Металлы стойкие к окислению при сильном нагреве

Обновлено: 04.05.2024

Химические свойства характеризуют способность металлов и сплавов сопротивляться окислению или вступать в соединение с различными веществами: кислородом воздуха, растворами кислот, щелочей и др. Чем легче металл вступает в соединение с другими элементами, тем быстрее он разрушается. Химическое разрушение металлов под действием на их поверхность внешней агрессивной среды называют коррозией.

Металлы, стойкие к окислению при сильном нагреве, называют жаростойкими пли окалиностойкими. Такие металлы применяют для изготовления деталей, которые эксплуатируются в зоне высоких температур.

Сопротивление металлов коррозии, окалинообразованию и растворению определяют по изменению массы испытуемых образцов на единицу поверхности за единицу времени.

Химические свойства металлов обязательно учитываются при изготовлении тех или иных изделий. Особенно это относится к изделиям или деталям, работающим в химически агрессивных средах.

Способность металла сопротивляться воздействию внешних сил характеризуется механическими свойствами. Поэтому при выборе материала для изготовления деталей машин необходимо прежде всего учитывать его механические свойства: прочность, упругость, пластичность, ударную вязкость, твердость и выносливость. Эти свойства определяют по результатам механических испытаний, при которых металлы подвергают воздействию внешних сил (нагрузок). Внешние силы могут быть статическими, динамическими или циклическими (повторно-переменными). Нагрузка вызывает в твердом теле напряжение и деформацию.

Напряжение — величина нагрузки, отнесенная к единице площади поперечного сечения испытуемого образца. Деформация — изменение формы и размеров твердого тела под влиянием приложенных внешних сил. Различают деформации растяжения (сжатия), изгиба, кручения, среза. В действительности материал может подвергаться одному или нескольким видам деформации одновременно.

Для определения прочности, упругости и пластичности металлы в виде образцов круглой или плоской формы испытывают на статическое растяжение (ГОСТ 1497—73), Испытания, проводят на разрывных машинах. В результате испытаний получают диаграмму растяжения. По оси абсцисс этой диаграммы откладывают значения деформации, а по оси ординат — нагрузки, приложенные к образцу.

Прочность - способность материала сопротивляться разрушению под действием нагрузок оценивается пределом прочности ипределом текучести. Важным показателем прочности материала является также удельная прочность — отношение предела прочности материала к его плотности. Предел прочности sв (временное сопротивление) - это условное напряжение в Па (Н/м 2 ), соответствующеенаибольшей нагрузке, предшествующей разрушению образца: sв = = Рmax/Fо, где Рmax-наибольшая нагрузка, Н; F0 — начальная площадь поперечногосечения рабочей части образца, м 2 . Истинное сопротивление разрыву Sк это напряжение,определяемое отношением нагрузки Рк в момент разрыва к площади минимального поперечного сечения образца после разрыва Fк,(Sк=Рк/Fк).

Предел текучести (физический) sт — это наименьшее напряжение (в МПа), при котором образец деформируется без заметного увеличения нагрузки: sт — Рт/Fт где Рт - нагрузка, при которой наблюдается площадка текучести, Н.

Площадку текучести имеют в основном только малоуглеродистая сталь и латуни. Другие сплавы площадки текучести не имеют. Для таких материалов определяют предел текучести (условный), при котором остаточное удлинение достигает 0,2% от расчетной длины образца: s0,2=Р0,2/Fо.

Упругость- способность материала восстанавливать первоначальную форму и размеры после прекращения действия нагрузки Руп оце­нивают пределом пропорциональности sпц и пределом упругости sуп.

Передел пропорциональности sпц — напряжение (МПа), выше которого нарушается пропорциональность между прилагаемым напря­жением и деформацией образца Рпц/Fо

Передел упругости (условный) s0,5 — это условное напряжение в МПа, соответствующее нагрузке, при которой остаточная деформация впервые достигает 0,05% от расчетной длины образца l0: s0,5 = Р0,5/Fо, где Р0,5 - нагрузка предела упругости, Н.

Пластичность, т. е. способность материала принимать новую форму и размеры под действием внешних сил не разрушаясь, характери­зуется относительным удлинением и относительным сужением.

Относительное удлинение (после разрыва) δ — это отношение приращения (lк—l0) расчетной длины образца после разрыва к его первоначальной расчетной длине 1о, выраженное в процентах: δ=[(lк-10)/1о]100%.

Относительное сужение (после разрыва) ψ - это отношение разности начальной и минимальной площадей (F0 -Fк)поперечного сечения образца после разрыва к начальной площади F0 поперечного сечения, выраженное в процентах: ψ = [(Fо- Fк)/F0] 100%.

Чем больше значения относительного удлинения и сужения для материала, тем он более пластичен. У хрупких материалов эти значения близки к нулю. Хрупкость конструкционного материала является отрицательным свойством.

Ударная вязкость, т. е. способность материала сопротивляться динамическим нагрузкам, определяется как отношение затраченной на излом образца работы W (в МДж) к площади его поперечного сечения F (в м2) в месте надреза КС = W/F.

Для испытания (ГОСТ 9454—78)изготовляют специальные стандартные образцы, имеющие форму квадратных брусочков с надрезом. Испытывают образец на маятниковых копрах. Свободно падающий маятник копра ударяет по образцу со стороны, противоположной надрезу. При этом фиксируется работа.

Определение ударной вязкости особенно важно для некоторых металлов, работающих при минусовых температурах и проявляющих склонность к хладноломкости. Чем ниже порог хладноломкости, т. е. температура, при которой вязкое разрушение материала переходит в хрупкое, и больше запас вязкости материала, тем больше ударная вязкость материала. Хладноломкость - снижение ударной вязкости при низких температурах.

Циклическая вязкость — это способность материалов поглощать энергию при повторно-переменных нагрузках. Материалы с высокой циклической вязкостью быстро гасят вибрации, которые часто являются причиной преждевременного разрушения. Например, чугун, имею­щий высокую циклическую вязкость, в некоторых случаях (для станин и других корпусных деталей) является более ценным материалом, чем углеродистая сталь.

Твердостью называют способность материала сопротивляться проникновению в него другого, более твердого тела. Высокой твердостью должны обладать металлорежущие инструменты: резцы, сверла, фрезы, а также поверхностно-упрочненные детали. Твердость металла определяют способами Бринелля, Роквелла и Виккерса (рис. 10).

Способ Бринелля (ГОСТ 9012—59)основан на том, что в плоскую поверхность металла вдавливают под постоянной нагрузкой стальной закаленный шарик. Диаметр шарика и величину нагрузки устанавливают в зависимости от твердости и толщины испытываемого металла. Твердость по Бринеллю определяют на твердомере ТШ (твердомер шариковый). Испытание проводят следующим образом. На поверхности образца, твердость которого нужно измерить, напильником или абразивным кругом зачищают площадку размером 3—5 см 2 . Образец ставят па столик прибора и поднимают до соприкосновения со стальным шариком, который укреплен в шпинделе прибора. Груз опускается и вдавливает шарик в испытываемый образец. На поверхности металла образуется отпечаток. Чем больше отпечаток, тем металл мягче.

За меру твердости НВ принимают отношение нагрузки к площади поверхности отпечатка диаметром d и глубиной t,который образуется при вдавливании силой Р шарика диаметра D.

Числовое значение твердости определяют так: измеряют диаметр отпечатка с помощью оптической лупы (с делениями) и по полученному значению находят в таблице, приложенной к ГОСТу, соответствующее число твердости.

Преимущество способа Бринелля заключается в простоте испытания и точности получаемых результатов. Способом Бринелля не рекомендуется измерять твердость материалов с НВ>450, например закаленной стали, так как при измерении шарик деформируется и показания искажаются.

Для испытания твердых материалов применяют способ Роквелла (ГОСТ 9013—59). В образец вдавливают алмазный конус с углом при вершине 120° или стальной закаленный шарик диаметром 1',59 мм. Твердость по Роквеллу измеряется в условных единицах. Условная ве­личина единицы твердости соответствует осевому перемещению наконечника на 0,002 мм. Испытание проводят на приборе ТК. Значение твердости определяется по глубине отпечатка h и отсчитывают по циферблату индикатора, установленному на приборе. Во всех случаях предварительная нагрузка Р0 равна 100 Н.

При испытании металлов с высокой твердостью применяют алмазный конус и общую нагрузку Р= Р01 = 1500 Н. Твердость отсчитыва­ют по шкале «С» и обозначают НRС.

Если при испытании берется стальной шарик иобщая нагрузка 1000 Н, то твердость отсчитывается по шкале «В» и обозначается HRB.

При испытании очень твердых или тонких изделий используют алмазный конус и общую нагрузку 600 Н Твердость отсчитывается по шкале «А» и обозначается НRА. Пример обозначения твердости по Роквеллу: НRС 50 — твердость 50 по шкале «С».

При определении твердости способом Виккерса (ГОСТ 2999—75) в качестве вдавливаемого в материал наконечника используют четы­рехгранную алмазную пирамиду с углом при вершине 136°. При испытаниях применяют нагрузки от 50 до 1000 Н (меньшие значения на­грузки для определения твердости тонких изделий и твердых, упрочненных поверхностных слоев металла). Числовое значение твердости определяют так: замеряют длины обеих диагоналей отпечатка после снятия нагрузки и с помощью микроскопа и по полученному среднему арифметическому значению длины диагонали находят в таблице соответствующее число твердости. Пример обозначения твердости по Виккерсу — НV 500.

Для оценки твердости металлов в малых объемах, например, на зернах металла или его структурных составляющих применяют способ определения микротвердости. Наконечник (индентор) прибора представляет собой алмазную четырехгранную пирамиду (с углом при вер­шине 136°, таким же, как и у пирамиды при испытании по Виккерсу). Нагрузка на индентор невелика и составляет 0,05—5 Н, а размер отпечатка 5—30 мкм. Испытание проводят на оптическом микроскопе ПМТ-З, снабженном механизмом нагружения. Микротвердость оценивают по величине диагонали отпечатка.

Усталостью называют процесс постепенного накопления повреждений материала под действием повторно-переменных напряжений, приводящий к образованию трещин и разрушению. Усталость металла обусловлена концентрацией напряжений в отдельных его объемах, в ко­торых имеются неметаллические включения, газовые пузыри, различные местные дефекты и т. д. Характерным является усталостный излом, образующийся после разрушения образца в результате многократного нагружения и состоящий из двух разных по внешнему виду частей. Одна часть I излома с ровной (затертой), поверхностью образуется вследствие-трения поверхностей в области трещин, возникших от действия повторно-переменных нагрузок, другая

Механические свойства

Жаропрочные и жаростойкие что это за стали — 5 основных типов

Сталь, классифицирующая как жаропрочная, рекомендуется для изготовления конструкций не только находящихся под влиянием высоких температур, но и работающих в иных агрессивных условиях.

Рассмотрим, что же из себя представляют жаропрочные стали, на какие классы и марки подразделяются, и как выбрать оптимальный вариант для собственных нужд.

Zharoprochnye 1

Жаропрочность и жаростойкость металла

Жаростойкие стали обладают таким ценным свойством как жаростойкость или если говорить простым языком, то они сохраняют свои свойства при высоких температурах. Второе название данного свойства – «Окалиностойкость». Основная ценность такой стали заключается в том, что она способна длительное время сохранять структуру своей кристаллической решетки в условиях воздействия высоких температур.

Стандартные жаропрочные стали имеют верхний температурный предел от 500 до 550 градусов и способны эффективно сопротивляться температуре только до этого предела. Далее на поверхности металла начинает образовываться оксидная пленка (окалина), что становится первым шагом к разрушению металла.

Не рекомендуется применять простые жаропрочные стали для изготовления конструкций, находящихся под сильной динамической нагрузкой.

Понятие жаропрочности

Жаропрочные стали изготавливаются методом химического взаимодействия основного состава с оксидами хрома, кремния или алюминия. Структура кристаллической решетки, полученная путем взаимодействия атомов двух элементов, сохраняет свою плотность даже в условиях воздействия открытого огня.

Количественные показатели и процентное соотношение добавок в сталях рассчитывается по формуле исходя из предполагаемых условий эксплуатации изделия. На производстве предпочтение отдается металлу, изготовленному из сплава главным компонентом, которого является хром.

Чем большее количество хрома в составе соединения, тем более жаропрочным получается сплав. Удается добиваться показателей, при которых металл переносит температуру более 1000 градусов и не теряет своих свойств.

Основные типы

Все жаропрочные и жаростойкие стали разделены на три условных группы. Группы отличаются химическим составом, способностью противостоять температуре и методикой производственного процесса.

  1. К первой группе относятся все сплавы, выполненные с добавлением хрома, марганца, молибдена, титана или вольфрама. Так же к первой группе относится сталь с добавлением бора, ванадия или ниобия. Такие сплавы тоже имеют жаропрочные свойства, но из-за дороговизны производства используются редко.
  2. Ко второй группе относятся сплавы на основе кальция, серия и еще ряда химических элементов сходных по структуре. Комплексное количество присадок в таких металлах может достигать 50%.
  3. Третья группа характеризуется введением в консистенцию углерода, молибдена и кобальта.

Аустенитный класс

Аустенитные сплавы пользуются популярностью благодаря своим свойствам. Помимо способности эффективного сопротивления температуре вплоть до 1000 градусов, полученный жаропрочный сплав обладает ярко выраженными антикоррозийными свойствами.

Структура металла поддерживается путем добавления в сплав 10-15 процентов никеля, который удерживает атомы кристаллической решетки и не дает металлу понизить прочностные качества.

Хром придает устойчивость к температуре и не разрушает структуру, незначительные добавки стабилизирующих элементов – углерода, титана или ниобия успешно работают на поддержание антикоррозийных свойств.

Zharoprochnye 2

Структура аустенитов

Жаропрочные аустенитные сплавы в зависимости от типа химической структуры бывают двух видов:

  • гомогенный. Материалы данного типа не предназначены для высоких температур и слабо переносят длительное воздействие жара. Максимальный предел температуры – 500 градусов. Тип материалов обусловлен отказом от термообработки и малым количеством углеродных включений;
  • гетерогенный. Данный тип материалов проходит две фазы термической обработки, что повышает его жаростойкость до 700 градусов. Карбидные фазы работают на сохранение устойчивости к деформациям и большим нагрузкам в период нагревания. Максимальная температура гетерогенного ряда – 1700 градусов, такой предел возможен при добавлении в сплав более 50% молибдена.

Zharoprochnye 3

Аустенитно ферритный класс

Сплав полученный на основе смеси фаз аустенитов и ферритов является высоколегированным и стабилизированным сплавом. Чрезвычайно трудно обрабатываемый металл. Применяется для построения дымоотводных каналов, выхлопных труб автомобилей и конструкций, работающих с сильным температурным воздействием.

При производстве критически важных изделий на основе подобных сталей, используются сплавы, матрица которых усиливается дисперсионным твердением и добавлением таких элементов как карбид и его образующие. Метал подобных изделий не образует хрупкой окалины и устойчив к динамическим нагрузкам и деформации.

Мартенситный класс

Мартенситный класс жаропрочной стали характеризуется особым процессом изготовления и обработки. Суть его в том, что вначале металл закаливают высокой температурой, после которой «отпускают» в специальной камере. Итогом такого процесса является значительное повышение способности к сопротивлению температуре, но падение упругости.

На первом этапе сплав нагревают до 1200 градусов и стабилизируют его в течение 5 часов с последующим постепенным остыванием в примерно такой же временной интервал

На втором этапе процесс повторяется с тем отличием что стабилизация и «отпуск» проходит под воздействием температуры в 1000 градусов.

Zharoprochnye 4

Перлитный класс

Перлитные стали относятся к категории низколегированных термостойких сплавов. В первую очередь они нацелены на сохранение структуры и свойств самого металла, а уже потом на его жаропрочные свойства.

Из стали перлитного класса изготавливаются детали и изделия промышленного назначения по условиям эксплуатации, не допущенные к работе при температуре свыше 400 — 500 градусов. Незначительного повышения жаростойкости можно добиться путем добавления в металл хрома и ванадия, в этом случае температурный предел поднимается до 600 – 650 градусов.

Если совместно с легированием применить технологию нормализации, то можно значительно улучшить прочность металла и его механические свойства.

Zharoprochnye 5

Ферритный класс

Ферритные сплавы или металлы ферритного класса характеризуются высоким содержанием в своем составе хрома. Как правило, в ферритных сплавах его процентное соотношение достигает 35%.

Металлы данного класса подвергаются особому виду термической обработки – «обжигу». Такой вид подготовки позволяет получить зернистую структуру металла и значительно увеличить температурный предел работы металла.

Металлы ферритного класса способны эффективно переносить длительное нахождение под воздействием высокой (до 800 градусов) температуры. Дальнейшее повышение жаропрочности методом присадок и легирования не рекомендуется в связи с тем, что температурный предел повышается незначительно, а хрупкость изделий возрастает в несколько раз.

Zharoprochnye 6

Мартенситно ферритный класс

Жаропрочный металл производимый из сплавов мартенситно-ферритного класса имеет среднюю устойчивость и содержит целый пакет дополнительных присадок – хром, вольфрам и ванадий.

Из него изготавливаются такие детали как лопасти паровых турбин, центрифуг, теплообменных сетей и активного оборудования ТЭЦ.

Металл хорошо подходит для изделий любого типа спланированных к эксплуатации в условиях непрерывного воздействия температур в диапазоне от 500 до 600 градусов и умеренных механических нагрузок.

В отдельных случаях, для повышения антиокислительных свойств в металл могут добавлять никель. Он способствует образованию на поверхности готовых изделий непроницаемой пленки и препятствует губительному воздействию кислорода.

Zharoprochnye 7

Сплавы на основе никеля

Несмотря на то, что сплав легирован никелем, основным компонентом металла является все равно хром. Именно он придает смеси свойства жаропрочности и жаростойкости. В зависимости от количества базовых присадок сплавы на основе никеля могут быть как жаропрочными, так и жаростойкими.

Их устойчивость к перегреву обусловлена химическому процессу образования на поверхности металла оксидной пленки. Оксидная пленка состоит из фракций алюминия и хрома или алюминия и никеля.

Как правило такой металл применяют при изготовлении систем газовых турбин, трубопроводов и нагревательных элементов, деталей конструкции компрессоров и нагнетателей.

Химический состав

Однозначной формулой сложно описать всю суть протекающего химического процесса. Все дело в том, что формула учитывает исключительно основной состав металла и легирующие его добавки.

В действительности же, жаростойкие сплавы имеют в своем составе не только то что добавляется в процессе производства, но и не учитываемые продукты протекающих внутри химических реакций, отложения и выпадающие осадки. Получающиеся в процессе контролируемой химической реакции примеси в значительной мере ухудшают свойства металла.

В особенности большой вред наносят отложения серы. Всего лишь 0,003% серы в составе сплава способны полностью свести на нет все полезные свойства.

Структура и свойства

Не столько и не только химический состав консистенции влияет на жаростойкость полученного металла. Важную роль играет и форма, и агрегатное состояние в котором находятся легирующие примести до их включения в состав.

Химическая чистота присадок влияет на результат так же, как и ее количество. Никель и хром придают металлу жаропрочные свойства только при условии их полной очистки. Включение небольшого количества серы снижает температуру плавления металла, но и снижает его ползучесть.

«Ползучесть» — выведенный формат определения качественного состояния жаропрочности металла. Простыми словами ползучестью называется способность к разрушению структуры под действием температуры. И чем ползучесть ниже, тем качественнее считается металл.

Что влияет на жаропрочность

При стандартном производстве получить жаропрочный сплав можно только при соблюдении трех основных условий.

  1. Термическая закалка, производимая в один или два этапа. Подразумевает постепенный нагрев до определенной температуры, удержание (стабилизация) в несколько часов и постепенное охлаждение. Правильное охлаждение выполняется в водяной бане или на открытом воздухе под контролем падения температуры.
  2. Добавление в состав металла присадок, сохраняющих структуру металла и не допускающий возникновения интеркристаллической коррозии. Чаще всего в качестве таких присадок применяются ниобий или титан.
  3. Точный расчет основного компонента. Основным компонентом является хром, от его количества зависит жаростойкость и способность к сопротивляемости окислению. В большинстве случаев хром составляет от 10 до 13% от всей массы металла.

Сферы применения

В связи с большим количеством жаропрочных сплавов, представленных на рынке, их эксплуатация и применение во многом определяется по составу входящих в сплавы присадок и дополнительных легирующих компонентов.

Рассмотрим основные сферы применения жаростойких металлов в зависимости от состава химических элементов:

  • AISI-314. Основная сфера применения – стенки и корпусные элементы печных конструкций. Достоинство сплава – высокая степень тугоплавкости;
  • AISI-310. Используется для производства двигателей внутреннего сгорания, нагруженных элементов моторов и турбин;
  • AISI-310S. Чаще всего востребована на производстве газоотводных трубопроводов, участков системы выхлопных труб и транспортных труб инертных газов;
  • AISI-309. Универсальный сплав, хорошо подходит как для изготовления печей, так и для производства других элементов, работающих в условиях повышенных температур.

Марки нержавеющей стали для изготовления дымоходов

При изготовлении или приобретении дымохода необходимо точно знать материал. Часто в свободной продаже можно встретить дымоход по цене в два, а то и три раза ниже рыночной. Стоит учитывать, что вероятнее всего такое изделие изготовлено из стали марки AISI 201 которая относительно недорогая, но при этом не отвечает всем требованиям для дымоходов.

Лучше всего для этой цели подойдет жаропрочная сталь марки AISI-309. Основное ее отличие от более дешевой 201-й версии в том, что у нее практически отсутствует риск деформации и возникновения термических трещин и разрывов.

Оба варианта стали немагнитны и неотличимы визуальным методом. Для их идентификации нужно проверять сопроводительные документы или же проводить сложный химический анализ.

Нержавеющие стали для пищевой индустрии

Жаропрочная нержавеющая сталь, имеющая свойства сопротивления коррозии, имеет массу преимуществ в изготовлении посуды и принадлежностей, контактирующих с пищей.

Разберем основные из них:

  • внешний вид. Хорошо отполированная сталь имеет привлекательный внешний вид и красиво смотрится в качестве готовых изделий;
  • прочность. Нержавеющая сталь трудно обрабатывается, но и трудно деформируется. Благодаря заложенной прочности можно изготавливать тонки элементы посуди и сервировки способные выдерживать большую нагрузку;
  • соответствие установленным нормам гигиены и СанПиН(а). Сталь имеет настолько плотную структуру, что при должной обработке и шлифовке практически не остается раковин где может задержаться грязь;
  • отсутствие эффекта коррозии. Основное преимущество нержавейки. Изготовленная из нее посуда не поддается окислению даже при длительном контакте с водой.

Основные марки стали применяемые в пищевой индустрии представлены в таблице.

Zharoprochnye 9

Какая марка стали лучше для банной печки

Жаропрочная и коррозионностойкая сталь для печи должно не просто сопротивляться воздействия высокой температуры, но и выдерживать длительное воздействие открытого огня. Наиболее часто встречающаяся неисправность банной печи – прогорание стенок.

Для устранения проблемы можно конечно просто использовать толстостенную сталь, не вникая в ее свойства и химический состав. В принципе, это будет вполне рабочий способ, но не лишенный недостатков:

  • во-первых – такая сталь все равно будет окисляться и на ее поверхности будет появляться все увеличивающийся слой окалины, что помимо неприглядного внешнего вида рано или поздно приведет к прогоранию;
  • во-вторых – печь из толстого металла будет очень долго протапливаться и требовать в разы больше топлива для набора необходимой температуры.

Как показывает практика, лучше всего для банной печи подходит легированная сталь марки AISI-430, которая обладает всеми необходимыми качествами и долгим сроком службы.

Zharoprochnye 10

Расшифровка марок

Маркировка жаропрочной стали, в том числе и металлов для печей имеет буквенно-цифровой вид. Каждый символ маркировки несет информацию о содержании в сплаве определенного химического элемента.

Двузначный числовой показатель как правило ставится в начале маркировки и дает информацию о процентном соотношении углерода. Буквенные символы указывают на находящийся в сплаве химический элемент и его процент (указан цифрами сразу после буквы).

Zharoprochnye 11

Расшифровка буквенного обозначения представлена на таблице.

Оптимальная толщина металла для печи в баню

Для определения какую толщину металлического листа выбрать для изготовления банной печи, стоит обратить внимание на два фактора.

  1. Теплопроводность стали. Чем толще сталь, тем больше энергии необходимо затратить для ее нагрева и поддержания температурного режима. Исходя из практического опыта считается, что использование для печи стальных листов толще 8 миллиметров экономически не целесообразно.
  2. Огнеупорность. Если планируется эксплуатировать печь более 3 лет, то не стоит применять сталь в 4 мм. Такая печь будет очень быстро нагреваться, но прогорит менее чем через год интенсивного использования.

Исходя из вышеуказанного, специалисты понимают, что применять для печи лучше сталь марки AISI-430 с толщиной стенки 5-6 мм.

Какими электродами надо варить банную печь

Если стоит вопрос о самостоятельном изготовлении банной печи, то нельзя упускать из внимания и вопросы сварки. Нержавеющая, жаропрочная сталь варится особым видом электродов марки ЦЛ11 или аналогом – Д4.

Zharoprochnye 12

Обязательным условием работы является химическая протравка сварного шва. Если упустить данный момент, то в местах сварки возможно появление коррозии и как следствие преждевременное разрушение конструкции.

Характеристика свойств. Объясните практические значения технологических свойств металлов

Физические и химические свойства металлов и сплавов. Их учет при изготовлении тех или иных изделий. Методы определения твердости и прочности. Виды деформаций, способы обработки материала. Характеристики и назначение инструментальной легированной стали.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 05.02.2019
Размер файла 1,2 M

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Характеристика свойств. Объясните практические значения технологических свойств металлов

1. Физические свойства

К физическим свойствам металлов и сплавов относятся:

¦ плотность - количество вещества, содержащегося в единице объема, г/см 3 ;

¦ температура плавления, o С - температура, при которой металл полностью переходит из твердого состояния в жидкое;

¦ теплопроводность - это способность тел передавать с той или иной скоростью тепло при нагревании и охлаждении;

¦ тепловое расширение - металлы расширяются при нагревании и сжимаются при охлаждении. Изменение линейного размера при нагреве называют линейным расширением; изменение объема тела - объемным расширением;

¦ удельная теплоемкость - это количество тепла, которое необходимо для повышения температуры 1 г вещества на°С;

¦ электропроводность - способность металлов проводить электрический ток. Под удельным электрическим сопротивлением с понимают сопротивление проводника длиной 1 м и площадью поперечного сечения 1 мм 2 ;

¦ способность намагничиваться - это способность металла создавать собственное магнитное поле либо самостоятельно, либо под действием внешнего магнитного поля.

2. Химические свойства

Металлы, стойкие к окислению при сильном нагреве, называют жаростойкими или окалиностойкими. Такие металлы применяют для изготовления деталей, которые эксплуатируются в зоне высоких температур.

Например, металлы и сплавы, стойкие против окисления при сильном нагреве (жаростойкие, окалиностойкие) применяются для изготовления различных сильно нагревающихся деталей автомобилей (выпускные коллекторы, глушители).

3. Механические свойства

К основным механическим свойствам металлов относятся:

Твердость является одной из важнейших характеристик. Твёрдость - это свойство металла оказывать сопротивление пластической деформации при проникновении в него другого более твердого тела на поверхностные слои материала. Измерение твёрдости имеет широкое применение для контроля качества изделий.

В зависимости от методов испытания различают значение твердости по Бринеллю, Виккерсу, Роквеллу. Твердость по Бринеллю обозначают символом HB (твердостью менее 450 единиц) и HBW (твердостью более 450 единиц). Твердость по Виккерсу обозначают буквами HV. Твердость по Роквеллу обозначают символом HR с указанием шкалы твердости A, B или C.

Под деформацией (рис.1, приложение А) металла понимают изменение формы и размеров тела под действием внешних воздействий или внутренних сил. Деформация в твердых телах может быть упругой и пластической. Упругой называется деформация, полностью исчезающая после прекращения действующих на неё нагрузок, и пластической если она после снятия нагрузок не исчезает.

Прочность - способность металла сопротивляться деформациям и разрушению. Под разрушением понимают процесс развития в металле трещин, приводящий к разделению его на части. Прочность определяют в результате статического испытания на растяжение.

Пластичность - способность металла к пластической деформации (т.е. получению остаточных изменений формы и размеров без нарушения сплошности). Пластичность используют при обработке металлов давлением.

Вязкость - это способность металла поглощать механическую энергию внешних сил за счёт пластической деформации.

4. Технологические свойства

Под технологическими свойствами понимают способность подвергаться различным видам обработки.

Технологические свойства определяют при технологических пробах, которые дают качественную оценку пригодности металлов к тем или иным способам обработки. Образец, подвергнутый технологической пробе (рис.2, приложение Б), осматривают. Признаком того, что образец выдержал испытание, является отсутствие трещин, надрывов, расслоения или излома.

Из технологических свойств наибольшее значение имеют:

Обрабатываемость резанием - комплексное свойство металла, характеризующее способность его подвергаться обработке резанием и определяется по скорости, усилию резания и по чистоте обработки. Испытания по скорости и усилию резания производятся путем сравнения показателей, полученных при обработке данного металла, с показателями обрабатываемости эталонной марки стали (автоматная сталь марки А12). Показатель чистоты обработанной поверхности определяется измерением высоты неровностей, образующихся на поверхности металла после снятия стружки режущим инструментом.

Свариваемость - способность металла давать доброкачественное соединение при сварке, характеризуется отсутствием трещин и других пороков в швах и прилегающих к шву зонах основного металла. Хорошей свариваемостью обладают конструкционные стали; значительно худшую свариваемость имеют чугуны, медные и алюминиевые сплавы, которые требуют специальных технологических условий при сварке.

Ковкость - способность металлов и сплавов без разрушения изменять свою форму при обработке давлением. Многие металлы и сплавы обладают достаточно хорошей ковкостью в нагретом состоянии, а в холодном состоянии - латунь и алюминиевые сплавы; пониженной ковкостью характеризуется бронза.

Прокаливаемость - способность стали воспринимать закалку на определенную глубину от поверхности. Она зависит от присутствия легирующих элементов в составе и размеров зерен структуры.

Литейные свойства металлов и сплавов характеризуются жидкотекучестъю и усадкой.

Жидкотекучесть - способность металла или сплава в расплавленном состоянии заполнять литейную форму. Для повышения жидкотекучести к ним добавляют легирующие компоненты, например, фосфор - в медные сплавы и чугун, кремний - в алюминиевые сплавы.

Усадкой называется уменьшение объема расплавленного металла или сплава при его затвердевании. На степень усадки влияют многие факторы: химический состав расплава, скорость охлаждения и др.

5. Эксплуатационные свойства

Эксплуатационные свойства определяются в зависимости от условий работы машин и механизмов специальными испытаниями. Одним из важнейших эксплуатационных свойств является износостойкость.

Износостойкость - свойство материала оказывать сопротивление износу, т.е. изменению размеров и формы вследствие разрушения поверхностного слоя изделия при трении. Испытания материалов на износ производят на образцах в лабораторных условиях, а деталей - в условиях реальной эксплуатации.

К эксплуатационным свойствам также относятся хладностойкость, жаропрочность, антифрикционность и другие.

Приложение А

Рис.1. Виды деформаций: а - сжатие, б - растяжение, в - кручение, г - срез, д - изгиб

химический металл твердость деформация

Приложение Б

Рис.2. Технологические пробы: а - изгиб на определенный угол, б - изгиб до параллельности сторон, в - изгиб до соприкосновения сторон, г - на навивание, д - на сплющивание труб, е - на осадку.

Таблица 1 Характеристики и назначение инструментальной легированной стали

Подобные документы

Физические свойства металлов. Способность металлов отражать световое излучение с определенной длиной волны. Плотность металла и температура плавления. Значение теплопроводности металлов при выборе материала для деталей. Характеристика магнитных свойств.

курс лекций [282,5 K], добавлен 06.12.2008

Рассмотрение правил проведения макро- и микроанализа металлов и сплавов, определению твердости, исследованию структур и свойств сталей и чугунов, цветных сплавов и пластмасс. Практические вопросы термической и химико-термической обработки металлов.

учебное пособие [4,4 M], добавлен 20.06.2012

Характеристика основных механических свойств металлов. Испытания на растяжение, характеристики пластичности (относительное удлинение и сужение). Методы определения твердости по Бринеллю, Роквеллу, Виккерсу; ударной вязкости металлических материалов.

реферат [665,7 K], добавлен 09.06.2012

Направления и этапы исследований в сфере строения и свойств металлов, их отражение в трудах отечественных и зарубежных ученых разных эпох. Типы кристаллических решеток металлов, принципы их формирования. Основные физические и химические свойства сплавов.

презентация [1,3 M], добавлен 29.09.2013

Эксплуатационные свойства металлов. Классификация металлических материалов. Черные и цветные металлы, их сплавы. Стали для режущих и измерительных инструментов. Стали и сплавы со специальными свойствами. Сплавы алюминия и меди. Сплавы с "эффектом памяти".

4 типа металлов устойчивые к коррозии или нержавеющие

Мы обычно думаем о ржавчине как о оранжево-коричневых хлопьях, которые образуются на открытой стальной поверхности, когда молекулы железа в металле реагируют с кислородом в присутствии воды с образованием оксидов железа. Металлы также могут реагировать в присутствии кислот или агрессивных промышленных химикатов. Если ничто не остановит коррозию, чешуйки ржавчины будут продолжать отламываться, подвергая металл дальнейшей коррозии, пока он не распадется.

Не все металлы содержат железо, но они могут коррозировать или потускнеть в других окислительных реакциях. Чтобы предотвратить окисление и разрушение металлических изделий, таких как поручни, резервуары, приборы, кровля или сайдинг, вы можете выбирать металлы, которые «устойчивы к ржавчине» или, точнее, «устойчивы к коррозии». В эту категорию попадают четыре основных типа металлов:

  • Нержавеющая сталь
  • Алюминиевый металл
  • Медь, бронза или латунь
  • Оцинкованная сталь

Нержавеющая сталь

Типы нержавеющей стали такие, как 304 или 316, представляют собой смесь элементов и большинство из них содержат некоторое количество железа, которое легко окисляется с образованием ржавчины. Но многие сплавы нержавеющей стали также содержат высокий процент хрома (не менее 18%), который даже более активен, чем железо. Хром быстро окисляется, образуя защитный слой оксида хрома на поверхности металла. Этот оксидный слой противостоит коррозии и в то же время предотвращает попадание кислорода на нижележащую сталь. Другие элементы сплава, такие как никель и молибден, повышают его устойчивость к ржавчине.

Рекомендуем эффективный удалитель ржавчины с металлических поверхностей -

Рекомендуем эффективный удалитель ржавчины с металлических поверхностей — «РжавоМед-У»

Алюминиевый металл

Многие самолеты сделаны из алюминия, как и детали автомобилей и мотоциклов. Это связано с его небольшим весом, а также с устойчивостью к коррозии. Алюминиевые сплавы почти не содержат железа, а без железа металл не может ржаветь, но окисляется. Когда сплав подвергается воздействию воды, на поверхности быстро образуется пленка оксида алюминия. Слой твердого оксида довольно устойчив к дальнейшей коррозии и защищает лежащий под ним металл.

Медь, бронза и латунь

Эти три металла содержат мало железа или вовсе его не содержат, поэтому не ржавеют, но могут вступать в реакцию с кислородом. Медь со временем окисляется, образуя зеленую патину, которая фактически защищает металл от дальнейшей коррозии. Бронза представляет собой смесь меди и олова, а также небольшого количества других элементов, и, естественно, гораздо более устойчива к коррозии, чем медь. Латунь – это сплав меди, цинка и других элементов, которая также устойчива к коррозии.

Оцинкованная сталь

Оцинкованная сталь долго ржавеет, но со временем она ржавеет. Это углеродистая сталь, оцинкованная или покрытая тонким слоем цинка. Цинк действует как барьер, не позволяющий кислороду и воде достигать стали, поэтому она защищена от коррозии. Даже если цинковое покрытие поцарапано, оно продолжает защищать близлежащие участки лежащей под ним стали за счет катодной защиты, а также путем формирования защитного покрытия из оксида цинка. Как и алюминий, цинк очень реактивен по отношению к кислороду в присутствии влаги, а покрытие предотвращает дальнейшее окисление железа в стали.

Читайте также: