонкие пленки ни­хромов могут быть использованы при изготовлении пленочных резисторов интегральных микросхем.

Фехрали по сравнению с нихромами обладают меньшей стоимостью из-за отсутствия в их составе никеля, однако они менее технологичные, более твердые и хрупкие. Проволока и ленты фехралей могут быть получены лишь больших сечений. Это определяет их преиму­щественное использование в электронагревательных устройствах большой мощности. Величина удельного электрического сопротивления нихромов, ферронихромов, фехралей и хромалей лежит в пределах 1,0…1,5 мкОм·м (табл 7.3).

Таблица 7.3 Удельное электротехническое сопротивление жаростойких сплавов

2.3.2. Металлы и сплавы с высоким удельным сопротивлением

· высокое значение ρv;

· стабильное значение ρv во времени;

· малый температурный коэффициент сопротивления (ТКρv);

· способность длительно ра­ботать при высоких (до 1000 °С) температурах.

Материалы с высоким удельным сопротивлением применяются в основном для изготовления об­разцовых резисторов и нагревательных элементов. Наиболее распростра­ненными материалами для изготовления образцовых резисторов являются манганин и константан, а для изготовления нагревательных элементов -сплавы на основе железа, нихромы, ферронихромы и фехрали (хромали).

Манганин (назван из-за наличия в нем марганца) широко применяет­ся для изготовления образцовых резисторов. Состав: Си – 85 %; Мп – 12 %; Ni – 3 %. Значение удельного электрического сопротивления составляет: ρv = 0,42…0,48 мкОм·м; температурный коэффициент (ТКρ) весьма мал и составляет (6…50)·10 -6 К -1 . Коэффициент термо-ЭДС в паре с медью составляет всего лишь 1…2мкВ/К. Манганин может вытяги

ваться в тонкую (до диаметра 0,02 мм) проволоку. Предельно допустимая рабочая температура мангани­на не более 200 °С.

Константан – сплав, содержащий около 60 % меди и 40 % никеля, име­ет низкое значение ТКρ порядка минус (5…25)·10 -6 К -1 (откуда название).


Значение удельного электрического сопротивления составляет: ρv = 0,48…0,52 мкОм·м. Способен длительно работать при темпе­ратурах до 450 °С. Константан имеет повышенный коэффициент термо-ЭДС в паре с медью (44…55) мкВ/К. В связи с этим не допускается использова­ние медных контактных проводников при подключении константановых образцовых резисторов. Однако константан может быть использован при изготовлении термопар, служащих для измерения температур до 350 °С.

Сплавы системы Fе – Сr – Ni с содержанием 15…20 % Cr; 60…80 % Ni; до 10 % Fе называют нихромами; а при повышенном содержании железа – ферронихромами (10…15 % Сr; до 20 % Fе; остальное Ni).

Сплавы системы Fе – Сr – А1 с содержанием 20…40 % Fе; 60…70 % Сr; 5…10 % А1 называют фехралями, а с содержанием 5…10 % А1 остальное Си – хромалями.

Нихромы весьма технологичны, легко вытягиваются в тонкую проволоку диаметром несколько микрон. Они могут быть использованы для изготовления различ­ных нагревательных элементов, в том числе и бытовых. Тонкие пленки ни­хромов могут быть использованы при изготовлении пленочных резисторов интегральных микросхем.

Фехрали по сравнению с нихромами обладают меньшей стоимостью из-за отсутствия в их составе никеля, однако они менее технологичны, более тверды и хрупки. Проволока и ленты фехралей могут быть получены лишь больших сечений. Это определяет их преиму­щественное использование в электронагревательных устройствах большой мощности. Величина удельного электрического сопротивления нихромов, ферронихромов, фехралей и хромалей лежит в пределах 1,0…1,5 мкОм·м.

Удельное сопротивление сплавов

Есть много металлов и намного больше сплавов из нескольких металлов.

Самые первые искусственные сплавы в результате металлургических экспериментов, проведенных человеком, были созданы (на основе найденных археологических останков) примерно от 3000 до 2500 лет до нашей эры.

Это была прежде всего бронза, потому что металлы, из которых она состоит (медь и олово), присутствуют (в изобилии) в самородном состоянии и не требуют извлечения из руды.

Золото и серебро - металлы находящиеся в изобилии в природе, и по этой причине они известны с 5-го тысячелетия до нашей эры, поэтому их тоже очень часто смешивали, в частности, чтобы изменить цвет или твердость золота.

Металлы

Теоретически существует бесконечное множество сплавов. Базовый процесс прост: достаточно нагреть два или более металлов до тех пор, пока они не достигнут соответствующей точки плавления, затем смешать их в соответствии с точными дозировками и запустить их охлаждение.

Таким образом, достаточно даже незначительно варьировать дозировку ингредиентов, чтобы создать новый сплав, который будет обладать уникальными свойствами. Кроме того, условия производства нового сплава также имеют решающее значение: достаточно, например, варьировать температуру плавления, условия обжига или даже продолжительность охлаждения.

Металлы и сплавы в технике

Зависимость удельного сопротивление сплавов от их состава имеет весьма различный характер. В некоторых случаях сплав является совокупностью очень мелких кристаллов обоих металлов, входящих в сплав. Каждый металл кристаллизуется независимо от другого, то их кристаллы равномерно и вполне беспорядочно перемешаны в сплаве.

Таковы свинец, олово, цинк и кадмий, смешивающиеся в любых отношениях. Удельное сопротивление таких сплавов при различных концентрациях лежит между крайними значениями сопротивления чистых металлов, т. е. всегда меньше большего из них и больше меньшего.

На рисунке ниже изображена графически зависимость удельного сопротивления сплава цинка и олова от объемных концентраций обоих металлов.

Зависимость удельного сопротивления сплава цинка и олова от объемных концентраций обоих металлов

По оси абсцисс отложены в процентах к единице объема сплава объемы олова, т. е. абсцисса 60 означает, что в единице объема сплава содержится 0,6 объема олова и 0,4 объема цинка. По оси ординат отложены величины удельного сопротивления сплава, умноженное на 10 6 .

Так как у чистых металлов температурные коэффициенты сопротивления суть величины одного порядка, близкие к коэффициенту расширения газов, то, очевидно, что и сплавы рассматриваемой группы имеют коэффициенты того же порядка.

Во многих других случаях сплавы двух металлов являются однородной массой, состоящей из небольших кристаллов, построенных из атомов обоих металлов.

Иногда такие смешанные кристаллы могут быть образованы атомами обоих металлов в любом отношении, иногда такие образования возможны лишь в определенных, областях концентрации.

Вне этих областей сплавы подобны сплавам только что рассмотренной первой группы с тем различием, что они представляют смесь кристаллов чистого металла и кристаллов смешанного типа, построенных из атомов обоего рода.

Сопротивление сплавов рассматриваемого типа обычно больше сопротивлений обоих металлов.

Получение сплавов в литейном цехе

На рисунке ниже представлена графически зависимость от концентрации удельного сопротивления сплава золота и серебра, образующих смешанные кристаллы в любых концентрациях. Способ построения кривой такой же, как и кривой на предыдущем рисунке.

Зависимость от концентрации удельного сопротивления сплава золота и серебра

Удельное сопротивление чистого серебра на графике равно 1,5*10 -6 , чистого золота 2,0*10 -8 . Сплавляя равные объемы обоих металлов (50%), получаем сплав с удельным сопротивлением 10,4*10 -6 .

Температурные коэффициенты сопротивления у сплавов этой группы обыкновенно меньше, чем у каждого из металлов, входящих в состав сплава.

На рисунке ниже представлена графически зависимость величины температурного коэффициента сплава золота и серебра от концентрации золота.

Зависимость величины температурного коэффициента сплава золота и серебра от концентрации золота

В области концентраций от 15% до 75% температурный коэффициент сопротивления не превышает четверти того же коэффициента чистых металлов.

Важное техническое значение имеют некоторые сплавы из трех металлов.

Первый из этих сплавов манганин при надлежащей обработке имеет температурный коэффициент равный нулю, вследствие чего манганиновая проволока употребляется для изготовления точных магазинов сопротивления.

Сплав никеля, хрома, с добавками марганца, кремния, железа, алюминия (нихром) является самым распротраненным материалом для изготовления различных нагревательных элементов.

Нихромовая нагревательная спираль

Остальные сплавы (константан, никелин, нейзильбер) применяются для изготовления регулирующих реостатов, так как они обладают значительным удельным сопротивлением и сравнительно мало окисляются в воздухе при тех довольно высоких температурах, которые часто имеют проволоки реостатов.

Подробно про трехкопонентные сплавы, наиболее часто используемые в электротехнической промышленности смотрите здесь: Материалы с высоким сопротивлением, сплавы с большим удельным сопротивлением

Конкретные значения удельных сопротивлений различных сплавов лучше всего искать в специальных справочниках или же определять экспериментально, т.к. они могут изменяться в широких пределах.

Для примера приведем значения удельного электрического сопротивления и теплопроводности сплавов Mg-Al и Mg-Zn:

Удельное электрическое сопротивление и теплопроводность сплавов Mg-Al и Mg-Zn

В этой работе были исследованы удельное электрическое сопротивление и теплопроводность бинарных сплавов Mg – Al и Mg – Zn в диапазоне температур от 298 К до 448 К, а также проанализирована корреляция между соответствующей электропроводностью и теплопроводностью сплавов.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Что такое удельное электрическое сопротивление


Электрический ток I в любом веществе создается движением заряженных частиц в определенном направлении за счет приложения внешней энергии (разности потенциалов U). Каждое вещество обладает индивидуальными свойствами, по-разному влияющими на прохождение тока в нем. Эти свойства оцениваются электрическим сопротивлением R.

Георг Ом эмпирическим путем определил факторы, влияющие на величину электрического сопротивления вещества, вывел формулу его зависимости от напряжения и тока, которая названа его именем. Единица измерения сопротивления в международной системе СИ названа его именем. 1 Ом — это величина сопротивления, замеренного при температуре 0 О С у однородного ртутного столба длиной 106,3 см с площадью поперечного сечения в 1 мм 2 .

Сила тока и сопротивление

Чтобы оценить и применять на практике материалы для изготовления электротехнических устройств, введен термин «удельное сопротивление проводника» . Добавленное прилагательное «удельное» указывает на фактор использования эталонной величины объема, принятой для рассматриваемого вещества. Это позволяет оценивать электрические параметры разных материалов.

При этом учитывают, что сопротивление проводника возрастает при увеличении его длины и уменьшении поперечного сечения. В системе СИ используется объем однородного проводника с длиной 1 метр и поперечным сечением 1м 2 . В технических расчетах применяется устаревшая, но удобная внесистемная единица объема, состоящая из длины 1 метр и площади 1мм 2 . Формула удельного сопротивления представлена на рисунке.

Удельное сопротивление проводника

Для определения электрических свойств веществ, введена еще одна характеристика — удельная проводимость б. Она обратно пропорциональна значению удельного сопротивления, определяет способность материала проводить электрический ток.

Как удельное сопротивление зависит от температуры

На величину проводимости материала влияет его температура. Разные группы веществ ведут себя не одинаково при нагреве или охлаждении. Это свойство учитывают в электрических проводах, работающих на открытом воздухе в жару и холод.

Влияние температуры на удельное сопротивление

Материал и удельное сопротивление провода подбираются с учетом условий его эксплуатации.

Возрастание сопротивления проводников прохождению тока при нагреве объясняется тем, что с повышением температуры металла в нем увеличивается интенсивность передвижения атомов и носителей электрических зарядов во всех направлениях, что создает лишние препятствия для движения заряженных частиц в одну сторону, снижает величину их потока.

Если уменьшать температуру металла, то условия для прохождения тока улучшаются. При охлаждении до критической температуры во многих металлах проявляется явление сверхпроводимости, когда их электрическое сопротивление практически равно нулю. Это свойство широко используется в мощных электромагнитах.

Влияние температуры на проводимость металла используется электротехнической промышленностью при изготовлении обыкновенных ламп накаливания. Их нить из нихрома при прохождении тока нагревается до такого состояния, что излучает световой поток. В обычных условиях удельное сопротивление нихрома составляет около 1,05-1,4 (ом х мм 2 )/м.

При включении лампочки под напряжение через нить проходит большой ток, который очень быстро разогревает металл. Одновременно возрастает сопротивление электрической цепи, ограничивающее первоначальный ток до номинального значения, необходимого для получения освещения.

Таким способом осуществляется простое регулирование силы тока через нихромовую спираль, отпадает необходимость применения сложной пускорегулирующей аппаратуры, используемой в светодиодных и люминесцентных источниках.

Удельное электрическое сопротивление большинства чистых металлических элементов при температуре окружающей среды и умеренно низких температурах примерно пропорционально абсолютной температуре.

Однако при очень низких температурах удельное сопротивление (за исключением сверхпроводников) приближается к остаточному значению , почти не зависящему от температуры.

Сплавы, с другой стороны, имеют удельное сопротивление намного выше, чем у составляющих их элементов, и коэффициенты сопротивление-температура довольно низкие.

Как используется удельное сопротивление материалов в технике

Цветные благородные металлы обладают лучшими свойствами электрической проводимости. Поэтому ответственные контакты в электротехнических устройствах выполняют из серебра. Но это увеличивает конечную стоимость всего изделия. Наиболее приемлемый вариант — использование более дешевых металлов. Например, удельное сопротивление меди, равное 0,0175 (ом х мм 2 )/м, вполне подходит для таких целей.

Благородные металлы — золото, серебро, платина, палладий, иридий, родий, рутений и осмий, получившие название главным образом благодаря высокой химической стойкости и красивому внешнему виду в ювелирных изделиях. Кроме того, золото, серебро и платина обладают высокой пластичностью, а металлы платиновой группы — тугоплавкостью и, как и золото, химической инертностью. Эти достоинства благородных металлов сочетаются.

Медные сплавы, обладающие хорошей проводимостью, используются для изготовления шунтов, ограничивающих протекание больших токов через измерительную головку мощных амперметров.

Удельное сопротивление алюминия 0,026-0,029 (ом х мм 2 )/м чуть выше, чем у меди, но производство и стоимость этого металла ниже. К тому он же легче. Это объясняет его широкое применение в энергетике для изготовления проводов, работающих на открытом воздухе, и жил кабелей.

Удельное сопротивление железа 0,13 (ом х мм 2 )/м также допускает его применение для передачи электрического тока, но при этом возникают большие потери мощности. Стальные сплавы обладают повышенной прочностью. Поэтому в алюминиевые воздушные провода высоковольтных линий электропередач вплетают стальные нити, которые предназначены для противостояния нагрузкам, действующим на разрыв.

Особенно актуально это при образовании наледи на проводах или сильных порывах ветра.

Часть сплавов, например, константан и никелин обладают термостабильными резистивными характеристиками в определенном диапазоне. У никелина удельное электрическое сопротивление практически не меняется от 0 до 100 градусов по Цельсию. Поэтому спирали для реостатов изготавливают из никелина.

В измерительных приборах широко применяется свойство строгого изменения значений удельного сопротивления платины от ее температуры. Если через платиновый проводник пропускать электрический ток от стабилизированного источника напряжения и вычислять значение сопротивления, то оно будет указывать температуру платины. Это позволяет градуировать шкалу в градусах, соответствующих значениям Омам. Этот способ позволяет измерять температуру с точностью до долей градусов.

Применение свойств удельного сопротивления платины

Иногда для решения практических задач требуется узнать полное или удельное сопротивление кабеля . Для этого в справочниках на кабельную продукцию приводятся значения индуктивного и активного сопротивления одной жилы для каждого значения поперечного сечения. С их помощью рассчитываются допустимые нагрузки, выделяемая теплота, определяются допустимые условия эксплуатации и подбираются эффективные защиты.

На удельную проводимость металлов оказывает влияние способ их обработки. Использование давления для пластической деформации нарушает структуру кристаллической решетки, увеличивает число дефектов и повышает сопротивление. Для его уменьшения применяют рекристаллизационный отжиг.

Растяжения или сжатия металлов вызывают в них упругую деформацию, от которой уменьшаются амплитуды тепловых колебаний электронов, а сопротивление несколько снижается.

При проектировании систем заземления необходимо учитывать удельное сопротивление грунта. Оно имеет отличия в определении от вышеперечисленного метода и измеряется в единицах системы СИ — Ом х метр. С его помощью оценивают качество растекания электрического тока внутри земли.
Зависимость удельного сопротивления грунта от влажности и температуры почвы:

Зависимость удельного сопротивления грунта от влажности и температуры почвы

Зависимость удельного сопротивления грунта от влажности и температуры почвы

На удельную проводимость грунта влияют многие факторы, включая влажность почвы, плотность, размеры ее частиц, температуру, концентрацию солей, кислот и щелочей.

Материалы с высоким сопротивлением, сплавы с большим удельным сопротивлением

Для создания реостатов, изготовления точных сопротивлений, производства электрических печей и различных электронагревательных приборов зачастую необходимы проводники из материалов, обладающих высоким удельным сопротивлением и малым температурным коэффициентом сопротивления.

Данные материалы в форме лент и проволок должны желательно обладать удельным сопротивлением от 0,42 до 0,52 ом*кв.мм/м. К таким материалам и относятся сплавы на основе никеля, меди, марганца и некоторых других металлов. Особого внимания заслуживает ртуть, поскольку ртуть в чистом виде сама по себе обладает удельным сопротивлением в 0,94 ом*кв.мм/м.

Материалы с высоким сопротивлением

Характерные свойства, требуемые от сплавов в индивидуальном плане, определяются конкретным назначением того или иного устройства, в котором этот сплав будет использован.

Например, для изготовления точных сопротивлений требуются сплавы с низкой термо-эдс, наводимой при контакте сплава с медью. Сопротивление также должно оставаться постоянным во времени. В печах и электрических нагревательных приборах недопустимо окисление сплава даже при температурах от 800 до 1100 °C, то есть здесь нужны жаростойкие сплавы.

Охватывает все эти материалы одна общая их особенность — это все сплавы с большим удельным сопротивлением, потому данные сплавы и получили название сплавов высокого электрического сопротивления. Материалы высокого электрического сопротивления, в данном контексте, являются растворами металлов, и обладают хаотичной структурой, благодаря чему и удовлетворяют предъявляемым к себе требованиям.

Для изготовления точных сопротивлений традиционно используют манганины. Манганины состоят из никеля, меди и марганца. Меди в из составе — от 84 до 86%, марганца — от 11 до 13%, никеля — от 2 до 3%. Самый же популярный из манганинов сегодня содержит 86% меди, 12% марганца и 2% никеля.

Чтобы стабилизировать манганины, в них добавляют немного железа, серебра и алюминия: алюминия - от 0,2 до 0,5%, железа — от 0,2 до 0,5%, серебра — 0,1%. Манганины имеют характерный светло-оранжевый цвет, их средняя плотность — 8,4 г/см3, а температура плавления — от 960 °С.

Манганин

Манганиновая проволока диаметром от 0,02 до 6 мм (или лента толщиной от 0,09 мм) бывает твердой или мягкой. Отожженная мягкая проволока имеет прочность на разрыв от 45 до 50 кг/кв.мм, относительное удлинение составляет от 10 до 20%, удельное сопротивление — от 0,42 до 0,52 ом*кв.мм/м.

Характеристики твердой проволоки: прочность на разрыв от 50 до 60 кг/кв.мм, относительное удлинение — от 5 до 9%, удельное сопротивление — 0,43 — 0,53 ом*кв.мм/м. Температурный коэффициент проволок или лент из манганина лежит в пределах от 3*10-5 до 5*10-5 1/°С, а для стабилизированных — до 1,5*10-5 1/°С.

Приведенные характеристики указывают на то, что зависимость от температуры электрического сопротивления манганина крайне незначительна, а это фактор в пользу постоянства сопротивления, что весьма значимо для прецизионных электроизмерительных устройств. Малая термо-эдс — еще одно достоинство манганина, и при соприкосновении с медными элементами она не превысит 0,000001 вольта на градус.

С целью стабилизации электрических характеристик проволоки из манганина ее нагревают в условиях вакуума до 400 °С, и выдерживают при такой температуре в течение от 1 до 2 часов. Затем проволоку длительно выдерживают при комнатной температуре для достижения приемлемой однородности сплава и для получения стабильных свойств.

В обычных рабочих условиях такая проволока сможет быть использована при температурах до 200 °С — для стабилизированного манганина, и до 60 °С — для нестабилизированного манганина, ибо нестабилизированный манганин при нагреве от 60 °С и выше претерпит необратимые изменения, которые скажутся на его свойствах. Так, нестабилизированный манганин лучше не нагревать до 60 °С, и следует считать эту температуру максимально допустимой.

На сегодняшний день промышленностью выпускается как голая манганиновая проволока, так и проволока в высокопрочной эмалевой изоляции — для изготовления обмоток, в шелковой изоляции, и в двухслойной лавсановой изоляции.

Константан, в отличие от манганина, содержит больше никеля — от 39 до 41%, меньше меди — 60-65%, значительно меньше марганца — 1-2%, - это тоже медно-никелевый сплав. Температурный коэффициент сопротивления у константана приближается к нулю — это главное достоинство данного сплава.

Константан отличается характерным серебристо-белым цветом, температура плавления 1270 °С, плотность в среднем около 8,9 г/см3. Промышленностью выпускается константановая проволока диаметром от 0,02 до 5 мм.

Отожженная мягкая константановая проволока имеет прочность на разрыв 45 — 65 кг/кв.мм, ее удельное сопротивление — от 0,46 до 0,48 ом*кв.мм/м. Для твердой константановой проволоки: прочность на разрыв — от 65 до 70 кг/кв.мм, удельное сопротивление — от 0,48 до 0,52 ом*кв.мм/м. Термо-эдс константана в паре с медью равна 0,000039 вольта на градус, что служит ограничением для использования константана в изготовлении точных резисторов и электроизмерительных приборов.

Константан

Значительная, в сравнении с манганином, термо-эдс позволяет применять константановую проволоку в термопарах (в паре с медью) с целью измерения температур до 300° С. При температурах выше 300° С медь начнет окислятся, при этом стоит отметить, что константан начнет окисляться лишь при 500° С.

Промышленностью выпускается как константановая проволока без изоляции, так и обмоточная проволока в высокопрочной эмалевой изоляции, проволока в двухслойной шелковой изоляции, и проволока в комбинированной изоляции — один слой эмали и один слой шелка или лавсана.

В реостатах, где напряжение между соседними витками не превышает нескольких вольт, используется такое свойство константановой проволоки: если за несколько секунд проволоку нагреть до 900° С, после чего охладить на воздухе, то проволока покроется темно-серой пленкой оксида, эта пленка может служить своеобразной изоляцией, поскольку обладает диэлектрическими свойствами.

В электронагревательных приборах и в печах сопротивления нагревательные элементы в форме лент и проволок должны быть способны работать на протяжении длительных периодов времени в условиях температур до 1200 °С. К этому не годятся ни медь, ни алюминий, ни константан, ни манганин, поскольку начиная с 300 °С они уже начинают сильно окисляться, пленки окислов затем испаряются, и окисление продолжается. Здесь нужны жаростойкие проводники.

Жаростойкие проводники высокого удельного сопротивления, к тому же стойкие к окислению при нагревании, и обладающие низким температурным коэффициентом сопротивления. Это как раз про нихромы и ферронихромы — двойные сплавы никеля и хрома, и тройные сплавы никеля, хрома и железа.

Еще есть фехраль и хромаль — тройные сплавы железа, алюминия и хрома, - они в соответствии с процентным соотношением входящий в сплав компонентов — отличаются электрическими параметрами и жаростойкостью. Все это твердые растворы металлов с хаотичной структурой.

Фехраль

Нагрев этих жаростойких сплавов приводит к образованию на их поверхности толстой защитной пленки оксидов хрома и никеля, устойчивой к высоким температурам до 1100° С, надежно защищающей эти сплавы от дальнейшей реакции с кислородом воздуха. Так, ленты и проволоки из жаропрочных сплавов могут длительно работать при высоких температурах даже на воздухе.

Помимо главных составляющих, в сплавы входит: углерода — от 0,06 до 0,15%, кремния — от 0,5 до 1,2%, марганца — от 0,7 до 1,5%, фосфора — 0,35%, серы — 0,03%.

В данном случае фосфор, сера и углерод являются вредными примесями, повышающими хрупкость, поэтому их содержание всегда стремятся свести к минимуму, а лучше — полностью исключить. Марганец и кремний способствуют раскислению, они устраняют кислород. Никель, хром и алюминий, особенно хром, помогают обеспечить стойкость к температурам до 1200 °С.

Компоненты сплава служат повышению удельного сопротивления и снижению температурного коэффициента сопротивления, что как раз и нужно от этих сплавов. Если хрома будет более 30%, то сплав получится хрупким и твердым. Чтобы получить тонкую проволоку, например 20 мкм в диаметре, необходимо не более 20% хрома в составе сплава.

Этим требованиям отвечают сплавы марок Х20Н80 и Х15Н60. Остальные марки сплавов подойдут для изготовления лент толщиной от 0,2 мм и проволок диаметром от 0,2 мм.

Сплавы типа фехраль — Х13104, содержат в своем составе железо, от этого они получаются дешевле, но спустя несколько циклов нагрева становятся хрупкими, поэтому спирали из хромаля и фехраля при обслуживании недопустимо деформировать в остывшем состоянии, например если речь идет о спирали, длительное время работавшей в нагревательном приборе. Для ремонта следует скручивать или сращивать только разогретую до 300—400 °С спираль. Вообще, фехраль способен работать при температурах до 850 °С, а хромаль — до 1200 °С.

Нихром

Нихромовые нагревательные элементы, в свою очередь, предназначены для продолжительной работы при температурах до 1100 °С в стационарных слабо динамических режимах, при этом они не потеряют ни прочности ни пластичности. Но если режим будет резко динамичным, то есть температура будет многократно резко меняться, при частых включениях и выключениях тока через спираль, защитные пленки оксидов потрескаются, кислород проникнет в нихром, и элемент со временем окислится и разрушится.

Промышленностью выпускаются как голые проволоки из жаростойких сплавов, так и проволоки в эмалевой и кремнийорганической лаковой изоляции, предназначенные для изготовления обмоток.

Особенного упоминания заслуживает ртуть, ведь это единственный металл, остающийся в жидком состоянии при комнатной температуре. Температура окисления ртути 356,9 °С, ртуть почти не взаимодействует с газами воздуха. Растворы кислот (серная, соляная) и щелочей не действуют на ртуть, однако она растворима в концентрированных кислотах (в серной, соляной, азотной). В ртути растворяются цинк, никель, серебро, медь, свинец, олово, золото.

Плотность ртути 13,55 г/см3, температура перехода из жидкого в твердое состояние -39 °С, удельное сопротивление — от 0,94 до 0,95 ом*кв.мм/м, температурный коэффициент сопротивления 0,000990 1/°С. Эти свойства позволяют использовать ртуть в качестве жидких проводящих контактов выключателей и реле специального назначения, а также в ртутных выпрямителях. При этом важно помнить, что ртуть чрезвычайно токсична.

Читайте также: